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COMPACTIFICATION OF PRODUCTS
RODNEY NILLSEN, Bedford Park, South Australia

INTRODUCTION

Given a set E, an algebra B of bounded real valued functions on E will
be called a function algebra if:

(a) B is closed in the uniform norm.
(b) B separates the points of E.
(¢) B contains the constant functions.

Let E~ denote the set of all non-zero homomorphisms on B to the real numbers.
We may regard E as a subset of E~ by means of the evaluation homomorphism
given by each point of E. Then a given f € B may be extended to E~ by defining
f~ () = p(f), for ye E~ .Then B~ = {f :fe B}is a function algebraon E" .
Give E~ the weak topology induced by the functions of B~ . E~ is completely
regular in this topology. Also

(1) E is dense in E~ ,
(2) E~ is compact,
(3) B~ consists of all continuous real valued functions on B~ .

E~ will be called the B-compactification of E. It is unique, except possibly
for a homeomorphism which leaves F pointwise fixed. We note that the relevant
properties of E” may be established without involving the Tychonoff theorem.
If £ is a completely regular space, and B = C(E) is the function algebra of
all bounded continuous functions on E, then E~ is the Stone—Cech compac-
tification BE of K.

Consider now a family (E4)acl of completely regular spaces such that X Ey

acl
aFay
is infinite for each o € I. In this situation, Glicksberg [3] has proved

Theorem A. X E, is pseudocompact if and only if f(X Hy) = X (BE).
acl ael ael
Motivated by this theorem, our discussion firstly centres on the following

question: If (£,),; is a given family of sets and B, is a function algebra on Ey,
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let E; be the By-compactification of E,. Let E = X E,. Isthere a function
ael

algebra B on E such that if E” is the B-compactification of E, then E~ = X E_ ?

acl
This question is answered in the affirmative by taking for B the closure of

the tensor product algebra & By on E. This enables us to obtain a criterion
ael

for the pseudo-compactness of a topological product. A further corollary is
the Tychonoff theorem.

Secondly we consider a set E on which a binary operation 8 is defined. We
characterise those function algebras B on E such that the binary operation S
on E may be extended to one S~ on E~ , is that S” : E~ x E” - E" is con-
tinuous. Our discussion here shall depend heavily on

Theorem B. For i = 1,2 let B; be a function algebra on E;. Lev t: Ky —~ Es
be a map. Then By o t < By if and only if t has a continuous extension t~ , where
t" :E; — E, . When this is the case, (f20t)” =f, o+ for each fo € By.

Applications to the cases where (#, S) denotes a semigroup and group and
to a result of Comfort and Ross, are then considered.

COMPACTIFICATION OF PRODUCTS

Let (E,),; be a family of sets and let By be a function algebra on E, . E.
shall denote the B,-compactification of E,. B, is the extended algebra.
Let E = X Ey. Given f, € By, we may regard fy as a function of £ by defining

ael

fa(®) = fa(a), for 2 € E. Then finite sums of functions of the formf=f, f, ...
fx.» clearly form an algebra 4 on E. We write 4 = ) By and it is the (tensor)

acl

product algebra on E. We let B be the uniform closure of 4. Write B = & B,

ael
is the closed (tensor) product algebra on E. B is obviously a function algebra

on E, and the B-compactification of K is denoted by E" .

Lemma 1. There is a bijection from E~ onto X E, .

xel
Proof. Let ye X E, . y, is a non-zero homomorphism on B,. If fe 4
el

Write .f = E:Llfaufau . 'fau,,(‘)' Then deﬁne (‘7('/))) (f) = E:’:l waz“ (ftzu) b 'I’z.,,(.,
Sewe)- o(p) is then well defined as a function on 4. In fact, a(v) is a non-
-zero homomorphism on 4 with the additional property that f > 0 implies
(o(w)) (f) = 0. It follows that

