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Matematický časopis 22 (1972), No. 1 

ON THE OSCILLATION OF SOLUTIONS TO n t h 
ORDER NONLINEAR DIFFERENTIAL EQUATIONS 

M. A. AL-KAMESSY, Bagdad 

In paper [2] the oscillation of solutions to the second-order nonlinear diffe^ 
rential equation was investigated. Here the results are generalized for a non
linear differential equation of the n-th order. 

A solution y(t) of 

(1) s^>+/(*,y(0) = o 

will be called oscillatory if for every T > 0 there exists to > T such that 
y(t0) = 0. Let sf be the class of solutions of (1) which are indefinitely conti-
nuable to the right, i. e. y est implies y(t) exists as a solution to (1) on some 
interval of the form (Ty, + oo). Equation (1) is said to be oscillatory if each 
nontrivial solution from s/ is oscillatory. If no solution in s/ is oscillatory, 
equation (1) is said to be non-oscillatory. We shall consider only the solutions 
from the class s/, of course, we shall assume t h a t s/ =?-- 0. 

In order to prove our main results, we shall use the following (unpublished) 
lemma proved by V. S e d a . 

Lemma 1. Suppose the sequence {yN(t)}> N = 1, 2, 3, . . . is defined on an 
interval (T, + oo) and is such that (a) for every m = 1, 2, 3, ...there is a natural 
number nm with n^ g n^ ^ . . . having the property that the subsequence {j/j\r(£)}> 
N = nm, nm + 1, . . . is uniformly bounded and equicontinuous in (T, T -\-
+ my and (b) there exists a constant c such that for any e > 0 there exists 
T(e) > T with the property that for each t > T(e), each N = 1, 2, . . ., \yN(t) — 
— c\ < E. Then there exists a subsequence {^m(0}» m = 1, 2, . . ., which is 
uniformly convergent in (T, -f- oo) to a continuous function. 

Proo f . On the basis of the Ascoli theorem, by mathematical induction, 
for every m — 1, 2, 3, . . . there exists a subsequence {yNum(t)}> I = 1,2, 
3> . . . , Nx,m ^ nm, and a continuous function ym(t) on (T, T + m> such 
tha t {yNlm(t)} is uniformly convergent to ym(t) on (T, T + ra> and {jtorIfm+1(0} 
is a subsequence of {VNi.Jf)}- Therefore there is a continuous function y(t) 

on (T, +oo) which is equal to ym(t) on (T, T -f ra> and for every natural m 
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there is a function yNm{t) such tha t \yNm{t) — y{t)\ < 1/ra for t e < T, T + ra>. 
Here Ni < N2 < . . . can be supposed. We shall show tha t {yNm{t)}, ra = 
= 1, 2, 3, . . . is uniformly convergent on (T, +oo) . 

L e t £ > 0 be given. There is a T{e/2) such tha t \yNmi{t) - yNJt)\ S \yNml{t) -
— C| + |C — yNmz{t)\ < £ for every t > T{e\2) and for every natural mi , ra2. 
When ra is so large tha t T + ra > T{e/2), and 1/ra < e/2, then for every m i , 
m2 ^ ra, £ e <T, T + ra> we have 

Isto-JO - s^JOl = l iW) - y(01 + W) - yNJt)\< e. 
From the Cauchy principle the uniform convergence of {yNm{t)} on (T, + G O ) 

follows. 
Now, we shall state and prove our main results . 

Theorem 1. Let n ^ 2 be an integer, f{t, x) be continuous on S = [0, +oo) X 
X (— oo, +oo) , with a{t)(l{x) ^f{t,x) <; b{t)y{x) for {t,x)eS, where {a) a{t) 
and b{t) are non-negative locally integrable functions, (6) (3{x) and y{x) are non-
decreasing, with x(i{x) > 0 and xy{x) > 0 for x -7-= 0, on (—00, +00) and for 

+00 -00 

some a > 0 f [(${u)-x du < + 0 0 , f [y(^)]_1 die < + 0 0 . jP/fcen 
a - a 

(i) /or ?i even, equation {I) is oscillatory if and only if, 

+00 +00 

(2) j" tn~1a{t)dt = \ fn-^tyU = +00: 
0" 0 

(u) for n odd, any nontrivial solution of the equation {I) is either oscillatory 
or it tends monotonically to zero as t -> 00 together with all its derivatives of order 
up to {n — 1) inclusive. 

