## Matematicko-fyzikálny časopis

## Štefan Schwarz

## On Powers of Non-Negative Matrices

Matematicko-fyzikálny časopis, Vol. 15 (1965), No. 3, 215--228
Persistent URL: http://dml.cz/dmlcz/126741

## Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1965

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

# ON POWERS OF NON-NEGATIVE MATRICES 

STTEFAN SCHWARZ, Bratislava

Let $A$ be a $n \times n$ matrix with non-negative entries. One of the main problems in studying such matrices is to study the distribution of zeros and ,,non--zeros" in the sequence

$$
\begin{equation*}
A, A^{2}, A^{3}, \ldots \tag{1}
\end{equation*}
$$

In the paper [2] I have shown that there is a simple semigroup treatment of this problem which leads to a series of results without any mention of such notions as characteristic values, characteristic vectors, etc.

This semigroup treatment leads to some pertinent questions which will be partly solved in this paper.

For convenience of the reader I briefly recall the necessary notions introduced in [2].

Let $N=\{1,2, \ldots, n\}$. Consider the set of " $n \times n$ matrix-units", i.e. the set $S$ of symbols $\left\{e_{i j} \mid i, j \in N\right\}$ together with a zero 0 adjoined: $S=\left\{e_{i j} \mid i, j \in\right.$ $\in N\} \cup\{0\}$.

Define in $S$ a multiplication by

$$
e_{i j} e_{m l}=<\begin{aligned}
& 0 \text { for } j \neq m \\
& e_{i l} \text { for } j=m
\end{aligned}
$$

the zero 0 having the usual properties of a multiplicative zero. The set $S=S_{n}$ with this multiplication is a 0 -simple semigroup. It contains exactly $n$ non-zero idempotents, namely the elements $e_{11}, e_{22}, \ldots, e_{n n}$.

Let $A=\left(a_{i j}\right)$ be a non-negative $n \times n$ matrix. By the support of $A$ we shall mean the subset of $S$ containing 0 and all those elements $e_{i j} \in S$ for which $a_{i j}>0$.

The support of $A$ will be denoted by $C_{A}$. For typographical reasons we shall write occasionally $C_{A}=C(A)$.

For any two $n \times n$ non-negative matrices we clearly have $C_{A+B}=C_{A} \cup C_{B}$.
Consider further the set $\mathfrak{S}=\mathfrak{S}_{n}$ of all subsets of $S=S_{n}$ and define a multi-
plication in $\mathfrak{S}$ as the multiplication of complexes in $S$, i.e. if $C^{\prime}, C^{\prime \prime} \in \mathbb{S}$, then $C^{\prime} C^{\prime \prime}=\left\{c_{1} c_{2} / c_{1} \in C^{\prime}, c_{2} \in C^{\prime \prime}\right\}$. Then $\mathfrak{S}$ is again a finite semigroup containing exactly $2^{n^{2}}$ different elements. (1)

If $A, B$ are two non-negative matrices it is easy to see that $C_{A B}=C_{A} . C_{B}$. In particular, the supports of the elements of the sequence (1) are given by the sequence

$$
\begin{equation*}
C_{A}, C_{A}^{2}, C_{A}^{3}, \ldots \tag{2}
\end{equation*}
$$

Though (1) may contain an infinity of different elements, the sequence (2) contains only a finite number of different elements. The correspondence $A \rightarrow C_{A}$ is a homomorphic mapping of the semigroup of all non-negative matrices onto the semigroup $\mathfrak{S}$. [If we consider the union of sets as the second binary operation in $\mathfrak{S}$, we have even a homomorphic mapping of the semiring of all non-negative $n \times n$ matrices onto the semiring $\mathfrak{S}$.]

The following facts easily follow from the elements of the theory of finite semigroups.

Let $A$ be a fixed $n \times n$ matrix. Let $k$ be the least integer such that $C_{A}^{k}=C_{A}^{l}$ for some $l>k$. Let further $l=k+d(d \geqq 1)$ be the least integer satisfying this relation. Then the sequence (2) is of the form

$$
C_{A}, \ldots, C_{A}^{k-1}\left|C_{A}^{k} \ldots, C_{A}^{k+d-1},\left|C_{A}^{k}, \ldots, C_{A}^{k+d-1}\right| \ldots\right.
$$

Denote by $\mathfrak{S}_{A}$ the subsemigroup of $\mathfrak{S}$ generated by $C_{A}$. Then $\mathfrak{S}_{A}$ has exactly $k+d-1$ different elements and we have

$$
\begin{equation*}
\mathfrak{S}_{A}=\left\{C_{A}, \ldots, C_{A}^{k-1}, C_{A}^{k}, \ldots, C_{A}^{k+d-1}\right\} \tag{3}
\end{equation*}
$$

For any $\alpha \geqq k$ and every $\beta \geqq 0$ we clearly have

$$
\begin{equation*}
C_{A}^{\alpha}=C_{A}^{\alpha+\beta d} . \tag{4}
\end{equation*}
$$

It is well known that $\mathfrak{G}_{A}=\left\{C_{A}^{k}, \ldots, C_{A}^{k+d-1}\right\}$ is a cyclic group of order $d$ (subgroup of $\mathfrak{S}_{A}$ ). The unit element of the group $\mathfrak{F}_{A}$ is $C_{A}^{e}$ with a suitably chosen $\varrho$ satisfying $k \leqq \varrho \leqq k+d-1$. Let $\tau$ be the uniquely determined integer such that $k \leqq \tau d \leqq k+d-1$. Then $\varrho=\tau d$. To show this it is sufficient to show that $C_{A}^{\tau d}$ is an idempotent. In fact we have (by (4) with $\alpha=\tau d, \beta=\tau) C_{A}^{2 \tau d}=C_{A}^{\tau d+\tau d}=C_{A}^{\tau d}$.

In the following we shall consequently write $\varrho=\tau d$, so that $C_{A}^{o}$ is the (unique) idempotent $\in \mathfrak{S}_{A}$. Clearly, we also have $\mathfrak{G}_{A}=\left\{C_{A}^{\varrho}, C_{A}^{e+1}, \ldots, C_{A}^{\varrho+d-1}\right\}$.

Note explicitly that to every non-negative matrix $A$ we have associated three integers $k=k(A), \varrho=\varrho(A)$ and $d=d(A)$ satisfying $k \leqq \tau d=\varrho \leqq$

[^0]$\leqq \varrho+d-1$, which depend only on the distribution of the zeros and non--zeros in $A$.