[(a(@)(f)] < |Ifll for all fe A .
If f € B, choose (fn) € A such that ||f — fal| — 0. Then
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[(a()(fa) — (@(@)fm)l < [lfn — full > O
as m, n—> co. We may now define
a(p)(f) = 132 (o())(fa) -

Tt is immediately seen that o(y)fe B .
Conversely, if y € B~ , we define 7(y) € X E, . For fy € By, let

acl
'/’))a(fa) = y(fa) -

o and 7 are bijections because we notice that o7 and 7o are the identities on £~
and X E_ , respectively.

ael

Lemma 2. The weak topology on E = X E, generated by B = R By is the

ael ael
product topology.
Proof. Let U be an open set in £ under the product topology. Then there
is an open set (in the product topology) ¥V = U where V = X V,, where V4

ael
is open in B, and V4 = E, for all but a finite number of «. Choose a;, a2, ...,

an €I so that Vo < By implies « = a; for some j, 1 < j < n. We may then
#*

choose f, € B, such that
{x,, 2, €L, and F, (x,) £+ 0} < V,, .

Let f=f,f. - fu- Then {x:xek and f(x) + 0} < V < U. Since fe B,
the weak topology generated by B is finer than the product topology.

On the other hand, each f e 4 is seen to be continuous ir the product topo-
logy. Hence this statement holds for each fe B. It follows that the weak
topology is coarser than the product topology. Hence the result.

Lemma 1 shows that we may identify the sets £~ and X E, . This is what

ael

we do in future. Then B~ and ® B, are function algebrasonZ”~ = Xk

ael ael

Lemma 3. B* = ® B,
ael

Proof. Let f = X1 f, fo - frny €4
Let y € E™ . Then

I~ (p) = v(f) = w(%‘ FeiSoan -+ frngy)
= Zfa:. (wau) ot fa::;,u) (wm,@))

Zfaz“ ‘ ﬂttu) (1/))
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Sof" = I fu for - S, In this way we have 4"~ = @I B .

Now if f € B chose (¢x) € 4 such that ||f — gu|| < 1/n. Then |f — go || < 1n,
so that f~ is in the closure of A~ = ® B, . Hence B~ < ® B, ,and thereverse

acl ael
inclusion is clear.

Lemma 2 and Lemma 3 combine to give

Lemma 4. As topological spaces, B~ = X E_ .
acl
Theorem 1. Let (E,),; be a family of sets and let By be a function algebra
on Ey with By-compactification E, . Let E = X Ey and let B = & Bx be the

acl ael

closed (tensor) product algebra on E. Let By be a function algebra on E with

Bi-compactification E{ .Then E; = X E. if and only if Bi = B = 3 B,.
ael ael

Proof. If B; = B, Lemma 4 gives the result. Conversely, £; = X E_

ael
implies By = B”, by Lemma 4. Hence B; = B.

Now let (E,),.; be a family of completely regular spaces, and let our function
algebra By be C(Hy). Then the By-compactification E, is simply the Stone-Cech
compactification fEy of Ey. By Glicksberg’s thecrem (see introduction) we
may deduce

Theorem 2. If X E, is infinite for each ao € I ve have: E = X Ey is a pseudo-

a#Eay ael
ael

-compact if and only if C(E) = ® C(E,).
el

For the case where the index set I consists of two elements, we state Theo-
rem 2 as follows:
Let E, and E; be infinite completely regular spaces. Let E = E; X Es.
Then E = E; X E: is pseudo-compact if and only if for each fe C(E) and
e > 0, there exist fi, fo, ..., fae C(E1) and g1, g2, ..., gn € C(K2) such that

||f—l§_figz]| <e.

Lemma 4 also enables us to prove the

Tychonoff Theorem. T'he product of compact spaces is compact.