To prove the sufficiency we shall assume that the equation (1) has a non-
oscillatory solution. Considering all possible cases which may arise, we shall 
prove tha t the existence of such a solution, except for the case when the solu
tion has the property that lim y{i){t) = 0, i = 0, 1, . . . , n — 1, and n is 

t-»+oo 

odd, contradicts the assumption (2). As to the proof of necessity, assuming 
+00 +00 v 

that either f tn~^a{t) dt < + 00 or J tn-^t) dt < + 00, we shall prove the 
0 0 

existence of a non-oscillatory solution of a certain integral equation which 
shall be shown to be a solution of equation (1) and thus contradicting the 
statement of the theorem. 

P roo f . Suppose tha t (2) holds and (1) has a non-oscillatory solution, 
then for t sufficiently large either y{t) > 0 or y{t) < 0. 

Suppose tha t y{t) > 0 for t ^ T > 0, then y^){t) < 0 on [T, +00) . This 
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shows tha t yto-Vty) is non-increasing on [T, +00) . Denote lim yM(t) by Lk 
_-*+oo 

for k = 0, 1, 2, . . . , n — 1. Since y(J) > 0, it follows tha t all Lk > 0. 
Now, the following cases might arise: 

Case 1.1. Ln-i = ... = Li = 0. 
Let T g 8i < . . . ^ ^ _ i _S . < + 00. 

Upon integrating (1) over the interval (sn-i, t) we obtain 2/<w-1> (£)—y(n-~D(sn-i) = 
t 

= — J / ( ^ , y(^))d^ ^ 0, and as £-> + 0 0 ' 

-t--v 

(3) ?/(»-!)(«„_!) = J f(u)y(u) )d_ ^ 0, therefore y<»-->(*) 
Sn-1 

is non-decreasing in [_T, +00) . Integrating (3) from <%_2 to t we get 

t +00 

2/<»-2>(j) - 2/("-2»(s»-2) =• J • J f(u,y(u))dudsn-i>. 
*n-2 Sn-1 

t 

^ J (w — sn_2)f(u, y(u))du ^ 0. 
Sn-2 

Letting t -> -f- 00, 

+00 

-2/(w-2)(*»-2) _; J (tt - a*-2)/(_; y(-)-)d« > °-
Sn-2 

Continuing this process (w — 3) times, we get 
(1.1a) If n is even then 

+00 

(4) &-'(«!) > 
(u — Si)11-* 

(n — 2) ! 
f(u,y(u))du ž 0, 

which implies that y(t) is non-decreasing in <_T, +oo>. This shows that the 
case Ln-i = ... = Li = 0, L0 = 0 cannot arise. 

Hence we shall assume that 0 < L0 ^ + 0 0 . 
Integration of (4) from T to t yields 

< +00 

У(t) г y(t)-У(T)г 
(U — S 1 ) » - 2 

(n - 2) ! 
/(и, y(u))du ds\ > 

T s, 

' (u - Г)»--

(я - 1) ! 
f(u,y(u))du. 
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Thus 

(5) 
[ (u- T)"-1 

y(i) >= a(u)(i(y(u))du > 0. 

J (»- - ) ! 
2' 

From the monotonicity of /? we have 

(ß) /%(«)) 
(« — T)" - 1 

(я - 1) ! 
a(я)/S(í/(м) d я 

- ì 

> 1. 

From (6) it follows that 

(?) \ ť»--a(í)dí < + o o , (see[2]:Th. I) , 

which is a contradiction to the assumption (2). 
(Lib) If n is odd then 

+00 
ľ 

(8) -У'(si) 
(u — «i)»-2 

(n — 2) ! 
f(u,y(u))du ž 0, 

which shows that y(0 is non-increasing in (T, + o o ) . 

Integration of (8) from T to t implies t h a t 

y(T) >= y(T) - y(t) Ł 
(u — T)*"1 

(n - 1) ! 
/(м, ?/(«) )dгt. 

Now, either L0 = 0 or 0 < i>0 < + o o . 

If L0 = 0, then the solution of (1) together with all its derivatives of the 

order up to (n — 1) included tends monotonically to zero as t -> + o o . 

Hence we shall assume that 0 < L0 < + oo. Since y(t) is non-increasing 

in [T, + o o ) , then P(y(t)) ^ 0(LO) for t ^ T and therefore 

(9) 
У(T) 

ß(L0) (я - 1) ! 
a(u)du > 0. 

From (9) the inequality (7) follows 

Case 1.2. Suppose t h a t there exists an integer k, I ^ k ^ n —- 2 such 

that Ln-i = . . . = Ln-k = 0 and 0 < Ln„k-i ^ + o o , then it follows t h a t 

Ln-k-2 — • • • = L\ = A) — + 0 0 . 
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Let T _; 8i _; ... S 8n-i _; ^ < + 0 0 . 