For further purposes we mention also the following facts proved in [2]. If $A$ is any $n \times n$ non-negative matrix, then

$$
C_{A}^{n+1} \subset C_{A} \cup C_{A}^{2} \cup \ldots \cup C_{A}^{n}
$$

Hence the set $C_{A} \cup C_{A}^{2} \cup \ldots \cup C_{A}^{n}$ is always a subsemigroup of $S=S_{n}$.
A non-negative matrix $A$ is alled reducible if there is a permutation matrix $P$ such that $P^{-1} A P$ is of the form

$$
P^{-1} A P=\left(\begin{array}{cc}
A_{1} & 0 \\
B & A_{2}
\end{array}\right)
$$

Otherwise it is called irreducible. An $n \times n$ non-negative matrix $A$ is irreducible if and only if

$$
C_{A} \cup C_{A}^{2} \cup \ldots \cup C_{A}^{n}=S_{n}
$$

It should be mentioned in advance that in this paper the emphasis is rather on the reducible case.

Consider now the semigroup $\mathfrak{S}_{A}$ as given in (3). The elements of $\mathfrak{S}_{A}$ are subsets of $S$. At least one of the elements $\in \mathbb{S}_{A}$ (namely $C_{A}^{o}$ ) is itself a subsemigroup of $S$. The first problem treated in this paper concerns the following question. Under what conditions concerning $A$ and $s$ may it happen that the set $C_{A}^{s}$ is a subsemigroup of $S$. The second problem is to find a "good" characterization of the number $d=\operatorname{card} \mathfrak{G}_{A}$. It will turn out that both questions are intimately connected.

## I.

Lemma 1. Let $A$ be any $n \times n$ non-negative matrix. Suppose that $C_{A}^{s}$ is a subsemigroup of $S=S_{n}$. Then
a) $C_{A}^{e} \subset C_{A}^{s}$;
b) $C_{A}^{s}$ contains all idempotents $\in S$ contained in the union $C_{A} \cup C_{A}^{2} \cup \ldots \cup C_{A}^{n}$. Proof. a) The sequence

$$
C_{A}^{s}, C_{A}^{2 s}, C_{A}^{3 s}, \ldots
$$

contains a unique idempotent $C_{A}^{e}$. Hence there is an integer $v$ such that $C_{A}^{v s}=C_{A}^{e}$. Since $C_{A}^{s}$ is a semigroup, we have $C_{A}^{s} \supset C_{A}^{2 s}$, which implies

$$
C_{A}^{s} \supset C_{A}^{2 s} \supset C_{A}^{3 s} \supset \ldots \supset C_{A}^{v s}=C_{A}^{e}
$$

b) Let $E_{A}=\left\{e_{\alpha \alpha} / \alpha\right.$ running through a subset of $\left.N\right\}$ be the set of all non-zero idempotents $\in S$ contained in $C_{A} \cup C_{A}^{2} \cup \ldots \cup C_{A}^{n}$. If $e_{\alpha \alpha} \in C_{A}^{h}(1 \leqq h \leqq n)$,
then $e_{\alpha \alpha} \in C_{A}^{h t}$ for any integer $t \geqq 1$. Since some power of $C_{A}^{h}$ is $C_{A}^{\varrho}$, we have $e_{\alpha \alpha} \in C_{A}^{\varrho}$, hence $E_{A} \subset C_{A}^{\varrho} \subset C_{A}^{s}$.

Theorem 1. The group $\mathfrak{F}_{A}=\left\{C_{A}^{k}, \ldots, C_{A}^{k+d-1}\right\}$ contains exactly one element which is itself a subsemigroup of $S$.

Remark. This is - of course - the idempotent $C_{A}^{\varrho}$.
Proof. Suppose that $C_{A}^{s}, k \leqq s \leqq k+d-1$ is a semigroup. By Lemma 1 we have $C_{A}^{o} \subset C_{A}^{s}$. Multiplying by $C_{A}^{s}$ we have $C_{A}^{e} . C_{A}^{s} \subset C_{A}^{2 s} \subset C_{A}^{s}$. But since $C_{A}^{e}$ is the unit element $\in \mathfrak{G}_{A}, C_{A}^{e} . C_{A}^{s}=C_{A}^{s}$. Now $C_{A}^{s} \subset C_{A}^{2 s} \subset C_{A}^{s}$ implies $C_{A}^{s}=$ $=C_{A}^{2 s}$, i.e. $C_{A}^{s}$ is an idempotent contained in $\mathfrak{G}_{A}$. Hence $C_{A}^{s}=C_{A}^{\varrho}$, q.e.d.

Remark. If $k>1$, the set $\left\{C_{A}, C_{A}^{2}, \ldots, C_{A}^{k-1}\right\}$ may contain subsemigroups of $S$. Let f.i. $A$ be a non-negative $3 \times 3$ matrix with the support (in an obvious notation( ${ }^{2}$ ))

$$
C_{A}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)
$$

Then

$$
C_{A}^{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

and $C_{A}^{3}=\{0\}$. Hence all elements $C_{A}, C_{A}^{2}, C_{A}^{3}$ are subsemigroups of $S_{3}$.
Theorem 2. Let $A$ be a non-negative $n \times n$ matrix for which $C_{A} \cup C_{A}^{2} \cup \ldots \cup$ $\cup C_{A}^{n}$ contains all non-zero idempotents $\in S$, i.e. the set $E_{A}=\left\{e_{11}, e_{22}, \ldots, e_{n n}\right\}$. Then $\mathfrak{S}_{A}$ contains exactly one element that is itself a subsemigroup of $S$.

Proof. Let be $1 \leqq s \leqq k+d-1$ and $C_{A}^{s}$ a subsemigroup of $S$. By Lemma 1 we have $\left\{e_{11}, \ldots, e_{n n}\right\} \subset C_{A}^{s}$. If $A$ is any subset of $S$ we always have $A\left\{e_{11}, \ldots\right.$, $\left.e_{n n}\right\}=A$. In particular (in our case) we have

$$
C_{A}^{s}=C_{A}^{s}\left\{e_{11}, \ldots, e_{n n}\right\} \subset C_{A}^{2 s}
$$

The "inequalities" $C_{A}^{s} \subset C_{A}^{2 s}$ and $C_{A}^{2 s} \subset C_{A}^{s}$ (describing the semigroup property of $C_{A}^{s}$ ) imply $C_{A}^{s}=C_{A}^{2 s}$. Since there is a unique idempotent $\in \mathbb{S}_{A}$ we have $C_{A}^{s}=C_{A}^{o}$, q.e.d.

