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Matematický časopis 19 (1969), No. 4 

CLASSES OF REGULARITY IN SEMIGROUPS 

IMRICH FABRICI, Bratislava 

E. C r o i s o t introduced in [1] the following condition in semigroups: An 
element a of a semigroup S satisfies the Condition (m, n) if there exists an 
element x e S such that 

a = amxan, 

where m, n are non-negative integers and a<> means the void symbol. The set 
of all elements satisfying the Condition (m, n) is called a class of regularity 
and will be denoted by 0ts(m, n). 

First we state some known relations concerning the classes of regularity 
(see [2]): 

(a) 0ts(O, 0) = S. 

(b) If mi ^ m2 and m ^ n2, then 

&s(mi, n\) c &s(m2, n2) . 

(c) If m\ ^ m2 ^ 2, then for any n we have: 

&s(m\, n) = 3%s(m2, n) . 

(d) If m ^ n2 ^ 2, then for any m we have: 

Sts(m, m) = ^s(m, n2) . 

(e) # 5 ( 1 , 2) = as(l, 1) n # 5 ( 0 , 2) . 

(f) 0fe(2, 1) = &s(l, 1) n # s ( 2 , 0) . 

These relations imply t h a t there exist at most nine distinct classes of regularity 
£&s(m, n ) , 0 ^ m ^ 2 , 0 ^ n ^ 2 , connected by relation (b). 

There are at most five distinct classes of regularity in commutative semi
groups. In these semigroups classes of regularity for which the sum of numbers 
m, n is equal, coincide. Moreover, in a commutative semigroup S all non-empty 
classes of regularity are subsemigroups of S. The situation in non-commutative 
semigroups is different. In these semigroups non-empty classes of regularity 
are not necessarily subsemigroups. 
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The purpose of this paper is to investigate some sufficient conditions for 
classes of regularity to be subsemigroups of a given semigroup. 

A left (right) ideal L(R) of a semigroup S is called complete if SL = L 
(RS = R). 

A left ideal £ of a semigroup S is called semiprime if for every element 
a e S and an arbitrary integer n the relation an e L implies a e L 

I t may occur in some semigroups that some classes of regularity are empty 
sets. First we state relatively simple conditions for classes of regularity to be 
non-empty sets. 

Theorem 1. &%s(\, 0) (&s(0, 1)) is non-empty if and only if at least one of the 
right (left) principal ideals generated by an element of the semigroup S is complete. 

Proof , (a) Let @s(\,0) 4= 0. Let aed&s(\,0). The right principal ideal 
generated by a we denote by (a)R = a U aS. Then we have: (a U aS) S = 
= a S u aS2 = aS = a U aS, since ae aS. But it means that (a)H is a complete 
ideal. 

(b) Let the right principal ideal generated by an element a be complete. 
Therefore, (aVaS)S = aSvaS2 = aS = aUaS. But the last relation 
implies tha t aeaS, and it means that 8%s(\, 0) 4= 0. 

Theorem 2. If at least one principal right (left) ideal generated by a square of 
an element of a semigroup S is semiprime, then 0ts(2, 0) (0ts(O, 2)) is non
empty. 

Proof . Let a right principal ideal generated by the element a2 be semiprime. 
Therefore, a2 e (a2)R implies that a e (a2)R hence a e (a2 U a2S). But the last 
relation implies that either a = a2, or a e a2S and in both cases we obtain 
tha t a e @s(2,0). 

Theorem 3. The class of regularity &ls(\,\) (0ls(2,\), @s(\,2), 0ts(2,2)) 
is a non-empty set if and only if the semigroup S contains at least one idempotent. 

Proof , (a) If a = axa (a = a2xa, a = axa2, a = a2xa2) then ax(a2x, xa2, 
a%xa) is an idempotent of S. 

(b) The statement is evident. 

R e m a r k 1. I t is easy to prove tha t if S is a semigroup then Ms(\, 0) is 
a left ideal of 8, or 0ts(\, 0) = 0 and 9ts(0, 1) is a right ideal of S or 0ts(O, 1) = 0. 

I t can occur that some of the sets 8%s(\, 0) and 8$s(0, 1) coincides with the 
semigroup S. We state here one such case. 

A semigroup S is called left (right) simple, if S contains no left (right) 
ideal different from S. A semigroup S with zero 0 is called left (right) 0-simple 
if S2 4= 0 and if 0 is the unique proper left (right) ideal of S. 