For in Lemma 4 let E4 be compact. Then BE, == E, and we have £~ =
— X BEy = X E4 and is compact.

ael ael

COMPACTIFICATION OF GROUPOQIDS
Here (B, 8) shall denote a groupoid i. e., £ is a set and S: F X £~ E is
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a map. B is a function algebra on £ and E" is the resulting B-compactification.
We define the triple (£, S, B) to be extendible if and only if B0 § < B® B.
When this is the case, S is continuous in the B-topology on Z.

Theorem 3. E~ can be given the structure of a topological groupoid such that
(E, 8) is a topological subgroupoid if and only if (E, S, B) is extendible.

Proof. If (&, S, B) is extendible, Theorems B and 2 show that S has a
continuous extension S~ ,where 8" : £~ X E~ — E~ . Theorems B and 2 also
imply the converse.

When (E, S, B) is extendible, 8~ : E~ x E~ — E~ will denote the unique
continuous extension of § : £ X K — E given by Theorem 3.

Theorem 4. Let (E, S, B) be extendible. Then vhe following hold

(1) If (E, 8) is associative, so ioo is (E~ , 8" ).

(2) If (E, 8) is commutative, so too is (E~ , 8" ).

(3) If (E, S) has a left identity element e, e is also a left identity for (B~ , S~ ).
Similarly for a right identity.

Proof. We prove (1), the others being analogous. Consider the maps y;
and yy from E~ X E~ x E~ given by wi(r,y,2) =8 (8" (,9),2) and
wo(x, 9, 2) = 8~ (x, 8" (y,2)). Then y; and v are clearly continuous, so that
{(x, ¥, 2) : ya(x, ¥, 2) = a(x, y, 2)} is a closed set containing £ X E X E and
hence is the whole of £~ x E~ X E~ .

Theorem 5. Let (E, 8) be a semigroup and suppose that (E, S, B) is extend-
ible. Then the groupoid (E~ , 8~ ) is also a semigroup.
Proof. Theorems 3 and 4 (1).

Lemma 5. Suppose that (E, S, B) is extendible and that (E, S) has an iden-
tity e. Define I = {x:x € E" and there exists x € B~ such that S~ (x, 1) = e}.
Then I is closed.

Proof. If I is not closed, choose 2 € E~ — I such that a net (z,) of elements
of I converges to z. B~ is compact, so the net (z;!) has a subnet converging
to a point yeE~ . (Kelley [5], p. 136). Hence we may assume that (z,) converges
to z and (2;') converges to y.Continuity of S~ now gives: 8~ (z4,2;') con-
vergesto S~ (2, ) as 8~ (24, 2;') = e for each o, we have that 8~ (z,7) = e,
a contradiction since z € I.

Theorem 6. Suppose that (E, S) is a group. Then E~ can be given the structure
of a topological group of which (E, S) is a dense subgroup if and only if (E, S, B)
s extendible.

Proof. If E” is such a group, Theorem 3 gives that (E, S, B) is extendible.
Conversely, apply theorem 3 to deduce that the groupoid structure of (#, S)
can be extended to (E~ ,8” ). (E~ ,8" )is asemigroup by Theorem 5. Theorem 4
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(3) now implies that the identity for (E, S)is an identity for (E~ ,S” ). Lemma 5
now shows that each element of E~ has a right inverse. We deduce that (£~ ,8" )
is a group.

To complete the proof we need only show that inversion is continuous.
To do this, let (z,) be a net in £~ which converges to the point x€ E~ . Then
some subnet of (x;') converges to a point y € B~ .As S~ is continuous, we
deduce that S~ (x, y) = e. i. e., ¥y = x~1. Since inverses are unique, (z;!) has
exactly one cluster point in £~ . Together with the fact that any net in £~ has
a convergent subnet, this implies that (z;') converges to z~1.

Theorem 7. Let (E, S) be a group. For ¢ = 1,2 let B; be a function algebra
on E such that (E, S, B;) is extendible. Then the Bi-topology coincides with
the Ba-topology if and only if B, = Bs.