If $S$ is irreducible, then $C_{A} \cup C_{A}^{2} \cup \ldots \cup C_{A}^{n}=S$, so that the suppositions of Theorem 2 are satisfied and we obtain:

Corollary 1. If $A$ is irreducible, then $C_{A}^{e}$ is the unique element $\in \mathbb{S}_{A}$ which is itself a subsemigroup of $S$.
${ }^{\left({ }^{2}\right)}$ We shall occasionally use this obvious notation by puting 1 on those places ( $i, k$ ) for which $e_{i k} \in C_{A}$. F.i. in our example the "Boolean matrices" $C_{A}, C_{A}^{2}, C_{A}^{3}$ denote $C_{A}=$ $=\left\{0, e_{21}, e_{31}, e_{32}\right\}, C_{A}^{2}=\left\{0, e_{31}\right\}, C_{A}^{3}=\{0\}$.

Corollary 2. If $A$ is any $n \times n$ non-negative matrix and $C_{A}^{s}$ is a semigroup containing $\left\{e_{11}, \ldots, e_{n n}\right\}$, then $C_{A}^{s}=C_{A}^{e}$.

Proof. By supposition $C_{A}^{s}=C_{A}^{s}\left\{e_{11}, \ldots, e_{n n}\right\} \subset C_{A}^{2 s}$. On the other hand $C_{A}^{2 s} \subset C_{A}^{s}$, hence $C_{A}^{s}=C_{A}^{2 s}$; therefore $C_{A}^{s}=C_{A}^{e}$, q.e.d.

Remark. In Corollary 2 the supposition that $C_{A}^{s}$ is a semigroup cannot be omitted. Let f.i. $A$ be a $3 \times 3$ matrix with

$$
C_{A}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)
$$

Then

$$
C_{A}^{3}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

contains $\left\{e_{11}, e_{22}, e_{33}\right\}$, but $C_{A}^{3}$ is not the idempotent $\in \mathbb{S}_{A}$. (The idempotent $\in \mathbb{S}_{A}$ is $C_{A}^{5}$.)

The next two Lemmas will enable us to locate, so to say, the semigroups in the sequence (2) and to find at the same time a new characterization of the number $d$.

Lemma 2. Let $s$ be an integer such that $C_{A}^{s}$ is a subsemigroup of $S$. We then have:
a) $C_{A}^{\varrho}=C_{A}^{\varrho+s}$;
b) $d \mid s$;
c) $C_{A}^{o} \subset C^{s+t d}$ for any integer $t \geqq 0$.

Proof. a) We have $C_{A}^{\varrho+s} \in \mathfrak{b}_{A}$. Further $C_{A}^{e+s}$ is a subsemigroup of $S$ since $C_{A}^{2(\varrho+s)}=C_{A}^{2 \varrho} . C_{A}^{2 s}=C_{A}^{\varrho} . C_{A}^{2 s} \subset C_{A}^{\varrho} . C_{A}^{s}=C_{A}^{\varrho+s}$.
Hence by Theorem $1 C_{A}^{\varrho+s}=C_{A}^{\circ}$.
b) Suppose that $d \ngtr s$ and write $s=\alpha d+\beta$, where $\alpha \geqq 0$ is an integer and $0<\beta<d$. Since for any integer $\alpha$ we have $C_{A}^{o+\alpha d}=C_{A}^{e}$ the relation $C_{A}^{e}=C_{A}^{\varrho+s}$ implies

$$
C_{A}^{\varrho}=C_{A}^{\varrho+\alpha d+\beta}=C_{A}^{\varrho+\alpha d} C_{A}^{\beta}=C_{A}^{\varrho} . C_{A}^{\beta}=C_{A}^{\varrho+\beta} .
$$

The relation $C_{A}^{\varrho}=C_{A}^{\varrho+\beta}$ contradicts to the fact that the group $\mathfrak{W}_{A}=\left\{C_{A}^{\varrho}\right.$, $\left.C_{A}^{\varrho+1}, \ldots, C_{A}^{\varrho+d-1}\right\}$ is of order $d$.
c) By Lemma 1, we have $C_{A}^{e} \subset C_{A}^{s}$, hence $C_{A}^{e+t d} \subset C_{A}^{s+d t}$ and since $C_{A}^{e+t d}=$ $=C_{A}^{\varrho}$, we obtain $C_{A}^{e} \subset C_{A}^{s+t d}$. This proves our Lemma.

Lemma 3. If $C_{A}^{s}$ is a semigroup, then none of the sets $C_{A}^{s+1}, C_{A}^{s+2}, \ldots, C_{A}^{s+d-1}$ can be a semigroup.

Proof. If $C_{A}^{s+\lambda}, 1 \leqq \lambda \leqq d-1$, were a semigroup, then Lemma 3 b ) would imply that $d \mid s$ and $d \mid s+\lambda$, which is impossible.

Let $s_{0}$ be the least integar $s$ such that $C_{A}^{s}$ is a semigroup. Then $s_{\mathbf{0}} \leqq \varrho$ and we may arrange the set of powers in the following way:

$$
\begin{array}{rll}
C_{A}, C_{A}^{2}, \ldots, C_{A}^{s_{0}-1}, & C_{A}^{s_{0}}, & C_{A}^{s_{0}+1},  \tag{5}\\
& C_{A}^{s_{s}+d}, C_{A}^{s_{0}+d+1}, \ldots, C_{A}^{s_{0}+d-1} \\
& C_{A}^{s_{0}+2 d}, C_{A}^{s_{0}+2 d+1}, \ldots, C_{A}^{s_{0}+2 d-1}, \\
& C_{A}^{\varrho}, \quad C_{A}^{o+1}, & \ldots, C_{A}^{o+d-1} .
\end{array}
$$

Since $d \mid \varrho$ and $d \mid s_{0}$ there is necessarily an integer $t$ such that $\varrho=s_{0}+t d$. We get exactly $t+1$ rows. The last of them contains at least one element $\in \mathscr{S}_{A}$ which does not occur in the foregoing row. (This means: It may happen that to obtain all different elements $\in \mathbb{S}_{A}$ it is not necessary to consider the whole last row, but certainly at least the first element contained in it.)

The idempotent $C_{A}^{\varrho}$ is necessarily contained in the column $\left\{C_{A}^{s_{0}}, C_{A}^{s_{0}+d}, \ldots\right\}$ and (by Lemma 2c) $C_{A}^{e}$ is a subset of each element of this column.

