Ferdinand Gliviak; Ján Plesník On the Existence of Certain Graphs with Diameter Two

Matematický časopis, Vol. 19 (1969), No. 4, 276--282

Persistent URL: http://dml.cz/dmlcz/126653

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1969

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

ON THE EXISTENCE OF CERTAIN GRAPHS WITH DIAMETER TWO

FERDINAND GLIVJAK, JÁN PLESNÍK, Bratislava

Under a δ_2 -graph we mean an undirected graph without loops and multiple edges of diameter two, without triangles. A δ_2 -graph is called μ -irreducible if after removing an arbitrary vertex and edges incidental with this vertex a graph of diameter more than two arises. We use here the same basic notions as in [1] and [2].

In this paper it is proved that for every two natural numbers $p \ge 3$, $n \ge 6p-9$ there exists a μ -irreducible δ_2 -graph with minimal degree p and with n vertices, except in the case of p = 3, n = 11.

In the papers [1] and [2] some properties of these graphs (as extension and reduction by one vertex) were studied. Let A be a subset of the vertex set of a graph G and v be a new vertex. Then the adding of the vertex v and the edges $\{(v, x) \mid x \in A\}$ to graph G is called a *v*-extension of the graph G by the vertex v through the set A. In the reverse case, if u is a vertex of the graph G, then under the *v*-reduction of the graph G by the vertex u we understand the deleting of the vertex u and all edges incidental to it.

Lemma 1. For every natural $p \ge 4$, $r \ge \max(3, p-2)$ there exists a μ -irreducible δ_2 -graph G(p, r) with the minimal degree p and n = p(r-2) - 1vertices.

Proof. We shall construct the graph G(p, r). (See Fig. 1). The vertex set of the graph G(p, r) is denoted by

$$U = \{v_0, v_1, \dots, v_p\} \cup \{u_1, u_2, \dots, u_{p-2}\} \cup \bigcup_{i=1}^p A_i, \text{ where } A_i = \{a_{i1}, a_{i2}, \dots, a_{ir}\}.$$

Let us denote: $A_{ij} = A$: $- \{a_{ij}\}$, for i = 1, 2, ..., p; j = 1, 2, ..., r.

We determine the graph G(p, r) by giving the neighbourhood for every vertex respectively:

$$egin{aligned} arOmega(v_0) &= \{v_1, v_2, \ldots, v_p\} \ arOmega(v_j) &= \{v_0, u_1, u_2, \ldots, u_{p-2}\} \cup A_j, ext{ for } j = 1, 2 \ . \end{aligned}$$

$$\begin{split} &\Omega(v_i) = \{v_0, u_{i-2}\} \cup A_i, \text{ for } i = 3, 4, \dots, p \ . \\ &\Omega(u_j) = \{v_1, v_2, v_{j+2}\} \cup \bigcup_{\substack{k=1 \\ k \neq j}}^{p-2} A_k, \text{ for } j = 1, 2, \dots, p-2 \\ &\Omega(a_{1i}) = \{v_1\} \cup \bigcup_{j=2}^{p} \{a_{ji}\}, \text{ for } i = 1, 2, \dots, r \\ &\Omega(a_{2i}) = \{v_2, a_{1i}\} \cup \bigcup_{\substack{j=3 \\ j=3}}^{p} A_{ji}, \text{ for } i = 1, 2, \dots, r \\ &\Omega(a_{ji}) = \{v_j, a_{1i}\} \cup \bigcup_{\substack{k=1 \\ k \neq j=2}}^{p-2} \{u_k\} \cup A_{2i}, \text{ for } j = 3, 4, \dots, p; i = 1, 2, \dots, r \ . \end{split}$$

It may be verified that a graph constructed according to the above construction is a δ_2 -graph. The verifying is not difficult, but long and therefore it is not given. We prove that the graph G(p, r) is a μ -irreducible δ_2 -graph. After removing the vertex:

 $\begin{array}{l} v_0 \quad \text{would be } \varrho(v_3, v_4) = 3 \\ v_i \quad \text{would be } \varrho(v_0, a_{ij}) = 3, \text{ for } i = 1, 2, \dots, p; j = 1, 2, \dots, r \\ a_{1j} \quad \text{would be } \varrho(v_1, a_{2j}) = 3 \text{ and } \varrho(a_{2j}, a_{kj}) = 3, \text{ for } j = 1, 2, \dots, r; \\ k = 3, 4, \dots, p \\ a_{2j} \quad \text{would be } \varrho(a_{1j}, a_{ik}) = 3 \text{ and } \varrho(v_2, a_{1j}) = 3, \text{ for } i = 3, 4, \dots, p; \\ j = 1, 2, \dots, r; \ k = 1, 2, \dots, r \text{ and } k \neq j; \\ a_{kj} \text{ would be } \varrho(v_k, a_{1j}) = 3, \text{ for } k = 3, 4, \dots, p; \ j = 1, 2, \dots, r \\ u_{j-2} \text{would be } \varrho(v_j, a_{ki}) = 3, \text{ for } k = 3, 4, \dots, p; \ j = 3, 4, \dots, p; \ j = k; \\ i = 1, 2, \dots, r . \end{array}$

