Jozef Garaj Trichromatická špecifikácia farieb pomocou polarizačných farieb na kremennej doštičke medzi skríženými nikolami

Matematicko-fyzikálny časopis, Vol. 10 (1960), No. 3, 178--195

Persistent URL: http://dml.cz/dmlcz/126650

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1960

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

TRICHROMATICKÁ ŠPECIFIKÁCIA FARIEB POMOCOU POLARIZAČNÝCH FARIEB NA KREMENNEJ DOŠTIČKE MEDZI SKRÍŽENÝMI NIKOĽAMI

JOZEF GARAJ, Bratislava

Úvod

V práci [1] bola z farebného hľadiska vyzdvihnutá známa skutočnosť, že na kremennej doštičke brúsenej kolmo na optickú os a vloženej medzi skrížené nikoly vznikajú všetky možné farebné tóny, podľa skríženia nikolov. To je pozoruhodné najmä tým, že pri vhodnom skrížení nikolov možno získať na kremennej doštičke aj purpurové farby, ktoré sa ináč v slnečnom spektre nevyskytujú a dajú sa získať aditívnym miešaním modrej a červenej spektrálnej farby.

Ďalej chcem ukázať, ako možno túto skutočnosť využiť na meranie farieb. Na to je nutné popri dôkladnej znalosti farieb na kremennej doštičke rozhodnúť sa pre vhodnú hrúbku kremennej doštičky a pre vhodný zdroj "bieleho" svetla.

V poslednom období študovali podrobnejšie farby na kremennej doštičke aj viacerí zahraniční autori [2]. Súčasne sa ustálil pre ne názov "polarizačné farby", ktorý tiež lepšie zodpovedá ich vzniku. V ďalšom preto nebudem používať pre ne označenie "interferenčné farby" ako v citovanej práci [1], ale v súhlase so zaužívanou zvyklosťou budem ich tiež označovať ako "polarizačné farby".

Základné vzťahy

Trichromatické súradnice $x_p^{'},\,y_p^{'},\,z_p^{'}$ polarizačných farieb možno vypočítať zo vzťahov

$$x'_{p} = \sum_{(\lambda)} \overline{x}_{\lambda} p_{\lambda} J_{\lambda} \Delta \lambda, \qquad y'_{p} = \sum_{(\lambda)} \overline{y}_{\lambda} p_{\lambda} J_{\lambda} \Delta \lambda,$$
$$z'_{p} = \sum_{(\lambda)} \overline{z}_{\lambda} p_{\lambda} J_{\lambda} \Delta \lambda, \qquad (1)$$

v ktorých $\overline{x}_{\lambda}, \overline{y}_{\lambda}, \overline{z}_{\lambda}$ sú distributívne trichromatické koeficienty, p_{λ} je spek-

trálna priepustnosť systému polarizátor — kremenná doštička — analyzátor a J_{λ} je spektrálna intenzita použitého svetelného zdroja. Pritom platí

$$p_{\lambda} = \cos^2(\alpha_{\lambda} d \pm \varepsilon), \tag{2}$$

kde d je hrúbka kremennej doštičky, ε je skríženie polarizačných rovín a α_{λ} je špecifická otáčivosť kremeňa. Kladné znamienko platí pre ľavotočivý a záporné pre pravotočivý kremeň. Špecifickú otáčivosť kremeňa dobre vyjadruje známy Lowry—Coode—Adamsov vzorec.

Modul m_p polarizačných farieb je daný výrazom

$$m_p = x'_p + y'_p + z'_p$$
 (3)

a ich trichromatické koeficienty sú

$$x_p = \frac{x'_p}{m_p}, \qquad y_p = \frac{y'_p}{m_p}, \qquad z_p = \frac{z'_p}{m_p}.$$
 (4)

Trichromatické koeficienty udávajú – ako je známe – polohu bodov, ktoré vo farebnom trojuholníku systému CIE zobrazujú farby.

Podľa Kubotu a Oseho [2] možno vyjadriť trichromatické súradnice polarizačných farieb aj analyticky v priamej závislosti od ε . Platí

$$\begin{array}{l} x'_{p} = X_{0} + X_{r} \cos 2\varepsilon + X_{i} \sin 2\varepsilon \\ y'_{p} = Y_{0} + Y_{r} \cos 2\varepsilon + Y_{i} \sin 2\varepsilon \\ z'_{p} = Z_{0} + Z_{r} \cos 2\varepsilon + Z_{i} \sin 2\varepsilon \end{array} \right\}$$

$$(5)$$

kde

$$\begin{split} X_{0} &= \frac{1}{2} \sum \overline{x}_{\lambda} J_{\lambda} \Delta \lambda; \qquad \qquad Y_{0} = \frac{1}{2} \sum \overline{y}_{\lambda} J_{\lambda} \Delta \lambda; \qquad \qquad Z_{0} = \dots \\ X_{r} &= \frac{1}{2} \sum \overline{x}_{\lambda} J_{\lambda} \cos \left(2 \alpha_{\lambda} d \right) \Delta \lambda; \qquad \qquad Y_{r} = \frac{1}{2} \sum \overline{y}_{\lambda} J_{\lambda} \cos \left(2 \alpha_{\lambda} d \right) \Delta \lambda; \qquad \qquad Z_{r} = \dots \\ X_{i} &= \frac{1}{2} \sum \overline{x}_{\lambda} J_{\lambda} \sin \left(2 \alpha_{\lambda} d \right) \Delta \lambda; \qquad \qquad Y_{i} = \frac{1}{2} \sum \overline{y}_{\lambda} J_{\lambda} \sin \left(2 \alpha_{\lambda} d \right) \Delta \lambda; \qquad \qquad Z_{r} = \dots \end{split}$$