Also (by Lemma 2b) all elements $\in \mathbb{S}_{A}$ which are themselves subsemigroups of $S$ are located in the column $\left\{C_{A}^{s_{0}}, C_{A}^{s_{0}+d}, C_{A}^{s_{0}+2 d}, \ldots, C_{A}^{e}\right\}$. Hence the semigroups contained in the sequence (2) are some of the powers

$$
C_{A}^{s_{0}}, C_{A}^{s_{0}+d}, \ldots, C_{A}^{s_{0}+(t-1) d}
$$

and all the following

$$
C_{A}^{\varrho}=C_{A}^{s_{0}+t d}=C_{A}^{s_{0}+(t+1) d}=C_{A}^{s_{0}+(t+2) d}=\ldots
$$

Now since $d \mid s_{0}$, the number $d$ is the greatest common divisor of the sequence of integers

$$
s_{0}, s_{0}+d, s_{0}+2 d, \ldots
$$

We have proved:
Theorem 3. The number $d=\operatorname{card} \mathfrak{b}_{A}$ is the greatest common divisor of all such integers $s$ for which $C_{A}^{*}$ is a semigroup (subsemigroup of $S$ ).

We make some supplementary remarks to the "tableau" (5).
Remark 1. None of the sets $C_{A}^{\varrho}, \ldots, C_{A}^{\text {Q }+d-1}$ is contained as a proper subset in another, i.e. $C_{A}^{\varrho+u} \subset C_{A}^{\varrho+v}$ implies $C_{A}^{\varrho+u}=C_{A}^{\varrho+v}$.

Proof. We first prove that $C^{\varrho} \subset C_{A}^{\varrho+u}, 0 \leqq u \leqq d-1$, implies $C_{A}^{\varrho}=C_{A}^{\varrho+u}$. Note that by Lemma 2 a $C_{A}^{\varrho}=C_{A}^{\varrho+\lambda s_{0}}$ for any integer $\lambda \geqq 0$. The relation $C_{A}^{e} \subset C_{A}^{e+u}$ implies

$$
C_{A}^{\varrho} \subset C_{A}^{\varrho+u} \subset C_{A}^{\varrho+2 u} \subset \ldots \subset C_{A}^{\varrho+s_{0} u}=C_{A}^{\varrho} .
$$

Hence $C_{A}^{\varrho}=C_{A}^{\varrho+u}$. Suppose now

$$
\begin{equation*}
C_{A}^{e+u} \subset C_{A}^{e+v} \tag{6}
\end{equation*}
$$

for some $u, v \geqq 0$. Since $C_{A}^{\varrho+u} \in \mathfrak{G}_{A}$, there is a $C_{A}^{\varrho+u^{\prime}}$ such that $C_{A}^{\varrho+u} . C_{A}^{\varrho+u^{\prime}}=$ $=C_{A}^{e}$. Here $u+u^{\prime} \equiv 0(\bmod d)$ Multiplying (6) by $C_{A}^{\varrho+u^{\prime}}$ we have $C_{A}^{e} C$
$\subset C_{\boldsymbol{A}}^{\varrho+v+u^{\prime}}$, hence $C_{A}^{\varrho}=C_{\boldsymbol{A}}^{\varrho+v+u^{\prime}}$, so that $v+u^{\prime} \equiv 0(\bmod d)$. Therefore $u-v \equiv 0$ $(\bmod d)$ and $C_{A}^{\varrho+u}=C_{A}^{\varrho+v}$, q.e.d.

Remark 2. The statement just proved implies that none of the elements $C_{A}^{s_{0}}, C_{A}^{s_{0}+1}, \ldots, C_{A}^{s_{o}+d-1}$ can be contained (as a proper subset) in an another. For $C^{s_{0}+i} \subset C^{s_{0}+l}, 0 \leqq i, l \leqq d-1, i \neq l$ multiplied by $C_{A}^{t d}$ would imply $C_{A}^{s_{0}+d t+i} \subset C_{A}^{s_{0}+d t+l}$, i.e. $C_{A}^{\varrho+i} \subset C_{A}^{\varrho+l}$, hence $C_{A}^{\varrho+i}=C_{A}^{\varrho+l}$, which is not true. An analogous statement holds for the remaining rows.

Remark 3. In [2] we have proved that for an irreducible matrix the intersection $T_{A}=C_{A}^{e} \cap C_{A}^{\varrho+1} \cap \ldots \cap C_{A}^{e+d-1}$ is $\{0\}$. [Even the intersection of any two of these sets is $\{0\}$.] This is not necessarily true in the case of a reducible matrix. Consider f.i. a $3 \times 3$ matrix $A$ with $C_{A}=\left\{e_{12}, e_{21}, e_{33}, 0\right\}$. Then $C_{A}^{2}=$ $=\left\{e_{11}, e_{22}, e_{33}, 0\right\}$ and $\mathfrak{W}_{A}=\left\{C_{A}, C_{A}^{2}\right\}$. Here $T_{A}=C_{A} \cap C_{A}^{2}=\left\{e_{33}, 0\right\}$.

But it is easy to show that $T_{A}$ is always a subsemigroup of $S$. For let be $a \in T_{A}, b \in T_{A}$. Then $a \in C_{A}^{\varrho+k}$ for any $k=0,1, \ldots, d-1$ and $b \in C_{A}^{\varrho+l}$ for any $l=0,1, \ldots, d-1$. Hence $a b \in C_{A}^{\varrho+k+l}$. If $k, l$ run through a residue system $(\bmod d)$ so does $k+l$ so that $a b \in \bigcap_{m=0} C_{A}^{\varrho+m}$; hence $a b \in T_{A}$, q.e.d.

Remark 4. For an irreducible matrix $A$ we have $s_{0}=\varrho$ and we always have $C_{A}^{d} \subset C_{A}^{s_{0}}$. Again this is not necessarily true for a reducible matrix. This is shown on the following example. Let $A$ be a matrix with

$$
C_{A}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right) .
$$

Here $d=1$ and $\mathfrak{W}_{A}$ is the one-point group $\mathfrak{b}_{A}=\left\{C_{A}^{2}\right\}$, where

$$
C_{A}^{2}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right) .
$$

We have $s_{0}=2$ and $C_{A} \subset C_{A}^{2}$ does not hold.
Example. We conclude this section with a simple example of a matrix with card $\mathfrak{b}_{A}>1$ and $s_{0}<\varrho$. Let $A$ be a matrix with

$$
C_{A}=\left(\begin{array}{cc:cccc}
0 & 1 & & & \\
1 & 0 & & & 0 & \\
\hdashline & & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
& & 1 & 1 & 1 & 0
\end{array}\right]
$$

Then

$$
\begin{aligned}
& C_{A}^{3}=\left(\begin{array}{ll|llll}
0 & 1 \\
1 & 0 & & & 0 & \\
\hdashline 0 & & & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right], \\
& C_{A}^{4}=\left(\begin{array}{cc:c}
1 & 0 & 0 \\
0 & 1 & 0 \\
\hdashline 0 & 0
\end{array}\right), \\
& C_{A}^{5}=\left(\begin{array}{c:c}
0 & 1 \\
1 & 0 \\
\hdashline \mathbf{0} & 0
\end{array}\right) .
\end{aligned}
$$

Here $\mathfrak{S}_{A}$ has 5 different elements, $\mathscr{F}_{A}=\left\{C_{A}^{4}, C_{A}^{5}\right\}, d=2, s_{0}=2$, while $\varrho=4$.