Using the same method of proof as in the case 1.1, we shall obtain 
(1.2a) If k is odd, then 

(10) yn~k(s\) _: 
J 

Si 

(u — sľ)
k~l 

(k - 1) Г 
/(tt,y(tt))di*2: 0 

(we shall use here 8i instead of sn-k)-

One can easily obtain 

+00 

(11) y(n~*>(*i) _; 
(Яg - S l ) * " 1 

(k - 1) ! 
f(u,y(u))du ž 0, 

(12) choose 21 sufficiently large so that y{i)(t) > 0 for all t _: T and 

t- = w — &— 1 , . . . , 0 . 

Integration of (11), from 21 to S2 implies that 

+00 
Г 

y(»-*-Щs2) Ł y<n~k-Щs2) — yto-ъ-ЩT) _ţ 
(82 ~ T)fc 

k\ 
f(u,y(u))du ^ 0. 

Again integration of the above inequality from T to 83 yields 

(13) y<я-*-2)(S з) ;> 
(sз - T)fc+1 

/(t*,y(u))dit ž 0. 

(14) 

(k + 1) ! 

Continuing this process (n — k — 3) times, we get 

(Sn-k ~ T)n~* 
+00 

У'(sn-k) Ł f(u,y(u))du _: 0. 

Sn k 

(n - 2) ! 

Once more integration of (14) from T to t shows t h a t 

У(t) Ž 
(u - T)»-i 

(n - 1) ! 
/ (« , г/(ад) )dи > 0 

and this gives, similarly as in subcase (1.1a), the inequality (7). 
(1.2b) If k is even, then 
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+00 

f (U - 83)*-! 

( l 5 ) .-y<»-*)(«3) > - ; 7 / ( t t , ! f ( « ) ) d ^ 0 . 
I (fc — I) ! 

(Instead of 8™-* here 53 is used.) 

From (15) it follows, t h a t y<»-*-«(t) is non-increasing in (T, + 0 0 ) , hence 

0 < Xn-k-l < + 0 0 . 
Integrating (15) from 52 to t, we obtain 

+00 

f ( ^ — 52) f c 

yin-k-i)(82) ^ f(u,y(u))du Z 0, and as ' J - * + 0 0 
fc ! 

$3 

+00 

(16) г/^-^-D^) _: 
(u — 82)* 

/(«,t/(г.))d«^ 0, 
k\ 

from which one can obtain the following inequality 

+«. 

r («3 — «2)fc 

(17) t / C - * - " ^ ) §: •• f(u,y(u)) du S; 0. 

J ! fc '• 
*8 ! 

I 

(18) Choose T large enough so t h a t y«>(£) > 0 for t > T and i = 0, 1, 
n — k — 2. , ,. . 

Integrating (17) from T to s3 and using yln-*-U(T) > 0, we get +00 
Г 

y{n-k-2)(Sз) ^ 
(8- - T ) * + 1 

- — — f(u, y(u)) đ î í ž O . 
(* + !)! 

This inequality leads us to the inequality (7), by the method used in proving 
subcase (1.2a). 

C a s e 1.3. Suppose that 0 < Lw_i <; + 00, then 

Lw_ 2 = . . . = Lx = L0 = + 00. 

Let T <; si ^ . . . <; 5n-i _; f < + 0 0 . 

Since ^ " - ^ ( O is non-increasing in [T, +00) , we shall consider the case 
0 < Ln-l < + GO. 

As before, we shall obtain 
+00 +00 

j/(*-i)(Sl) = Ln-i + J f(u,y(u))du ^ j f(u,y(u))du 2: 0. 
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Thus 

+00 

(19) ,y<w"1>(«i) _; j f(u,y(u))du g 0 . 
Si 

(20) Let us choose T sufficiently large so tha t yU)(t) > 0 for t __ T and i = 
= 0, 1, . . .,n — 2. 

Integrating (19) from T to 82, we shall obtain 

+CO 

y(n-V(s2) _ j (s2-T)f(ury(u))du ^ 0. 
Si 

Repeating this process (n — 3) times, we get 

+oo 

(Sn-l - T)&-2 

(21) Í / ' (*»-I) è f(u,y(u))du_0. 
(n - 2) ! 