Kubota a Ose našli tiež prví analytické vyjadrenie geometrického miesta bodov zobrazujúcich vo farebnom trojuholníku CIE polarizačné farby. Ukázali, že platí

$$\begin{vmatrix} x_{p} X_{r} X_{0} \\ y_{p} Y_{r} Y_{0} \\ 1 S_{r} S_{0} \end{vmatrix}^{2} + \begin{vmatrix} x_{p} X_{i} X_{0} \\ y_{p} Y_{i} Y_{0} \\ 1 S_{i} S_{0} \end{vmatrix}^{2} + \begin{vmatrix} X_{i} X_{r} x_{p} \\ Y_{i} Y_{r} y_{p} \\ S_{i} S_{r} l_{1} \end{vmatrix}^{2}$$
(6)

kde

$$S_0 = X_0 + Y_0 + Z_0,$$
 $S_i = X_i = Y_i = Z_i,$
 $S_r = X_r + Y_r + Z_r.$

179

Teória merania farieb pomocou polarizačných farieb

Nech $x'_1, x'_2, x'_3, \ldots, x'_n; y'_1, y'_2, y'_3, \ldots, y'_n; z'_1, z'_2, z'_3, \ldots, z'_n$ sú trichromatické súradnice *n* farieb. Ich trichromatické koeficienty, ktorými sa tieto farby zobrazujú v trojuholníkovom diagrame farieb, sú $x_1, x_2, x_3, \ldots, x_n;$ $y_1, y_2, y_3, \ldots, y_n; z_1, z_2, z_3, \ldots, z_n$, pričom platí

$$x_i = rac{x'_i}{x'_i + y'_i + z'_i}, \qquad y_i = rac{y'_i}{x'_i + y'_i + z'_i}, \ z_i = rac{z'_i}{x'_i + y'_i + z'_i}.$$

Zrejme platí

$$egin{aligned} x_i + y_i + z_i &= 1, \ x_i' + y_i' + z_i' &= m_i \end{aligned}$$

a výraz

je modul *i*-tej farby.

Z teórie farieb je známe, že aditívnym zmiešaním všetkých n farieb vznikne farba, ktorej trichromatické koeficienty sú

$$x = \frac{\sum_{(i)} m_i x_i}{\sum_{(i)} m_i}, \qquad y = \frac{\sum_{(i)} m_i y_i}{\sum_{(i)} m_i}, \qquad z = \frac{\sum_{(i)} m_i z_i}{m_t}, \tag{7}$$

čo vyjadruje tzv. ťažiskovú konštrukciu farby získanej adíciou farieb o známych moduloch. Pritom vychádzame z toho, že modul adíciou získanej farby sa rovná súčtu modulov farieb skladaných.

Podľa (5) je krivka polarizačných farieb elipsa, vo vnútri ktorej leží bod

acnych farleb elipsa, vo vnutri ktorej leži bod zobrazujúci zdroj použitého bieleho svetla (napr. A). Nech C_x je farba, ktorej špecifikácia je zatiaľ neznáma, t. j. neznáme sú jej trichromatické koeficienty x, y, z a jej modul m_x . V obr. 1, kde K je krivka polarizačných farieb, nech je C_x obrazom uvažovanej farby. Je zrejmé, že v tomto prípade možno vhodnou adíciou farby C_x s bielym normálom A získať polarizačnú farbu C_p , ktorá odpovedá určitému skríženiu ε polarizačných rovín polarizátora a analyzátora. Nech m_a je modul bieleho svetla A,

ktoré treba pridať k farbe C_x o modul
e $m_x,$ aby vznikla polarizačná farba C_p o modul
e $m_p.$ Podľa (7) potom platí

$$x_p = \frac{xm_x + x_Am_a}{m_x + m_a}, \qquad y_p = \frac{ym_x + y_Am_a}{m_x + m_a},$$
 (8)

kde

$$m_x+m_a=m_p, \qquad x_p+y_p-1=z \qquad \mathrm{a} \qquad x_A,\,y_A$$

sú trichromatické koeficienty bieleho svetla (A).

Zo vzorcov (8) dostávame

$$x = \frac{m_p x_p - m_a x_A}{m_p - m_a}, \qquad y = \frac{m_p y_p - m_a y_A}{m_p - m_a}.$$
 (9)

V druhom možnom prípade, keď bod C_x leží vo vnútri krivky K, treba uvážiť, že farbu C_x možno získať adíciou vhodnej polarizačnej farby C_p a bieleho svetla A. Analogickou úvahou potom dostaneme

$$x = \frac{m_p x_p + m_a x_A}{m_p + m_a}$$
, $y = \frac{m_p y_p + m_a y_A}{m_p + m_a}$. (9a)

Zo známych hodnôt x, y nájdeme konečne aj trichromatické súradnice meranej farby pomocou vzťahov

$$x' = x(m_p \mp m_a), \qquad y' = y(m_p \mp m_a), \tag{10}$$

pričom záporné znamienko platí pre farby, ktoré sú sýtejšie ako polarizačné farby a kladné v opačnom prípade.