## II.

The result of Theorem 2 may be formulated in a somewhat other way by introducing the notion of the normal form of a non-negative matrix $M$.

Let $M$ be a non-negative matrix (of order $n$ ). It is well known that there is a permutation matrix $P$ (of order $n$ ) such that $P M P^{-1}=A$ is of the form

$$
A=\left(\begin{array}{llll}
A_{11}, & 0, & \ldots, & 0  \tag{7}\\
A_{21}, & A_{22} & \ldots, & 0 \\
A_{r 1}, & A_{r 2}, & \ldots, & A_{r r}
\end{array}\right),
$$

where $A_{i i}(1 \leqq i \leqq r)$ are irreducible matrices (including the case that some of the $A_{i i}$ 's may be zero matrices of order 1).

Consider the sequences

$$
\begin{array}{r}
C_{M}, C_{M}^{2}, C_{M}^{3}, \ldots \\
C_{A}, C_{A}^{2}, C_{A}^{3}, \ldots \tag{9}
\end{array}
$$

The semigroups $\mathfrak{S}_{A}$ and $\mathfrak{S}_{M}$ are clearly isomorphic. If $C_{M}^{s}$ is a semigroup, then so is $C_{A}^{s}$ since

$$
C_{A}^{2 s}=C_{P} C_{M}^{s} C_{P^{-1}} \cdot C_{P} C_{M}^{s} C_{P^{-1}}=C_{P} C_{M}^{2 s} C_{P^{-1}} \subset C_{P} C_{M}^{s} C_{P^{-1}}=C_{A}^{s}
$$

and conversely. In particular, if $C_{M}^{e}$ is the idempotent $\in \mathbb{S}_{M}$, then $C_{P} C_{M}^{e} C_{P^{-1}}$ is the idempotent $C_{A}^{\varrho} \in \Im_{A}$, so that $\varrho(A)=\varrho(M)$. Hence instead of studying the sequence (8) we may restrict ourselves to the study of the sequence (9).

We shall use the following notations. $d_{i}$ will denote the order of the group $\mathfrak{F}_{A_{i}}, \varrho_{i}$ will denote the least integer for which $C_{A_{i}}^{e_{i}}$ is an idempotent $\in \mathfrak{S}_{A_{i}}$.

If $C_{A}^{\varrho}$ is the idempotent $\in \mathfrak{G}_{A}$, then $C_{A_{i}}^{\varrho}$ is necessarily the idempotent $\in \mathfrak{G}_{A_{i}}$.

If $\varrho=\varrho(A)$ has the meaning introduced from the beginning (i.e. the smallest integer for which $C_{A}^{e}$ is an idempotent $\in \Im_{A}$ ), then $\varrho$ is necessarily of the form $\varrho=\varrho_{1}+x_{1} d_{1}=\varrho_{2}+x_{2} d_{2}=\ldots=\varrho_{r}+x_{r} d_{r}$, with suitably chosen non-negative integers $x_{1}, x_{2}, \ldots, x_{r}$. Since $\varrho_{i}=\tau_{i} d_{i}$, we have $\varrho=d_{i}\left(\tau_{i}+x_{i}\right), i=$ $=1,2, \ldots, r$. Denote $a^{*}=\left[d_{1}, d_{2}, \ldots, d_{r}\right]$ the least common multiple of the integers $d_{1}, \ldots, d_{r}$. The relation $d_{i} \mid \varrho$ implies $d^{*} \mid \varrho$. We have proved: there is an integer $\tau^{*}$ such that $\varrho(A)=\tau^{*} d^{*}$.

In what follows it is often of decisive importance whether in the normal form (7) there is among the $A_{i i}{ }^{\prime}$ s a zero matrix (of order 1) or not. If none of the $A_{i i}{ }^{\prime} \mathrm{s}$ is a zero matrix, then

$$
C_{\boldsymbol{A}}^{\varrho}=C_{\boldsymbol{A}}^{\tau^{*} d^{*}} \subset C_{\boldsymbol{A}} \cup C_{\boldsymbol{A}}^{2} \cup \ldots \cup C_{\boldsymbol{A}}^{n}
$$

contains $\left\{e_{11}, e_{22}, \ldots, e_{n n}\right\}$. With respect to Theorem 2 we have
Theorem 4. If a matrix $A$ written in the normal form (7) has no zero matrix in the main diagonal, then $C_{A}^{e}$ is the unique semigroup contained in the sequence (9).

The condition mentioned in this Theorem is not necessary. There are classes of non-negative matrices with zeros in the main diagonal having the same property. We prove f.i.:

Theorem 5. Let

$$
A=\left(\begin{array}{ll}
A_{1} & 0 \\
R & 0
\end{array}\right)
$$

where $A_{1}$ is irreducible and not the zero matrix of order 1. Then $C_{A}^{s}$ is a semigroup if and only if it is the idempotent $\in \mathbb{S}_{A}$.

Proof. Let $A_{1}$ be a $m \times m$ matrix (so that $R$ is a ( $n-m$ ) $\times m$ rectangular matrix). Denote $E=\left\{e_{11}, e_{22}, \ldots, e_{m m}\right\}$. The support of

$$
A^{s}=\left(\begin{array}{ll}
A_{1}^{s} & 0 \\
R A_{1}^{s-1} & 0
\end{array}\right)
$$

is a semigroup if and only if

$$
\begin{equation*}
C_{A_{1}}^{2 s} \subset C_{A_{1}}^{s}, \quad C\left(R A_{1}^{2 s-1}\right) \subset C\left(R A_{1}^{s-1}\right) \tag{10}
\end{equation*}
$$

Now $C_{A_{1}}^{s}$ is a semigroup if and only if $C_{A_{1}}^{s}=C_{A_{1}}^{2 s}$ is the idempotent $\in \mathbb{S}_{A_{1}}$ and $C_{A_{1}}^{s}$ contains then $E$. Hence we have

$$
C_{R}=C_{R} .\left\{e_{11}, e_{22}, \ldots, e_{m m}\right\} \subset C\left(R A_{1}^{s}\right)
$$

Now if $C_{A}^{s}$ is a semigroup, (10) implies

$$
C\left(R A_{1}^{s-1}\right) \supset C\left(R A_{1}^{2 s-1}\right)=C\left(R A_{1}^{s}\right) C\left(A_{1}^{s-1}\right) \supset C(R) C\left(A_{1}^{s-1}\right)=C\left(R A_{1}^{s-1}\right)
$$

Hence $C\left(R A_{1}^{s-1}\right)=C\left(R A_{1}^{2 s-1}\right)$. Therefore $C_{A}^{s}=C_{A}^{2 s}$, q.e.d.
Theorem 5 may be generalized as follows:

Theorem 6. Let

$$
A=\left(\begin{array}{ll}
A_{1} & 0 \\
R & A_{2}
\end{array}\right)
$$

with $A_{1}$ irreducible and not the zero matrix of order 1. If $C_{A}^{s}$ is a semigroup, then $C_{A}^{s}$ is the idempotent $\in \Im_{A}$ if and only if $C_{A_{2}}^{s}=C_{A_{2}}^{2 s}$.