Proof. If B; = B; we have the result. Convesely we apply theorem 6,
(B , Sy ) and (E; , S, ) respectively denote the group compactifications of
(B, S) with respect to B; and B;. Sincethe B; and B, topologies coincide
on E, we see that in this topology E is a dense topological subgroup of each
of the compact groups E; and E, .Being compact, we see that G; and G,
are completions of ¢ in the two sided (or left, or right) uniformity. By the
uniqueness theorem for the completion of uniform spaces, there is a uniform
isomorphism ¢ from E; onto E; which leaves E pointwise fixed. (Kelley [5],
p- 197). Hence B, °y < By .1i.e., if fo € B; there is fi € By such thatf, oy =
= ff . Considering restrictions to £, we have fi = f». So fo € B1.i. e., B < By
and likewise B; < Bs.

Theorem 8. Suppose that (E, S) is a group and that (E, S, B) is extendible.
Then in the B-topology on E, either E is compact or E is not locally compact.

Proof. By Theorem 6, E is a dense subgroup of the compact group E~ .
By theorem 5.11 (p. 35) of Hewitt and Ross [4], if E were locally compact
in the B-topology, then E would be closed in E~ . E would then be the compact
group B~ .

Now suppose that (£, S) denotes a locally compact abelian group. Let I" be
its character group. We define a complex valued function f on & to be almost
periodic if, to each & > 0, there correspond 11, ..., A, €' and complex num-

bers Ci, ..., Cp such that ||f —> Cid|| < e. AP(E) shall denote the set
il

(algebra) of all almost periodic functions on E. We define B to consist of those

functions in AP(E) whose values are real. B is easily seen to be a function

algebra on E. (I" separates points of ). We also see that AP(E) = {f + ig : f,

g € B}.
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Lemma 6. AP(E)° S < AP(E) ® AP(E).
Proof. Let he AP(E), ¢ > 0. Choose A1, ..., Az eI’ and Oy, ..., Cyn such
that ||p — z Ci M|l < & Then for z,ye E and all i we have 2;(S(x,y)) =

i
= A¢(x) A(y). Hence for all z, y € K we have |h(S(z, y)) — i Ci Li(x) M(y) <e.
This gives ko S € AP(E) ® AP(E), as I' < AP(E). Hen(;;lthe result.

Theorem 9. (E, S, B) is extendible.

Proof. Let fe B. Let ¢ > 0 and use Lemma 6 to choose fi,...,f. and

1s--->gn € AP(E) such that ||fo S — Zfrc grll < e. Let fr = pr + igx and

= p; + ig, where p., Pr, ¢G> 9 e B We then deduce that |foS —

— z PuPr — Bl < & i. e, foS e B ® B, true for each f e B. Hence
Bo S € B ® B, as required.

In view of Theorem 6, we could express Theorem 9 by saying that a locally
compact abelian group £ has a Bohr compactification, which is obtained by
compactifying £ using the real valued almost periodic functions. Theorem 8
then indicates that if £ is not compact, it is not locally compact in the weak
topology inherited from the almost periodic functions, although it is a topologi-
cal group in this topology.

Our discussion now enables us to give an alternative proof of a result of
Comfort and Ross. We consider a completely regular topological group @
and use

Lemma 7. (Comfort and Ross [1], p. 494). If G is pseudocompact, so too is
the product group G X G.

Theorem 10. (Comfort and Ross [1], p. 494). If G is pseudocompact, then
the Stone-Cech compactification G of G admits a compact topological group
structure relative to which G is a dense subgroup.

Proof. By Theorem 6, we need only show that (@, S, C(®)) is extendible,
S being the group operation. If G is finite there is nothing to prove. If G is
infinite, Theorem 2 and Lemma 7 give O(G) c S < C(G) ® C(G) and we have
the result.

Using the fact that a continuous real valued function on a compact space
is uniformly continuous, Theorem 10 readily implies that a continuous real
valued function f on a pseudocompact group G is such that {f,:a € G} is
precompact in the uniform metric.
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