From the preceding it is clear that the graph G(p, r) has p(r+2) - 1 vertices. The degrees of vertices of the graph G(p, r) have some of these values: p, r+2, r+p-2, r+p-1, (p-2)(r-1)+2, (p-3)r+3. From the conditions of Lemma 1 it follows that the minimal degree of the graph G(p, r) is p. This completes the proof.

Lemma 2. For every natural $p \ge 4$, $r \ge \max(3, p-2)$ there exists a μ -irreducible δ_2 -graph Q_k with the minimal degree p and with the number of vertices n = p(r+2) - 1 - k, where k = 1, 2, ..., s whereby $s = (p-2)r - \max(2(p-2), r)$.

Proof. Let us denote $Q_0 = G(p, r)$, where $p \ge 4$, $r \ge \max(3, p-2)$. In the graph Q_0 let us *v*-reduce the vertex a_{33} . It may be seen that $\varrho(v_3, a_{13}) = 3$ and for every other pair of vertices $x, y \ \varrho(x, y) \le 2$, By adding the edge (v_3, a_{13}) we get the δ_2 -graph Q_1 . This is μ -irreducible because after removing the vertex:

 v_3 would be $\varrho(v_0, a_{31}) = 3$; a_{13} would be $\varrho(v_1, a_{23}) = 3$. Other vertices cannot be reduced (see the proof of Lemma 1).

Further graphs Q_i , i = 2, 3, ..., r - 2 can be constructed from the graphs Q_{i-1} by the *r*-reduction of the vertex $a_{3,i+2}$ and by adding the edge $(v_3, a_{1,i+2})$. The μ -irreducibility of graph Q_i can be verified analogically as in graph Q_1 . In the set A_3 the vertices a_{31} , a_{32} remained for the sake of $\varrho(v_3, x) = 2$ for all $x \in A_2$.

A graph Q_j , $r-2 < j \leq (p-3)(r-2)$ is constructed from the graph Q_{j-1} as follows. The graph Q_j , for $q(r-2) < j \leq (q+1)(r-2)$, where q = 1, 2, ..., p-4 is constructed from the graph Q_{j-1} analogically:

1) by sequential reduction of vertices of the set A_{q+3} , except $a_{q+3,h-1}$ and $a_{q+3,h}$ where $h \equiv 2(q+1) \pmod{r}$.

2) after the *v*-reduction of the vertex $a_{q+3,k}$ we add the edge $(v_{q+3}, a_{1,k})$. Graphs Q_j for $(p-3)(r-2) < j \leq s$ can be constructed from the graphs Q_{j-1} as follows:

a) Let $2(p-2) \ge r$, then s = (p-2)(r-2). Then we reduce sequentially all vertices from the set A_p except $a_{p,h-1}$ and $a_{p,h}$, where $h \equiv 2(p-2) \pmod{r}$ and after reduction of the vertex $a_{p,k}$ we add the edge $(v_p, a_{1,k})$.

b) Let 2(p-2) < r, then s = r(p-3). Then let all vertices from the set A_p be sequentially *r*-reduced, except the vertices $a_{p,j}$, where $j = 2(p-2) - 1, \ldots, r$ and after the *r*-reduction of the vertex $a_{p,k}$ add the edge (v_p, a_{1k}) .

The proof of the μ -irreducibility of these δ_2 -graphs is too long (however easy), therefore we do not give it. By the preceding construction of the graphs Q_j from the graph G(p, r) the degrees of only the vertices of A_2 may decrease

(at most by (p-2)(r-2)) and of the vertices $u_1, u_2, \ldots, u_{p-2}$ (at most by (p-3)(r-2)). Hence the minimal degree in every graph Q_j is p.

In Fig. 2 the graph Q_3 constructed from G(4, 4) is given.

Lemma 3. For every natural $n \ge 8$, $n \ne 11$ there exists a μ -irreducible δ_2 -graph with n vertices and the minimal degree 3.

Proof. Let G(3, r) be the denotation for the section graph of the graph G(p, r) formed by the following set of vertices:

 $V = \{v_0, v_1, v_2, v_3\} \cup A_1 \cup A_2 \cup A_3$. It is obvious that |V| = 3(r+1) + 1. In paper [2] it is proved that the graphs G(3, r) are μ -irreducible δ_2 -graphs with minimal degree 3.