Proof. Denote

$$
A^{s}=\left(\begin{array}{cc}
A_{1}^{s} & 0 \\
R_{s} & A_{2}^{s}
\end{array}\right)
$$

and $R_{1}=R$. Then

$$
A^{2 s}=\left(\begin{array}{cc}
A_{1}^{2 s} & 0 \\
R_{s} A_{1}^{s}+A_{2}^{s} R_{s} & A_{2}^{2 s}
\end{array}\right) .
$$

The set $C_{A}^{s}$ is a semigroup if and only if

$$
\begin{gathered}
C_{A_{1}}^{2 s} \subset C_{A_{1}}^{s}, \quad C_{A_{2}}^{2 s} \subset C_{A_{2}}^{s}, \\
C\left(R_{s} A_{1}^{s}\right) \cup C\left(A_{2}^{s} R_{s}\right) \subset C\left(R_{s}\right) .
\end{gathered}
$$

Since $A_{1}$ is irreducible, we conclude $C_{A_{1}}^{2 s}=C_{A_{1}}^{s}$ and the diagonal of $C_{A_{1}}^{s}$ is positive, i.e. if $A_{1}$ is a $m \times m$ matrix, we have $\left\{e_{11}, e_{22}, \ldots e_{m m}\right\} \subset C_{A_{1}}^{s}$ so that $C\left(R_{s}\right)=C\left(R_{s}\right)\left\{e_{11}, \ldots, e_{m m}\right\} \subset C\left(R_{s}\right) C\left(A_{1}^{s}\right)$.
The relation

$$
C\left(R_{s} A_{1}^{s}\right) \cup C\left(A_{2}^{s} R_{s}\right) \subset C\left(R_{s}\right) \subset C\left(R_{s} A_{1}^{s}\right)
$$

implies

$$
C\left(R_{s} A_{1}^{s}\right) \cup C\left(A_{2}^{s} R_{s}\right)=C\left(R_{s}\right)=C\left(R_{s} A_{1}^{s}\right)
$$

Therefore $C\left(A^{s}\right)=C\left(A^{2 s}\right)$ if and only if $C\left(A_{2}^{s}\right)=C\left(A_{2}^{2 s}\right)$, q.e.d.

## III.

In this last section we shall deal with some special types of matrices for which card $\mathfrak{b}_{A}=1$.

Let $A$ be the matrix of the form (7). The question arises what can be said about card $\mathfrak{W}_{A}$ by knowing card $\mathfrak{F}_{A_{i}}=d_{i}$.

The following Lemma holds.
Lemma 4. If $d^{*}=\left[d_{1}, \ldots, d_{r}\right]$, then card $\mathfrak{b}_{A}=d^{*}$.
The proof of tanis Lemma (which has been known to the author for some time) is given in the recent paper of Ю. И. Любич (Ju. I. Ljubič) [see [1], Lemma 2, p. 344].

A non-negative irreducible matrix $A$ is called primitive if some power of $A$ is positive. This is the case if and only if $d(A)=1$. In this case $\mathfrak{b}_{A}$ is a one--point group, namely the idempotent $\in \mathbb{S}_{A}$.

If $A$ is reducible of the form (7) then Lemma 4 implies card $\mathfrak{F}_{A}=1$ if and only if $d_{1}=d_{2}=\ldots=d_{r}=1$. Hence:

Theorem 7. If $A$ is of the form (7), then $\mathfrak{F}_{A}$ is a one point group if and only if the matrices $A_{i i}$ are either primitive or zero matrices of order 1.

Remark. There are some special cases in which we may decide that $\mathfrak{b}_{A}$ is a one-point group without reference to the normal form (7).

Assertion 1. If $C_{A}$ is a semigroup, then card $\mathfrak{F}_{A}=1$.
Proof. By Lomma $2 d=d(A)$ divides every $s$ for which $C_{A}^{s}$ is a semigroup. Since in our case we may put $s=1$, we conclude $d=1$.

Assertion 2. If $A$ is any non-negative $n \times n$ matrix and $C_{A}$ contains $E=\left\{e_{11}, \ldots, e_{n n}\right\}$, then card $\mathfrak{F}_{A}=1$.

Proof. By supposition $C_{A}=C_{A} . E \subset C_{A} C_{A}=C_{A}^{2}$. Hence $C_{A} \subset C_{A}^{2} \subset$ $\subset \ldots \subset C_{A}^{n} \subset C_{A}^{n+1}$. On the other hand we always have $C_{A}^{n+1} \subset C_{A} \cup C_{A}^{2} \cup \ldots \cup$ $\cup C_{A}^{n}$, i.e. $C_{A}^{n+1} C C_{A}^{n}$. Hence $C_{A}^{n}=C_{A}^{n+1}$. This implies that $C_{A}^{n}$ is the idempotent $\in \mathbb{S}_{A}$ and, moreover, card $\mathfrak{G}_{A}=1$.

A special class of matrices with $d(A)=1$ is the class of lower triangular non-negative matrices, i.e. matrices of the following form:

$$
A=\left(\begin{array}{ccccc}
a_{11}, & 0, & 0, & \ldots, & 0  \tag{11}\\
a_{21}, & a_{22}, & 0, & \ldots, & 0 \\
\hdashline a_{n 1}, & a_{n 2}, & a_{n 3}, & \ldots, & a_{n n}
\end{array}\right)
$$

where $a_{i k}$ (for $i \geqq k$ ) aro non-negative elements, while all elemonts above the main diagonal are zeros.

Theorem 8. For a lower triangular non-negative matrix $A$ of order $n$ the set $C_{A}^{n}$ is the idempotent $\in \mathbb{S}_{A}$.