Nech s je "množstvo" primiešaného bieleho svetla A vyjadrené v procentách jasnosti zdroja A. Potom je

$$m_a = sm_A. \tag{11}$$

Okrem toho platí

$$m_p x_p = x'_p, \qquad m_p y_p = y'_p, \qquad m_A x_A = x'_A.$$
 (12)

Vzhľadom na (11) a (12) prepíšeme rovnice (9), resp. (10) do tvaru

$$x = \frac{x'_p \mp sx'_A}{m_p \mp sm_A}, \qquad y = \frac{y'_p \mp sy'_A}{m_p \mp sm_A},$$
$$m_x = m_p \mp sm_A. \tag{13}$$

O znamienkach tu platí to isté, čo bolo povedané vyššie.

Úhrnom teda, ak dokážeme experimentálne stanoviť uhol ε prislúchajúci farbe C_p , ktorá s farbou C_x má rovnaký farebný tón a ak dokážeme stanoviť experimentálne aj hodnotu s, potom možno pomocou polarizačných farieb merať farby.

Vyšetrime ďalej teoreticky otázku obrátenú: nájsť pre známu trichromatickú špecifikáciu farby jej príslušné farebné charakteristiky ε , s. Túto úlohu možno riešiť exaktne pomocou rovnice (6), ktorú pre polarizačné farby odvodili Kubota a Ose.

¹³ Matematicko-fyzikálny čas. X, 3.

Predpokladajme teda, že trichromatické koeficient
yx, yfarby C_x sú známe. Potom nájdeme trichromatické koeficient
y x_p, y_p polarizačnej farby C_p rovnakého farebného tónu s
 farbou C_x ako spoločné riešenie rovníc

$$\eta - y_A = \frac{y - y_A}{x - x_A} (\xi - x_A)$$
(14)

a rovnice (6), napísanej vo všeobecnom tvare

$$a_{11}\xi^2 + a_{22}\eta^2 + 2a_{12}\xi\eta + 2a_{13}\xi + 2a_{23}\eta + a_{33} = 0.$$
(15)

Zo známych hodnôt x_p , y_p dostaneme hľadaný uhol napr. z rovnice

$$x_p = \frac{x'_p}{m_p} = \frac{X_0 + X_r \cos 2\varepsilon + X_i \sin 2\varepsilon}{S_0 + S_r \cos 2\varepsilon + S_i \sin 2\varepsilon}.$$
 (16)

Z nej po úprave dostaneme

$$\sin 2\varepsilon = \frac{-A_i A_0 \pm \sqrt{A_r^2 - A_0^2 + A_i^2}}{A_i^2 + A_r^2}, \qquad (17)$$

kde

$$A_0 = (x_p S_0 - X_0), \qquad A_r = (x_p S_r - X_r), \qquad A_i = (x_p S_i - X_i).$$

O znamienku v (17) rozhodneme z obrazu 1.

Hodnoty x'_p , y'_p sa potom nájdu priamo zo vzťahov Kubotu a Oseho. Pre modul m_p dostávame

$$m_p = S_o + S_r \cos 2\varepsilon + S_i \sin 2\varepsilon.$$
⁽¹⁸⁾

Pre farebnú charakteristiku s dostaneme z rovníc (13)

$$s = rac{Rx'_{p} - y'_{p}}{Rx'_{A} - y'_{A}},$$

kde

$$R=\frac{y}{x}.$$

Vzorcami (17), (18) je úplne riešená úloha nájsť početne farebné charakteristiky ε , s zo známych trichromatických súradníc farby.

Vzhľadom na to, že hodnoty všetkých konštánt, ktoré vystupujú vo vzťahoch (17), (18) a podobne pri výpočte trichromatických koeficientov x_p , y_p sa pre danú kremennú doštičku raz na vždy predom vypočítajú, je celkový analytický výpočet charakteristík ε , s z daných trichromatických súradníc x', y' len zdanlivo zložitý.

V zásade možno však postupovať jednoduchšie graficky hlavne v prípadoch, ktoré by nevyžadovali zvláštnu presnosť. V takom prípade možno zostrojiť krivku K z niekoľkých bodov pre rôzne uhly ε stúpajúce napr. vždy po desiatich stupňoch. K výpočtu sa použijú vzorce (1) až (4). Graficky sa nájde tiež závislosť súradníc x'_p , y'_p a modulu m_p od uhla ε . Ďalší postup je zrejmý.

Niektoré údaje pre použitú kremennú doštičku

V práci [1] bola pre získanie polarizačných farieb použitá kremenná doštička o hrúbke 3,39 mm. Tamojšie výsledky ukazujú, že získané polarizačné farby sú pomerne málo sýte. Dá sa však očakávať, že presnosť merania stúpne so sýtosťou polarizačných farieb, pretože farebné tóny sýtejších farieb možno ľahšie rozlíšiť. Vo viacerých pojednaniach [2], [3] sa k tomu ukazuje, že sýtosť polarizačných farieb je optimálna asi pri 5 mm hrúbke doštičky. Z tohto dôvodu bol vykonaný výpočet polarizačnej farby na kremennej doštičke o hrúbke d = 5,04 mm.

Spektrálna otáčivosť tejto doštičky vypočítaná z Lowry–Coode–Adamsovho vzorca je uvedená v tab. 1. Z nej boli ďalej vypočítané krivky priepustnosti (obr. 2), trichromatické súradnice a koeficienty polarizačných farieb pre skríženie nikolov stúpajúce vždy po desiatich stupňoch.