For the graph G(3, r) let the edge (a_{31}, a_{22}) be deleted and the edge (a_{31}, a_{12}) added. It can be verified that in such a case $\varrho(a_{22}, a_{11}) = 3$ and for every other two vertices $x, y \ \varrho(x, y) \leq 2$. A graph formed in such a way can be *v*-extended by the vertex w_1 through the kernel $M_1 = \{a_{13}, a_{14}, \ldots, a_{1r}, v_3, a_{11}, a_{22}\}$. This graph, denoted by P_1 , is a δ_2 -graph which is also μ -irreducible because after the *v*-reduction of the vertex: a_{31} would be $\varrho(a_{23}, a_{11}) = 3$

$$a_{32}$$
 would be $\rho(a_{21}, a_{12}) = 3$

 a_{12} would be $\varrho(v_2, a_{22}) = 3$. The other ver-

tices are obviously μ -irreducible.

Let further $r \ge 4$. For the graph P_1 let us delete the edge (a_{34}, a_{21}) and let us add the edge (a_{34}, a_{11}) . Then $\varrho(a_{21}, a_{14}) = 3$ and for every other pair of vertices $x, y \ \varrho(x, y) \le 2$. Let us *v*-extend this graph by the vertex w_2 through the kernel $M_2 = \{a_{13}, a_{14}, \ldots, a_{1r}, v_3, a_{21}, a_{22}\}$. It can be verified that the just formed graph P_2 is a μ -irreducible δ_2 -graph with minimal degree 3. Thus we have constructed the required graphs for $n = 13, 14; n \ge 16$. For n = 8, 9, 10 the required graphs have been constructed in paper [2] (see Fig. 4). For n = 12, 15 such graphs are in Fig. 3 and Fig. 4, respectively.

Remark 1. From the construction of the graphs G(p, r) it can be seen that the graph G(p, r) is a section graph of the graph $G(p_1, r_1)$ if $p \leq p_1, r \leq r_1$ holds.

Fig. 3

Theorem 1. For every $p \ge 3$, $n \ge 6p - 9$ there exists a μ -irreducible δ_2 -graph with n vertices and the minimal degree p, except in the case of p = 3, n = 11.

Remark 2. We are convinced that a μ -irreducible δ_2 -graph with 11 vertices and with minimal degree 3 does not exist. We have come to this conclusion after application of Theorem 2 from paper [2] and after the investigation of every case.

Proof of Theorem 1. For p = 3 the Theorem is proved (Lemma 3). Let $p \ge 4$; let us denote $G(p, r) = (U_1, H_1)$; $G(p, r+1) = (U_2, H_2)$. Then $|U_2| - |U_1| = p$, i. e. between the numbers of the vertices of the graphs G(p, r) and G(p, r+1) there are p-1 natural numbers which are not the numbers of vertices of the graph constructed by Lemma 1.

If $r > \max(3, p-2)$ and $r \le 2(p-2)$ then in Lemma 2 we shall have $s = (p-2) r - 2(p-2) = (p-2)(r-2) \ge p-1$. If $r > \max(3, p-2)$ and r > 2(p-2) then in Lemma 2 we shall have s = (p-2)r - r = (p-3) $r \ge p-1$. Hence in both cases the graphs Q_j , constructed from the graph G(p, r+1) by Lemma 2, fill this interval.

Thus for $n \ge p^2 - 1$ the required graphs exist. For p = 4 from the graph G(4, 3) the graphs with the number of vertices 13 and 14 can be constructed by Lemma 2. For $p \ge 5$ the number of vertices of the graph G(p, p - 2) can decrease sequentially to $p^2 - 1 - [(p - 2)^2 - 2(p - 2)] = 6p - 9$. This completes the proof.

Remark 3. In paper [2] it has been proved that every μ -irreducible δ_2 -graph with the minimal degree 1 is the path of the length 2 and every μ -irreducible δ_2 -graph with the minimal degree 2 is a 5-gon.

Corollary. For n = 3,5 and for every $n \ge 8$ there exists a μ -irreducible δ_2 -graph with the number of vertices n. For the other n such graph does not exist.

Proof. For $n \leq 10$ the corollary follows from [2] (Theorem 5); for n = 11 the required graph is in Fig. 5; for n > 11 the assertion follows from Lemma 3.

REFERENCES

- [1] Glivjak F., Kyš P., Plesník J., On the extension of graphs with a given diameter without superfluous edges, Mat. časop. 19 (1969), 92-101.
- [2] Glivjak F., Kyš P., Plesník J., On irreducible graphs with diameter two without triangles, Mat. časop. 19 (1969), 149-157.
- [3] Ore O., Theory of graphs, Amer. math. soc. Colloq. publ. 38 (1962).

Received September 18, 1967.

Katedra matematickej štatistiky Prírodovedeckej fakulty Univerzity Komenského Bratislava