Proof. a) We first prove that $C_{A}^{\prime \prime} \subset C_{A}^{n+1}$. Any element $\alpha \in C_{A}^{n}$ is the product of $n$ elements $\in C_{A}$ of the form $\alpha=e_{i_{1} i_{2}} e_{j_{1} j_{2}} \ldots e_{w_{1} w_{2}}$. Such a product is certainly zero if the subscripts do not follow in the following order

$$
\begin{equation*}
\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots,\left(i_{n}, i_{n+1}\right) \tag{12}
\end{equation*}
$$

Suppose $\alpha \neq 0$. Then by supposition we have $i_{1} \geqq i_{2} \geqq \ldots \geqq i_{n} \geqq i_{n+1}$. The integers $i_{1}, i_{2}, \ldots, i_{n+1}$ cannot be all different. There is therefore a couple, say $i_{j}, i_{j+1}$, such that $i_{j}=i_{j+1}$. The sequence (12) is of the form

$$
\left(i_{1}, i_{2}\right) \ldots\left(i_{j-1}, i_{j}\right)\left(i_{j}, i_{j}\right)\left(i_{j}, i_{j+2}\right) \ldots\left(i_{n}, i_{n+1}\right)
$$

and $\alpha$ may be written as the product

$$
\begin{equation*}
\alpha=e_{i_{1} i_{2}} \ldots e_{i_{j-1} i_{j}} \cdot e_{i_{j} i_{j}} \cdot e_{i_{j} i_{j+2}} \ldots e_{i_{n} i_{n+1}} \tag{13}
\end{equation*}
$$

But then we may write also

$$
\alpha=e_{i_{1} i_{2}} \ldots e_{i_{j-1} i j} e_{i i_{j},}^{2} \ldots e_{i n i_{n+1}},
$$

so that $\alpha \in C_{A}^{n+1}$. Hence $C_{A}^{n} \subset C_{A}^{n+1}$.
b) On the other hand if $\alpha \in C_{A}^{n}$ and $\alpha \neq 0, \alpha$ is of the form (13) and we may omit $e_{i j, j}$ in $\alpha$ (without changing the value of $\alpha$ ) so that

$$
\alpha=e_{i_{1} i_{2}} \ldots e_{i_{j-1} j} e_{i_{j i j+2}} \ldots e_{i_{n i n+1}} .
$$

Hence $C_{A}^{n} \subset C_{A}^{n-1}$.
The last relation implies $C_{A}^{n+1} \subset C_{A}^{n}$. Both "inequalities" $C_{A}^{n} \subset C_{A}^{n+1} \subset C_{A}^{n}$ imply $C_{A}^{n}=C_{A}^{n+1}$ and $C_{A}^{n}=C_{A}^{n+1}=\ldots=C_{A}^{2 n}$, q.e.d.

Remark 1. The exponent $n$ is sharp since for a matrix with $n$ zeros along the main diagonal and all elements below the main diagonal equal to 1 we have $C_{A}^{n-1} \neq 0$, but $C_{A}^{n}=0$.

Remark 2. Also the exponent $n$ in the relation $C_{A}^{n} \subset C_{A}^{n-1}$ (proved in $b$ ) cannot be in general replaced by a smaller one. Take f.i. the matrix $A$ with

$$
C_{A}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Then $C_{A}^{3} \subset C_{A}^{2}$, but it is not true that $C_{A}^{2} \subset C_{A}$, since $C_{A} C_{\neq} C_{A}^{2}=\left\{e_{11}, e_{21}, e_{22}\right.$, $\left.e_{31}, e_{32}, 0\right\}$ holds.

Theorem 9. For a lower triangular matrix of the type (11) and $n \geqq 2$ there is always a number $s \leqq n-1$ such that $C_{A}^{s}$ is a semigroup.

Proof. In Theorem 8 we have proved $C_{A}^{n-1} \supset C_{A}^{n}=C_{A}^{n+1}=\ldots$. Since for $n \geqq 2$ we have $2 n-2 \geqq n$, we conclude $C_{A}^{n-1} \supset C_{A}^{2(i n-1)}$.

We now give a non-trivial generalization of Theorem 8 concerning a larger class of matrices with $d(A)=1$.

Theorem 10. Let $A$ be a matrix of the form

$$
A=\left(\begin{array}{ll}
A_{11}, 0, & \ldots, 0  \tag{14}\\
A_{21}, A_{22}, & \ldots, 0 \\
\hdashline A_{r 1}, A_{r 2}, \ldots, & A_{r r}
\end{array}\right),
$$

where $A_{i i}$ is either a positive square matrix or a zero matrix of order 1 . Then $C_{A}^{2 r-1}$ is the idempotent $\in \mathbb{S}_{A}$.

Proof. Denote - for typographical reasons - $C\left(A_{i j}\right)$ by $C_{i j}$.
We first prove that $C_{\varrho \sigma} C_{\tau \chi}=0$ for $\sigma \neq \tau$. Let $n_{i}$ be the order of $A_{i i}$. Then, if $e_{\varrho_{0} \sigma_{0}} \in C_{\varrho \sigma}$, we have $n_{1}+\ldots+n_{\sigma-1}<\sigma_{0} \leqq n_{1}+\ldots+n_{\sigma}$. If $e_{\tau_{0} \lambda_{0}} \in C_{\tau \lambda}$, we have $n_{1}+\ldots+n_{\tau-1}<\tau_{0} \leqq n_{1}+\ldots+n_{\tau}$. If $\sigma>\tau$, then $\tau_{0} \leqq n_{1}+$ $+\ldots n_{\tau} \leqq n_{1}+\ldots n_{\sigma-1}<\sigma_{0}$, hence $\sigma_{0} \neq \tau_{0}$, and $e_{\varrho_{0} \sigma_{0}} e_{\tau_{0} \lambda_{0}}=0$. If $\sigma<\tau$,
then $\sigma_{0} \leqq n_{1}+\ldots+n_{\sigma} \leqq n_{1}+\ldots+n_{\tau-1}<\tau_{0}$, hence $\sigma_{0} \neq \tau_{0}$, and $e_{\varrho_{0} \sigma_{0}} e_{\tau_{0} \lambda_{0}}=$ $=0$. Therefore the product $C_{\varrho \sigma} C_{\tau \lambda}$ can be different from zero only if it is of the form $C_{\varrho \sigma} C_{\sigma \lambda}$ (and of course $\varrho \geqq \sigma \geqq \lambda$ ).