In [3] it is proved tha t a semigroup S(S 4= 0) is left simple (left 0-simple) 
if and only if for every a e S(a 4= 0, a e S) we have Sa = S. 
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R e m a r k 2. We can prove easily that if a semigroup S is left simple or 
left 0-simple, then S = Ms(0, 1). 

A simple example can be used in order to show tha t the preceding condition 
is only a necessary but not a sufficient one. 

Now we show some sufficient conditions in order that other classes of 
regularity be subsemigroups. 

Theorem 4. Let S be a semigroup, &s(l, 1) 4= 0 and let one of the following 
conditions be fulfilled: 

(a) The product of any two elements of &s(l> 1) is an idempotent. 
(b)as(i,i) = as(i,o)nas(o,i)' 
(c) The set of all idempotents of S is a subsemigroup of S. 
(d) Any two idempotents of S commute. Then £%s(l, 1) is a subsemigroup of S 

and in the case of (d) Ms(l, 1) is an inverse subsemigroup or S. 

Proof, (a) The statement is evident. 
(b) The statement follows from Remark 1. 

(c) Let a, b e^s(^, 1). Therefore a = axa, b = byb for some x,y e S. 
I t is easy to prove that ax, xa, by, yb are idempotents of S. Then: ab = (axa) 
(byb) = a(xa) (by)b. According to the assumption the product of two idem
potents is an idempotent too therefore (xa)(by) is an idempotent. Hence we 
have: 

ab = a(xa)(by) b = a(xaby) b = a(xaby)% b = 

= a(xaby)(xaby) b = (axa)(by)(xa)(byb) = 

= ab(yx) ab = ab . z . ab, where z = yx e S. 

(d) Let ei, e2 be idempotents of S such that ei . e2 = e2 . e±. Then (ei . e2) 
(ei. e2) = ei(e2 . ei) e2 = ei(ei . e2) e2 = (ei . ei) (e2 . e2) = ei . e2. I t follows that 
the condition (c) is fulfilled and therefore ^ ( 1 , 1) is a subsemigroup of S. 
From [3] it is known that a semigroup S is inverse if all elements of S are 
regular and if any two idempotents of S commute. But Ms(l, 1) consists only 
of regular elements of S, and accordintg to the assumption any two idempotents 
of S commute, hence (c) implies that Ms(l, 1) is a subsemigroup of S. 

Corollary. If a semigroup S contains only one idempotent, then ^ ( 1 , 1) is an 
inverse subsemigroup of S. 

The following examples of semigroups show that the conditions (b), (d) are 
not necessary ones 

E x a m p l e 1 Let S = {a, b, c, d} be a semigroup with the multiplication 
table: 



a a a a a 
Ъ a Ъ Ь Ъ 
c a b Ь c 
d a Ь c d 

g%s(l, 0) = @s(0, 1) = {a, b, c, d}, 0ts(l, 1) = {a, b, d}, but &s(l, 1) is a sub-
semigroup. 

E x a m p l e 2. Let 8 = {a, b, c, d} be a semigroup with the multiplication 
table: 

a b c d 

a a a a a 
b a a a a 
c a a c d 
d d d d d 

<%s(l, 1) = {a, c, d} is a subsemigroup, a2 = a, d2 = d, but ad = a, da = d. 
Remark 3. Elements of 0%s(l, 1) have one-sided identities of the form: 

ax, xa. Elements of ^?s(2, 0) have right identities of the form ax. But we 
cannot assert that all one-sided identities of elements of 0ts(l, 1), &s(%, 0) 
and &s(0, 2) have such a form. 

E x a m p l e 3. Let S = {a, b, c, d} be a semigroup with the following mul
tiplication table: 

a Ъ c d 

a a a c d 

Ъ a a c d 
c c c d a 

d d d a c 

&s(l, 1) = {a, c, d}. c = cxc for the unique element x = d, dc = cd = a. 
The element dc is a right (and also a left) identity of the element c, but for 
t h e element b we have moreover: cb = c. 

Left (right) identities of elements of &s(l, 1) are called left (right) regular 
identities. But for one-sided identities of elements of ^ s (2 , 0) and ^ ( 0 , 2) 
n o special name is used. Therefore, for our need we introduce: 

Definition 1. Left identities of an element a e 3%s(®, 2) of the form xa and 
right identities of an element a e &s(2, 0) of the form ax are called local left 
identities, and local right identities respectively, or shortly local one-sided identities 

Theorem 5. Let S be a semigroup, &s(%, 0) 4= 0 and let any of the following 
conditions be fulfilled: 
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(a) The product of any two elements ^f &s(2, 0) is an idempotenv 
(b) The product of local right identities of the elements a,b e &s(2, 0) is a right 

identity of the element ab 
(c) Every local right identity of any element of Ms(2, 0) belongs to the centre Z 

of the semigroup S. Then &s(2, 0) is a subsemigroup of S. 