λ (μ)	$\alpha_{\hat{\lambda}}d$	$\lambda \ (\mu)$	$\alpha_{\lambda}d$
0,37	301,594	0,59	109,217
0,38	283,954	0,60	105,406
0,39	267,876	0,61	101,788
0,40	253,134	0,62	98,356
0,41	239,652	0,63	94,601
0,42	227,178	0,64	91,98
0,43	215,712	0,65	89,032
0,44	204,678	0,66	86,179
0,45	195,255	0,67	83,462
0,46	185,678	0,68	80,993
0,47	177,645	0,69	78,553
0,48	169,732	0,70	76,22
0,49	163,348	0,71	73,987
0,50	155,434	0,72	71,87
0.51	148,857	0,73	69,80
0,52	142,884	0,74	67,84
0.53	137,189	0,75	65,974
0,54	131,811	0,76	64,159
0,55	126,756	0,77	62,395
0,56	122,018	0,78	60,78
0,57	117,482	0,79	58,75
0,58	113,249	0,80	57,657

Tabuľka 1 Spektrálna otáčivosť kremennej doštičky o hrúbke d = 5,04 mm

V tab. 2 sú uvedené hodnoty x'_p , y'_p , z'_p , resp. x_p , y_p , z_p pre zdroj A a ich závislosť od uhlu je znázornená na obr. 3.

Tabuľka 2

Trichromatické súradnice a trichromatické koeficienty polarizačných farieb pre rôzne skríženie nikolov

ε	x'	y'	z'	x	y y	z
0	15,90573	26,70342	31,57379	0,21382	0,36175	0,42443
$\frac{1}{2}$	10,21022 10,06260	16,71615 10,58594	$31,05849 \\ 29,68124$	0,17608 0,19994	$0,28828 \\ 0,21033$	$0,53564 \\ 0,58973$
3 4	$15,32363 \\ 25,37365$	$9,20912 \\ 12,72949$	$25,97372 \\ 23,00479$	0,30342 0.41523	0,18227 0,20831	0,51431 0.37646
5	38,98267	20,78455	18,50397	0,49805	0,26554	0,23641
7	70,92503	46,00610	9,76237	0,55682	0,36561	0,13783
$\frac{8}{9}$	83,75430 93,99730	50,19174 72,79818	$6,56169 \\ 4,75612$	$0,55648 \\ 0,54696$	$0,39992 \\ 0,42536$	$0,04360 \\ 0,02768$
$\begin{array}{c} 10\\11\end{array}$	$99,63273 \\99,76714$	$83,29434 \\ 89,42504$	$4,52390 \\5,89950$	$0,53151 \\ 0,51138$	$0,44435 \\ 0,45834$	$0,02414 \\ 0,03025$
12 13	94,90116 84.14020	$91,04054 \\ 87.26274$	8,66751 12,25810	$0,48765 \\ 0.45892$	0,46780 0,47443	0,04455 0.06665
14	70,82673 55,40215	79,23625 67 70386	16,90417 21,77847	0,42429	0,47456	0,10124
16	39,92224	53,19054	21,77847 24,89442	0,33830	0,46734	0,15013
17	26,28892 15,90573	39,79857 26,70342	$29,02041 \\ 31,57379$	$0,27641 \\ 0,21382$	$0,41846 \\ 0,36175$	0,30513 0,42443

Obr. 2. Krivky priepustnosti. Krivka p platí pre kremennú dostičku o hrúbke 3,39 mm.

Z vypočítaných hodnôt (tab. 2) bola zostrojená tiež krivka K_a polarizačných farieb v trojuholníkovom diagrame farieb (obr. 4). V tom istom diagrame sú zakreslené aj krivky K_b , K_c polarizačných farieb tej istej kremennej doštičky prislúchajúce zdrojom B a C. Z porovnania všetkých týchto kriviek vidieť, že pre ďalšie experimentálne práce z hľadiska farebného by boli asi rovnako výhodné zdroje A, B, pričom výhodnejší by ešte mohol byť zdroj B. Avšak jednoduchá realizácia zdroja A svedčí nakoniec pre používanie tohto zdroja. Zdroj A bol preto použitý vo všetkých ďalších prácach.

Obr. 3. Grafická závislosť trichromatických súradníc a modulu polarizačných farieb od skríženia nikolov $\varepsilon.$

Obr. 4. Polarizačné farby v trojuholníkovom diagrame farieb. Farby $P, 0, \ldots$ sú teoretické a $\overline{P}, \overline{O}, \ldots$ namerané.

Pre koeficienty a_{ik} dostávame z rovnice (6) vzťahy

$$\begin{split} a_{11} &= A^2 + D^2 - G^2, \\ a_{12} &= AB + DE - GH, \\ a_{22} &= B^2 + E^2 - H^2, \\ a_{13} &= AC + DF - GL, \end{split} \qquad \begin{array}{l} a_{23} &= BC + EF - HL, \\ a_{33} &= C^2 + F^2 - L^2, \\ \vdots \\ C &= X_r Y_0 - Y_r X_0, \\ B &= S_r X_0 - X_r S_0, \end{array} \qquad \begin{array}{l} \vdots \\ C &= X_r Y_0 - Y_r X_0, \\ D &= Y_i S_0 - Y_0 S_i, \end{array} \end{split}$$

kde

	.4	В	C
Xa	54.9236	49.5457	49.0350
\overline{Y}_{0}^{0}	50,0000	50,0000	50,0000
Z_0^0	17,7912	$42,\!6547$	59,1108
X_i	-23,1606	-19,2655	-16,8064
Y_i	-33,7906	-36,6132	-36,9693
Z_i	2,9784	12,4060	19,5911
X_r	-39,1656	-26,8082	-21,6704
Y_r	-23,1366	-16,7504	-18,1527
Z_r	+13,0351	30.6305	41,8438

