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KLEIN HYPERBOTTLE 

MILAN HEJNY 

1. Introduction 

Let G mean the open Grassmannian of all lines (not only those passing 
through the origin 0) in the (n -f- 1)-dimensional Euclidean space R™+1. 
Let Kb7* be a subspace of G which consists of all lines x parallel to a given 
Euclidean plane R 2 c En+1, n ^ 2 and tangent to the unit sphere Sn c En+1. 
Since K b 2 is homeomorphic to the Klein bottle (see [2]) there is good reason 
for a 

Definition. The topological subspace Kb™ of G is called the Klein hyperbottle 
in R™+V 

The aim of this paper is: 
(i) to find a CW-decomposition of Kb™ (see Theorem 1) and 

(ii) to calculate the homology groups Hi(Kb™) (see Theorem 2). 

2. Notation 

Sn = {x E ~Rn+1 | \x\ = 1} is the unit ^-sphere; 
S 1 the unit circle is identified with {eu | t E R} C C; 
B™ = {x e R™ | \x\ ^ 1} is the closed ^-dimensional unit ball with the boundary 

dBn = S™"1; 
<a, by, a,b E R™*1, b ^ 0 means a line {a + Xb \ X E R} G G; 
a: C -> R™+x, x + iz/ -> (x, y, 0, . . . , 0) and 
P: R» - x -> R™+1, (a;1, . . . , a* : - x) -> (0, 0, x1, ..., xn ~ x) inclusion maps; 
y: (B™~2, dBn~2) -» (S™-2, —1c), to -> 2]/l - M 2 w + (2|w|2 - l)k, 
where k = (0, . . . , 0, 1) G E ^ 1 ; 
* is the distinguished point of a factor-space X/Y 

3. The CW-decomposition of Kb™ 

The Klein hyperbottle Kb™ will be expressed in a more suitable form, 
namely as a factor-space of S 1 X B™V Then a CW-decomposition of Kb™ 
is described. 
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Lemma 1. Let 0 be an equivalence relation on S1 X B 7 2 - 1 given as folloivs: 

(u, v)0(u', v') o (u = u' and v = v') or (u + u' = 0 and v = v' e 3B71-1). 

Then the factor-space K = (S1 X B w - 1 ) /E is homeomorphic to the Klein hyper-
bottle Kb». 

Proof . I t is not difficult to show7 that the map 

a : S1 X B ^ - 1 -> Kb*, (u, v) -> <l/l - \v\2oc(u) + p(v), cc(iu)} 

is both, well-defined and surjective. Moreover, a(u, v) = a(u', v') holds if and 
only if 

]/l — \v\2oc(u) + P(v) = ] / l ~ \v'\2x(u') + P(v') and in = ±iu', 

i.e. v = v' and (u = u' or u = —u', v e S B ^ 1 ) . 
Hence Kbn, as a O-image of S1 X Bn_1 is homeomorphic to the factor-space 
K = S1 x Bnl/&. 

Theorem 1. The Klein hyperbottle Kbn ^ K = S1 X Bn~1\0 admits a CW-
-decomposition into six disjoint cells of the dimension 0,1, n — 2, n — 1, n — 1 
and n. Characteristic maps are 

e° =f°: B° ->K, 0 - > [ ± l , v0], where v0 = (1, 0, . . . , 0) e R « 

e i = / i : B i - > K , * - > [ ± e 2 i a \ v0], 
en-2=fn-2: ftn-2 _+ K , W^[±l,y(w)], 

e«-i = / j - i : B » - i - > K , v->[-l,v], 

en-i = / » - i : B 1 X B ^ - 2 - > K , (l, M;)->[e"2'"(1',1 y(w)] , 

en = fn: B1 x Bn~1 -+K, (t, v) -> [e--"***, D], 

where el = fl: Bl -> K means el = fl (int B*). 

Corollary. ?%e Euler—Poincare characteristic of Kbn is zero. 
Proof . See [1] Proposition 5.9 p. 105. 

4. Groups H^(Kb^) 

We compute the cellular boundary in the Klein hypsrbottle Kb7* = K. 
First of all it is obvious that 

(1) de° = 0, 8e1 = 0, den~2 = 0 and de^1 = ±en~2. 

Thus only the three incidence numbers, namely [ e ^ 1 : ^ - 2 ] , [en : e^-1] 
and [en : e^'1] are in need of being computed. 

Lemma 2. [e^ 1 : en~2] = 0, therefore del 1 = °-
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Proof . The incidence number [e?J * : en~2] is defined as the degree of the 
map 

0 : S^~2 = S(Bi X Bn~2) X K^~2 -4 K^~2 /(K^-2 - e^~2) = S^~2 

which is the composition of the attaching map QD for e\ ] and the canonical 
projection p of the (n — 2)-skeleton K ^ - 2 of K . To check the number deg 0 
let us consider a map 

h : S " - 2 = S(Bi X B^- 2 ) -> S » - 2 - S(Bi X B^~2), (*, w) -> (—i, w) 

regarded as the involution on 8n~2. Since deg h = — 1, and 0 = 0 o h, 
it is deg 0 = cleg 0 . deg h = —deg 0 , hence deg 0 = 0 . 

Lemma 3. [ew : ej_1] = 0 and \en : e£ *] = ± 2 , therefore is den = i-teo"1. 
Proof . The first of these two assertions may be proved by the same argu

ment as that of Lemma 2. The second assertion follows immediately from 
the characteristic maps fn a n d / f 1 . 

Theorem 2. The homology groups of the Klein hyperbottle Kbn are 

n = 2: H0(Kb2) = Z, Hi(Kb2) = Z + Z2 , Hi (Kb2) = 0/Or , ^ 0,1 

> /IYo(Kb^) = Z. Hi(Kb») = Z, H„_i(Kb») = Z2 , 
^ " [Hi(Kbn) = 0, for i ^ 0,1, ra — ] . 
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