We shall now study the behaviour of the powers of $C_{A}=\bigcup_{i>j} C_{i j}$.
The set $C_{A}^{r}$ is a union of products of the form $C_{i_{1} i_{2}} C_{j_{1} j_{2}} \ldots C_{w_{1} w_{2}}$. Such a product can be non-zero only if the subscripts follow in the order indicated in the product

$$
C_{i_{1} i_{2}} C_{i_{2} i_{3}} \ldots C_{i_{r} i_{r+1}}
$$

Suppose that this product is non-zero. Since $i_{1} \geqq i_{2} \geqq \ldots \geqq i_{r+1}$, there is necessarily a couple, say $i_{j}, i_{j+1}$, such that $i_{j}=i_{j+1}$, and each of the non-zero summands in the set $C_{A}^{r}$ is of the form

$$
C_{i_{1} i_{2}} \ldots C_{i_{j-1} i_{j}} C_{i_{j} i_{j}} C_{i_{j} i_{j+2}} \ldots C_{i_{r i} i_{+1}}
$$

But since $C_{i_{i j} i_{j}}^{2}=C_{i j j_{j}}$ (and $C_{i j, j}$ is not zero) this is the same as

$$
C_{i_{1} i_{2}} \ldots C_{i_{j-1} i_{j}} C_{i_{i j} i_{j}}^{2} C_{i j i_{j+2}} \ldots C_{i r i_{i+1}}
$$

which belongs to the set $C_{A}^{r+1}$. Hence $C_{A}^{r} \subset C_{A}^{r+1}$.
We next show that $C_{A}^{2 r} \subset C_{A}^{2 r-1}$. Each non-zero summand of $C_{A}^{2 r}$ is of the form

$$
C_{i_{1} i_{2}} \ldots C_{i_{j} i_{+1}} \ldots C_{i_{2 r} i_{2 r+1}}
$$

The non-increasing sequence of $2 r+1$ integers

$$
i_{1} \geqq i_{2} \geqq \ldots \geqq i_{j} \geqq i_{j+1} \ldots \geqq i_{2 r+1}
$$

contains at most $r$ integers different one from the other. Hence there must be at least one triple such that $i_{j}=i_{j+1}=i_{j+2}$. (For if each of the $r$ numbers appeared at most twice, the system would contain at most $2 r$ members.) Hence any non-zero summand of $C_{A}^{2 r}$ may be written in the form

$$
C_{i_{1} i_{2}} \ldots C_{i_{j-1} i_{j}} C_{i j i_{j}} C_{i_{j} i_{j}} C_{i i_{j}+3} \ldots C_{i_{2 r} i_{2 r+1}}
$$

Now since $C_{i, i j}^{2}=C_{i j i}$, this product is yet contained in $C_{A}^{2 r-1}$. Hence $C_{A}^{2 r} C$ $\subset C_{A}^{2 r-1}$.

Now the relation $C_{A}^{r} \subset C_{A}^{r+1}$ implies $C_{A}^{2 r-1} \subset C_{A}^{2 r}$. This combined with $C_{A}^{2 r} \subset C_{A}^{2 r-1}$ gives $C_{A}^{2 r-1}=C_{A}^{2 r}$, which proves our Theorem. (By the way the last result proves again that $\mathscr{F}_{A}$ is a one-point group.)

Remark 1. In general the exponent $2 r-1$ cannot be replaced by a smaller one. This is shown on the following example. Let $A$ be a matrix with

$$
C_{A}=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right) \quad \text { and } \quad C_{A}^{2}=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

Here $r=2, C_{A}^{2}$ is not an idempotent, while $C_{A}^{3}$ is the idempotent $\in \mathbb{S}_{A}$.
Remark 2. This example shows at the same time that it is in general not truo that $C_{A}^{r} \subset C_{A}^{n-1}$ as ono could expect by analogy with the proof of Theorem 8. On the other hand we cannot prove $C_{A}^{r-1} \subset C_{A}^{r}$ since, for instance, for the matrix $A$ with $C_{A}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ we have $r=2$ and $C_{A} \supsetneqq C_{A}^{2}=\{0\}$.

The next theorem gives an information concerning the semigroups in the sequence

$$
\begin{equation*}
C_{A}, C_{A}^{2}, C_{A}^{3}, \ldots, \tag{15}
\end{equation*}
$$

with $A$ given by (14).
Theorem 11. If $C_{A}^{r}$ is not a semigroup, then the sequence (15) contains a unique subsemigroup of $S_{n}$ (namely the idempotent $C_{A}^{\varrho} \in \mathbb{S}_{A}$ ). If $C_{A}^{r}$ is a semigroup, then it is at the same time the idempotent $\in \Im_{A}$ and (15) contains at most $r$ different elements.

Proof. Let $s_{0}$ be the least integer for which $C_{A}^{s_{0}}$ is a semigroup.
a) Let first $s_{0}>r$. Since $C_{A}^{r} \subset C_{A}^{r+1}$, we have $C_{A}^{r} \subset C_{A}^{r+1} \subset \ldots \subset C_{A}^{s_{0}} \ldots \subset C_{A}^{2 s_{0}}$. The semigroup property implies $C_{A}^{2 s_{0}} \mathrm{C} C_{A}^{s_{0}}$. Hence $C_{A}^{s_{0}}=C_{A}^{2 s_{0}}$ and the idempotent $\in \mathbb{S}_{A}$ is the unique semigroup contained in the sequence (15).
b) Let $s_{0} \leqq r$. Then $C_{A}^{2 s_{0}} \subset C_{A}^{\varepsilon_{0}}$ implies (multiplied by $\left.C_{A}^{r-s_{0}}\right) C_{A}^{s_{0}+r} C C_{A}^{r}$. But $C_{A}^{r} \subset C_{A}^{r+1}$ implies $C_{A}^{r} \subset C_{A}^{r+s_{0}}$. Hence $C_{A}^{s_{0}+r}=C_{A}^{r}$. Now a power of $C_{A}$ which occurs in the sequence (15) more than once is contained in $\mathfrak{W}_{A}$. Since $\mathfrak{W}_{A}$ is a one-point group, we conclude that $C_{A}^{r}$ is the idempotent $\in \mathbb{S}_{A}$. Moreover in this case the sequence (15) has at most $r$ different members.

## REFERENCES

[1] Любич Ю. И., Оценки для оптимальной детерминизации недетерминированных автономных автоматов, Сибирский матем. журнал 5 (1964), 337-355.
[2] Schwarz Š., A semigroup treatment of some theorems on non-negative matrices, Czechoslovak Math. J. 15 (1965), 212—229.

Received June 24, 1964.

> ČSAV, Kabinet matematiky
> Slovenskej akadémie vied, Bratislava

## СТЕПЕНИ НЕОТРИЦАТЕЛЬНЫХ МАТРИЦ <br> Штефан Шварц

## Резюме

В статье изучаются некоторые свойства последовательности $A, A^{2}, A^{3}, \ldots$, где $A$ - неотрицательная разложимая матрица.


[^0]:    ${ }^{(1)} \mathfrak{S}$ may be considered - of course - also as the Boolean algebra of $n \times n$ square matrices with elements 0 and 1 and the usual binary operations.