Tabuľka 3 Hodnoty koeficientov X_l , Y_l , Z_l (l = o, i, r)pre svetelné normály A, B, C

$E = S_i X_0 - X_i S_0,$	$H = S_r X_i - X_r S_i,$
$F = X_i Y_0 - Y_t X_0,$	$L = X_r Y_i - Y_r X_i.$
$G = Y \cdot S \cdot - X \cdot S \cdot \cdot$	

Z uvedených vzorcov vyplýva

$a_{11} =$	$2,064\ 80,$	$2a_{13} = -0,848$ 88,
$a_{22} =$	3,479 70,	$2a_{23} = -1,526$ 29,
$a_{12} =$	$-2,034\ 21,$	$a_{33} = 0,339$ 46.

Pre úplnosť uveďme ešte trichromatické súradnice normálnych bielych zdrojov.

$x'_{A} = 10$	09,8472,	$y'_A =$	100,0000,	$z'_A =$	35,5824,
$x'_{\scriptscriptstyle B}=-9$	99,0930,	$y'_B =$	100,0000,	$z_{B}^{'} =$	85,3125,
$x_{\scriptscriptstyle C}^{\prime}=-9$	98,0705,	$y_{C}^{\prime} =$	100,0000,	$z_{\scriptscriptstyle C}^{\prime} =$	118,2246.

Experimentálne zariadenie pre meranie farieb pomocou polarizačných farieb

Podstatné časti experimentálneho zariadenia, ktoré je schematicky znázornené na obr. 5, tvorí časť P s nikolami N_1 , N_2 a kremennou doštičkou Da Pulfrichov fotometer (PF), v ktorého zornom poli (ZP) sa vykonáva vizuálne porovnávanie farieb.

Otvorom o vniká do P svetlo z normálneho bieleho zdroja L_1 . Systémom š sa paralelizuje a prechádza ďalej do sústavy polarizátora (N_1) — kremennej doštičky (D) — analyzátora (N_2) . Otočenie polarizačnej roviny analyzátora oproti polarizačnej rovine polarizátora se kontroluje na stupnici s v zásade rovnakým spôsobom ako u polarimetrov. V ose časti P je ďalej umiestnené zrkadlo Z, matnica M_1 a jeden vstupný otvor fotometra s nastavovacou clonkou C_1 . Zrkadlo Z možno prípadne z osi prístroja vysunúť tak, aby svetlo vychádzajúce z N_2 mohlo priamo dopadnúť na M_1 . Pri zasunutom zrkadle Z dopadá na M_1 svetlo jedine zo zdroja L_2 . Matnica M_1 môže byť okrem toho osvetlená zdrojom L_3 . Pred druhým otvorom fotometra s nastavovateľnou clonkou C_2 je matnica M_2 , ktorá môže byť osvetľovaná zdrojmi L_4 , L_5 , L_6 .

Osvetlenie matníc M_1 , M_2 od každého zdroja možno meniť plynule clonkami C (pozri schému osvetľovacích zdrojov, obr. 6), alebo jemne tiež posunovaním zdrojov po dráhach vyznačených na obr. 5. Zdroj L_1 nemá matnicu M (obr. 6), pretože jeho zariadenie poskytuje jedine ostrý obraz žeravého vlákna žiarovky na vstupnom otvore o.

Na matnici M_1 možno aditívne miešať polarizačné farby s farbou bieleho svetleného normálu L_3 a výslednú farbu pozorovať v jednej polovici zorného poľa Pulfrichovho fotometra.

Obr. 5. Schéma experimentálneho zariadenia. Priamky 22 atď. sú dráhy možného posuvu príslušných zdrojov.

Obr. 6. Schéma osvetľovacieho zariadenia. FO – fotografický objektív, C – clonka, K – kondenzor, M – matnica, \check{Z} – žiarovka.

Všetky zdroje $L_1 - L_6$ musia byť pred meraním nastavené na rovnakú farebnú kvalitu a to podľa potreby na kvalitu zdroja A, B alebo C. V našom prípade boli použité ako svetelné normály A. Okrem toho treba pred započatím merania nastaviť také jasnosti všetkých zdrojov, aby spôsobovali rovnaké osvetlenie zorného poľa fotometra. (Pri použití pevne nastavených matníc M_1 , M_2 .) To sa dosiahne postupným vyrovnávaním jasnosti vo fotometri vždy od dvoch zdrojov.

Pri meraní filtra F sa filter vloží pred zdroj L_6 a jeho farba sa pozoruje na matnici M_2 Pulfrichovým fotometrom s úplne otvorenou clonkou C_2 . Súčasne na matnici M_1 sa nastaví taká polarizačná farba, že v zornom poli fotometra

(pri úplne otvorenej clone C_1) sa farebné tóny obidvoch pozorovaných farieb líšia čo najmenej.

Úplné vyrovnanie farieb v zornom poli sa dosiahne primiešaním svetla L_3 ku polarizačnej farbe alebo svetla L_4 ku farbe filtra. To závisí od toho, či je sýtejšia polarizačná farba alebo farba filtra.