Proof, (a) The statement is evident. 

(b) Let a, b e &s(2, 0), therefore a = a2x, b = b2y, and x,y e S. Then 
a = a(ax), b = b(by). According to the assumption we have ab = ab(ax)(by), 
ba = ba(by)(ax). Then ab = (ab)(ax)(by) = a(ba)(xby) = a[ba(by)(ax)](xby) = 
= (ab)(ab)(yax)(xby) = (ab)2(yax)(xby) = (ab)2z, where z = (yax)(xby) eS . 

(c) We shall show that (c) implies (b) Let a,b e &s(2, 0). Then ab = a(ax) 
b(by) = a(axb)(by) = a(bax)(by) = (ab)(axby). Hence the proof follows from (b). 

Analogously we can prove 

Theorem 5'.Let S be a semigroup, &s(®, 2) -# 0 and any of the following 
conditions be fulfilled: 

(a) The product of any two elements of &s(0, 2) is an idempotent. 
(b) The product of local left identities of the elements a,b e ^,s(0, 2) is a left 

identity of the element ab. 
(c) Every local right identity of any element of &s(®, 2) belongs to the centre Z 

of the semigroup S. Then 3&s(§, 2) is a subsemigroup of S. 

Lemma 1. @s(2, 2) = Ms(2, 1) n &s(l, 2). 

Proof, (a) From p. 299, (b) we have ^ ( 2 , 2 ) ^ ^ ( 2 , 1 ) , &s(2, 2) c 
c Ms(l, 2), therefore 0£s(2, 2) c Ms(2, 1) n Ms(l, 2). 

(b) Let a e Ms(2, 1) n ^ ,s( l , 2), hence a = a2xa, a = aya2. Then a = a2xa = 
— a2xaya2 = a2(xay)a2 = a2za2, where z = xay e S and it follows that a e 
e^s(2,2). 

Theorem 6. Let E c: Z, where E is the set of all idempotents and Z is the 
centre of a semigroup S. Then each of classes of regularity S&sQ, 1), &s(2, 1), 
^ ( 1 , 2), and 0ts(2, 2) is a subsemigroup of S, or an empty set. 

Proof . The statement that ^ # ( 1 , 1) is a subsemigroup of S under our 
assumption follows from Theorem 4, (d). 

Let now a, b e &s(2, 1), therefore a = a2xa, b = b2yb, for some x, y e S. 
I t is easy to prove that the elements a2x, b2y are idempotents of S. Then 

ab = (a2xa) (b2yb) = (a2x) a(b2y) b = (a2x) (b2y) (ab) = a(ax) b(by) (ab) = 
= (a2xa) (ax) (b2yb) (by) (ab) = a(a2x) (axb) (b2y) (by) (ab) = 
= a(a2x) (ax) (b2y) (b2y) (ab) = a(b2y) (a2x) (ax) (b2y) (ab) = 
= (ab) (by) (a2x) (ax) (b2y) (ab) = (ab) (a2x) (by) (ax) (b2y) (ab) = 
= {ab) (a2x) (b2y) (by) (ax) (b2y) (ab) = (ab) a(ax) (b2y) (by) (ax) (ab) = 
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= (ab) a(b*y) (ax) (by) (ax) (ab) = (ab) (ab) (by) (ax) (by) (ax) (ab) = 
= (ab)% z(ab)y where z = (by) (ax) (by) (ax) e S . • 

Analogously we can prove the statement that ^ s ( l , 2) is a subsemigroup and 
the statement, concerning ^ s ( 2 , 2) follows from Lemma 1. 

R e m a r k 4. From [2] (pp. 139, 424) it is known tha t an element a e S is 
totally regular if and only if a belongs to some subgroup of the semigroup S. 
Moreover, S is totally regular if and only if S = ^ s ( 2 , 2). From the above 
we have: 

Corollary. Let 0 + E ^ Z. Then the union of all subgroups of the semigro of S 
is a subsemigroup of S. 

R e m a r k 5. Other conditions for the classes of regularity &s(%, I), ^s(l> 2) 
and ^ s ( 2 , 2) to be subsemigroups of S can be obtained by means of state
ments (e) (f) quoted in the introduction and Lemma 1, by combining the 
conditions of Theorem 4 with the conditions of Theorem 5 and Theorem 5', 
respectively. 
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