Ak necháme na matnicu M_2 dopadať jedine primiešané svetlo L_4 , spôsobuje v jednej polovici zorného poľa fotometra určité osvetlenie. Veľkosť tohto osvetlenia určíme jeho porovnaním s osvetlením druhej polovice zorného poľa spôsobené svetlom L_2 . Vyrovnanie jasností v celom zornom poli fotometra sa pritom dosiahne clonkou C_1 . Údaj z tejto clonky určuje priamo "množstvo" primiešaného svetla v percentách svetla L_1 a je práve tou hodnotou, ktorá vystupuje v rovnici

$$m_a = sm_A$$
.

Analogicky sa postupuje aj pri meraní primiešaného svetla L_3 , pričom hodnota s sa určuje pomocou normálu L_5 .

Uhol ε udávajúci skríženie polarizačnej roviny nikola N_2 oproti polarizačnej rovine nikola N_1 a uvedeným spôsobom nameraná hodnota s dávajú pre farbu nutné experimentálne údaje, z ktorých už možno určiť jej trichromatickú špecifikáciu, t. j. jej trichromatické súradnice a trichromatické koeficienty.

Experimentálne overenie metódy

Experimentálne overenie opísanej metódy trichromatickej špecifikácie farieb bolo vykonané na štyroch filtroch, červenom, oranžovom, zelenom a modrom a na sodíkovej spektrálnej lampe.

Za tým účelom bola najprv premeraná spektrálna priepustnosť vybraných filtrov (tab. 4, obr. 7). Farba sodíkovej spektrálnej lampy bola pritom

Obr. 7. Krivky priepustnosti kontrolných filtrov.

považovaná za monochromatickú o vlnovej dĺžke rovnej aritmetickému priemeru vlnových dĺžok obidvoch sodíkových spektrálnych čiar, 5890 Å.

λ	Filter					
(mµ)	červený	oranžový	zelený	modrý		
435		_	0.0250	0.0223		
440			0.0400	0.0584		
445			-,	0.1107		
450			0,0840	0.1501		
455				0.1741		
460			0,1440	0,1434		
465			,	0,0936		
470			0.2180	0.0545		
475	-		,	0,0023		
480			0,3080	0,0070		
490			0,4140	·		
500			0,4960			
510			0,5630			
520			0,6070			
530		-	0,6270			
540	_		0,6210	_		
550	0,0020	0,0130	0,5870			
560	0,0030	0,0840	0,5250			
570	0,0050	0,2870	0,4660			
580	0,0070	0,4370	0,4070			
590	0,0100	0,5070	0,3480			
600	0,0140	0,5430	0,2900			
610	0,0270	0,5740	0,2320			
620	0,0660	0,5950	0,1810			
630	0,2100	0,6100	0,1400			
640	0,5000	0,6250	0,1170			
650	0,6830	0,6370	0,1050			
660	0,7720	0,6460	0,1000			
670	0,8170	0,6530	0,1000			
680	0,8420	0,6580	0,0950			
690	0,8530	0,6610	0,0950			
700	0,8580	0,6630	0,0950			
710	0,8600	0,6620	0,0950			
720	0,8580	0,6600	0,0950			

Tabuľka 4 Spektrálna priepustnosť kontrolných filtrov

Z takto získaných hodnôt boli vypočítané trichromatické koeficienty x, y kontrolných farieb, ktoré sú uvedené v tab. 5.

Tabuľka 5

Trichromatické koeficienty kontrolných farieb vypočítané z ich kriviek priepustnosti

Farba	x	IJ	z
Červený filter Oranžový filter Na–L Zelený filter Modrý filter	$\begin{array}{c} 0.7135\\ 0.6313\\ 0.5692\\ 0.3936\\ 0.1491 \end{array}$	$\begin{array}{c} 0,2864 \\ 0,3676 \\ 0,4301 \\ 0,5218 \\ 0,0262 \end{array}$	$\begin{array}{c} 0,0001\\ 0,0011\\ 0,0007\\ 0,0846\\ 0,8248\end{array}$

Znalosť týchto koeficientov je predpokladom pre výpočet farebných charakteristík ε , s kontrolných farieb vzhľadom na polarizačné farby. Výpočtom získané hodnoty ε , s sú uvedené v tab. 6 hneď popri ich hodnotách získaných experimentálne.

Farba	teore	tieké	experimentálne	
	ε	8	£	8
Červený filter Oranžový filter Na – L Zelený filter Modrý filter	$68^{\circ}8, 75^{\circ}00, 91^{\circ}34, 141^{\circ}55, 27^{\circ}32,$	$29,294 \\ 22,415 \\ 7,5 \\ 28,354 \\ 8,269$	$68^{\circ}24, 74^{\circ}75, 90^{\circ}20, 141^{\circ}37, 29^{\circ}27,$	27,825 22,405 7,6 28,93 8,125

	1 010 01110			
Teoretické a	a experimentálne	hodnoty	ε,	s

Pre názornosť je v tab. 7 uvedené jedno podrobné meranie pre zelený filter.

Pri meraní kontrolnej farby sa postupovalo tak, že táto farba bola najprv čo najdokonalejšie vyrovnaná s niektorou jej odpovedajúcou polarizačnou farbou. V ďalšom priebehu merania bola jasnosť zdroja L_4 už trvale ponechaná a menili sa len hodnoty ε a jasnosť zdroja L_6 . Na konci merania bol zdroj L_4 niekoľkokrát premeraný (štvrtý stĺpec tab. 7).

Tabuľka 7

Meranie zeleného filtra

ε	$\Delta \epsilon$	$(\varDelta \varepsilon)^2$	8	Δs	$(As)^2$
$142,00\\142,20\\143,20\\140,00\\142,75\\141,50\\143,10\\138,50$	$\begin{array}{c} -0,344\\ -0,544\\ -1,544\\ 1,656\\ -1,094\\ 0,156\\ -1,444\\ 3,156\end{array}$	$\begin{array}{c} 0,1183\\ 0,2959\\ 2,3839\\ 2,7423\\ 1,1968\\ 0,0243\\ 2,0851\\ 9,9603\\ \end{array}$	$\begin{array}{c} 28,5\\29,00\\28,60\\29,5\\29,2\\29,0\\30,0\\27,7\end{array}$	$\begin{array}{c} 0,43\\ -0,07\\ 0,33\\ -0,57\\ -0,27\\ -0,07\\ -1,07\\ 1,23\end{array}$	$\begin{array}{c} 0,1849\\ 0,049\\ 0,1089\\ 0,4338\\ 0,0729\\ 0,0049\\ 1,1449\\ 1,5129\end{array}$
1133,25		18,8069	231,5		3,4681
$ar{ar{arepsilon}}=1$	41,656°			$\bar{s} =$	28,93

Z hodnôt ε , s, ktoré boli teoreticky a aj experimentálne zistené, boli konečne vypočítané trichromatické charakteristiky kontrolných filtrov. Získané výsledky sú uvedené v tab. 8, 9, 10, v ktorých popri hodnotách x, y, x', y'

190

Tabuľka 8

Farha	teore	tické	experimentálne	
	x	y	x	y
Červený filter Oranžový filter Na – L Zelený filter Modrý filter	$\begin{array}{c} 0,7135\\ 0,6313\\ 0,5692\\ 0,3936\\ 0,1491 \end{array}$	$0,2864 \\ 0,3676 \\ 0,4301 \\ 0,5218 \\ 0,0262$	0,6977 0,6365 0,5656 0,3913 0,1902	0,2985 0,3693 0,4292 0,5270 0,0318

Tabuľka 9

Farba	teoretické		experimentálne	
	x'	y'	x'	y'
Červený filter Oranžový filter Na – L Zelený filter Modrý filter	35,00856 52,62959 89,05783 36,90099 4,47497	$14,052\ 40\\30,645\ 71\\67,249\ 05\\48,920\ 06\\0,785\ 447$	37,3339 52,3916 86,8467 35,0206 5,9546	$\begin{array}{c} 15,9727\\ 30,3978\\ 65,9028\\ 47,1654\\ 0,9956\end{array}$

Tabuľka 10

Moduly kontrolných farieb

Farba	m – teoretický	m — experimentálny
Červený filter Oranžový filter Na – L Zelený filter Modrý filter	$\begin{array}{r} 49,065\ 96\\ 83,367\ 01\\ 156,461\ 41\\ 93,752\ 52\\ 30,013\ 26\end{array}$	53,51 82,312 153,548 89,498 31,309

a m, získaných z teoretických hodnô
t $\varepsilon,\,s,$ sú uvedené hneď hodnoty týchto veličín získaných z experimentálnych hodnô
t $\varepsilon,\,s.$

Stredná chyba jednotlivého merania:

 $\delta_{\scriptscriptstyle arepsilon} = \pm 1,6395\,^\circ, \qquad \qquad \delta_s = \pm 0,7063.$

Pravdepodobná chyba výsledku:

$$artheta_s=\pm 0,3863^\circ, \qquad \qquad artheta_s=\pm 0,1658$$

Ako z uvedených výsledkov vidieť, zhoda teoretických a experimentálnych hodnôt charakteristík je dobrá. Merané aj teoreticky vypočítané farby sú vyznačené v trojuholníkovom diagrame farieb. Aj odtiaľ vidieť, že najväčšia diferencia nameraných hodnot oproti teoretickým je v blízkosti koncov spektra, t. j. v oblasti najhoršej citlivosti ľudského oka na farby. V tejto oblasti sú aj jasnosti polarizačných farieb najnižšie, ako ukazuje aj obr. 8. Citlivosť tejto metódy merania farieb je napriek tomu pomerne dobrá, čo potvrdzuje aj porovnanie hodnôt stredných chýb jednotlivých meraní a pravdepodobných chýb výsledkov pri nastavovaní uhla ε (v ktorom je zahrnutá aj chyba v nastavovaní jasnosti zdroja L_6 . ako bolo hore uvedené), s tými istými chybami pri monochromatickej fotometrii Pulfrichovým fotometrom.

O'cr. 8. Priebeh jasnosti polarizačných farieb pre normály A, B, C.

Obr. 9. Celkový pohľad na experimentálne zariadenie.

V obidvoch prípadoch sú chyby rádove rovnaké, takže meranie touto mctódou je principiálne asi rovnako presné ako monochromatická fotometria Pulfrichovým fotometrom.

LITERATÚRA

- Garaj J., Štúdium interferenčných farieb vznikajúcich rotačnou disperziou v kremennej doštičke medzi polarizátorom a analyzátorom, Mat.-fyz. sborník SAV I (1951), 68-99.
- Kubota H., Ose T., Further Study of Polarisation and Interference Colours, J. Opt. Soc. Am. 45 (1955), 89-97.
- [3] Müller, Pouillet, Lehrbuch der Physik II, Optik.
- [4] Wright W. D., The measurement of Colours, London 1946.
- [5] Гуревич М. М., Цвет и его измерение, Москва Ленинград 1950.

Došlo 6. 10. 1959.

Katedra fyziky Slovenskej vysokej školy technickej v Bratislare

ТРИХРОМАТИЧЕСКАЯ СПЕЦИФИКАЦИЯ ЦВЕТОВ ПРИ ПОМОЩИ ПОЛАРИЗАЦИОННЫХ ЦВЕТОВ НА КРЕМНЕВОЙ ПЛАСТИНКЕ МЕЖДУ СКРЕЩЕННЫМИ НИКОЛАМИ

ЙОЗЕФ ГАРАЙ

Выводы

В основу измерения цветов были взяты поляризационные цветы, возникающие на кремневой пластинке, отплифованной перпендикулярно на оптическую ось и находящейся между скрещенными николами. Для аналитического выражения координат поляризационных цветов в цветном треугольнике СIE (рис. 1) в зависимости от скрещения николов были взяты отношения Кубота—Осе [2].

Приведенный метод измерения цветов основан на том, что к измеряемому цвету C_x (рис. 1) о модуле m_x , аддитивно прибавиться цвет белой нормали (A), с таким модулем m_a , чтобы и готовый цвет отвечал определенному поляризационному цвету C_p . Равенство иготового цвета с соответствующим поляризационным цветом было проверено субъективно при помощи фотометра пульфриха.

Из количества *s* прибавленного белого цвета и также из известных трихроматических координат x'_p , y'_p и модулей m_p , $m_a = sm_A$ найдут трихроматическую спецификацию цвета C_x . Для трихроматических коэфициентов *x*, *y* этого цвета были выведены соотношения

$$x = \frac{x'_p \mp sx'_A}{m_p \mp sm_A}, \qquad y = \frac{y'_p \mp sy'_A}{m_p \mp sm_A}$$
$$m_x = m_p \mp sm_A.$$

и следует

Отрицательный знак принадлежит таким цветам C_x , которые являются более сытными чем поляризационные цветы; положительный знак действует в обратном случае. Были дедуцпрованы формулы также для расчета величин ε и s [(17), (18)] на основе известного трихроматического специфического цвета.

Приведенный метод измерения цветов бы**л** экспериментально проверен на анпаратуре, схема которой приведена на рисупке 5. В качестве источников света L_1, L_2, \ldots, L_6 были применены цветовые пормалы А. Аддитивное мешание цветов приобреталось на матных пластипках M_1, M_2 . Источник L_3 был использован для рассыщения поляризационных цветов и источник L_4 для рассыщения измеряемых цветов. Источники L_2 L_5 служат вместе с фотометром Пульфриха для измерения использованных количеств $L_3 L_4$.

Были проверены цветы четырех фильтров, кривые которых изображены на рис. 7 и цвет спектральной натриевой лампы. Полученные результаты были сравнены с теми, которые мы получили путем спектрально фотометрическим и путем расчета. Совпадение, обпаруженное между этими измерениями весьма хорошее. Самые большие отклонения можно наблюдать в области спиних цветов.

TRICHROMATIC SPECIFICATION OF COLOURS BY MEANS OF POLARIZATION COLOURS ON THE QUARTZ PLATE BETWEEN CROSSED NICOLS

JOZEF GARAJ

Summary

Polarization colours which occur on the quartz plate cut vertically to the optical axis and placed between crossed nicols were taken for the basis of the measurement of colours. The Kubota – Ose relations (2) were used for analytic expression of coordinates of polarization colours in the chromacity diagram CIE (fig. 1) as the function of crossing the nicols.

The described method of the measurement of colours is based on the principle that to the measured colour C_x (fig. 1) with modul m_x is additionally mixed the colour of white normal (A) with such a modul m_a so that the resulting colour should correspond to a certain polarization colour C_p with modul m_p , which is situated on the line connecting the colours C_x and A. The conformity of the resulting colour with the corresponding polarization colour was subjectively controlled by Pulfrich photometer.

The trichromatic specification of colour C_x is found out from s – quantity of the white colour added, from the known trichromatic coordinates x'_p , x'_A and moduls m_p , $m_a = sm_A$. For the trichromatic coefficients x, y of this colour following equations were derived:

$$x=rac{x_{p}^{'}\mp sx_{A}^{'}}{m_{p}\mp sm_{A}}$$
 $y=rac{y_{p}^{'}\mp sy_{A}^{'}}{m_{p}\mp sm_{A}}$ $m_{x}=m_{p}\mp sm_{A}.$

and it is

Negative sign relates to those colours C_x which are purer than the polarization colours, the positive sign relates to the opposit case. The formulae for calculation of the crossing of nicols and of the value s [(17), (18)] were also established; they were derived from the given trichromatic specification of colour.

The described method of measurement of colours was experimentally proved on the apparatus schematically given in figure 5. As the illuminators L_1, L_2, \ldots, L_6 the colournormals A were used. The additional mixing of colours was performed on the opaque glass M_1, M_2 . The illuminator L_3 was used to change the purity of the polarization colours and L_4 to change the purity of the colours measured. The illuminators L_2, L_5 serve, together with the Pulfrich photometer, to measure the applied quantities L_3, L_4 .

The colours of four filters were measured, their curves are given in figure 7, and so was the colour of spectral natrium lamp. The results obtained were compared to those found in spectrophotometric way and by calculation. The conformity which was found between these two measurements is very satisfactory. The greatest divergences are in the sphere of blue colours.