S n - l 

Once more integration of (21) from T to £, and using y'(T) > 0, implies that 

t . i 

f (^ - :T)»-i 
y(l) Ž 

(n - 1) ! 
f(u,y(u))du> 0, 

which proves that (7) holds. 
In the case y(t) < 0 for all t __ T, we shall have y{n)(t) > 0 on [T, +oo) . 

Hence 2/(n_1)(0 is non-decreasing in [T, +oo) . Let L*k = lim y{k)(t), for fc = 

= 0, . . ., n — 1. Since y(t) is negative in [JP, + O O ) , it follows tha t all L*k __ 0. 
Now, we shall state without proof all possible cases which arise, since one 

can obtain them by the same method used in proving the previous cases. 

Case 1.4. Suppose L*n_x = . . . = L\ = 0. Let T < s± __ . . . __ sw_i <; 
__ t < + 0 0 . 

Case 1.5. Suppose that there exists an integer k, 1 __ k __ n — 2 such 
tha t L*n_x = . . . = L*n_k = 0 and - o o _ L*n_k_x < 0 then L*nik_2 = . . . = 
= L*0 = — oo. Let T t_ 5i __ . . . t_ Sn-i __ t < +oo. 

Case 1.6. Suppose that — oo __ Ln-\ < 0, then L*n_2 = ... = L[ = — oo. 
Let T __ si __ . . . __ 8w_i __ t < + o o . 

+00 

To establish the necessity, we must show that if either | tn-xb(t) dt < 
o 

+ 00 

< + o o or [ tn~la(t) dt < +oo , then equation (1) has a non-oscillatory so-



lution with the property 

lim y(t) = 1 or lim y(t) = — 1. 
t-*+oo t-++ao 

Case 1.1°. Suppose that j tnr*b(t) At < -foo. 
o 

According to the cases when n is even or odd, respectively, we have two 

subcases (1 .1 ° a ) . If n is even, then consider the following integral equation 

+00 

(22) У(t) = 1 
(s — t)n~l 

(n - 1) ! 
f(s,y(s))ds. 

A non-negative continuous solution of (22) which is bounded on some in

terval [T, + o o ) is also a solution of (1) with 

lim y(t) = 1 and lim y«>(f) = 0, i = 1, 2, . . ., n — 1 . 
t ^ + CO t->+00 

Let a positive integer T be chosen such that 

+00 

ľ( l) 
tt-1 I 

b(s) ds ^ - • 
(n - 1) ! 

We define for every positive integer N >, T 

( 1 for t > N 

(23) yNЏ) = 
+00 
Г 

1 — 
(8 — t — (1/N))*--

(f(s, yN(s)) ds for T й tй N. 

t+aiN) 
(n - 1) ! 

This formula defines yN(t) successively on the intervals 

for k = 1, . . ., N(N — T); 
k k - 1 

N — —, N 
ІV N 

hence yN(t) is defined on [T, + 0 0 ) . 

1 
For N — — < t < + 00, we have 

N ~ 

0 < 
( 8 - t - (1/N))"-1 

(я - 1) ! 
f(s, yN(s)) ds <. y(l) 

t+UIЮ 

s ~l 1 

b(s)ds < -
(я - 1) ! ~ 2 
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Hence J ^ yN(t) g ] on this interval, and that J <\ yN(t) <: 1 on the interval! 
[5P, + oo) can be shown by induction. Consequently for t ^ T, t ^•- N, 

\yN(t)\ < r(i) 

+00 

r sn~2 1 

-~-f(s,yN(s))dsѓ -. 
(n — 2) ! 2 

Further, if e > 0 be given then 

+00 
Г 

Ы(t) - i\ < 
( s - t - (l/ІV))»-i 

f(s, УN(S)) ds 

+00 
ľ 

< ľ( l) 

t+aiю 

s -l 

( n - 1 ) ! 

(n - 1) ! 

й(s) ds < є for all t ^ T(t) > T, 

N = 1, 2, . . . 

Using Lemma 1, there exists a uniformly convergent subsequence {yN(k)(t)}t=L 
on the interval [T, -foo) of the sequence {yN(t)}. Denote its limit as y(t). To 
find the integral which is satisfied by y, choose any large real number R such 
t h a t 

(24) ухт(1) - 1 -
(s - t - (l/N(&))«-i 

— n í (n- 1) 
Л8, Ущk)(s)) ds + є(&, i ř ) , 

*+(l/-V<*)) 

where 
+00 

є(k, R) = 
(s-t - (l/tf(]fc))»--

( n - 1 ) ! 
f(s, ymk)(s)) ds, 

and therefore 

(25) \e(k, R)\ < y(l) 
t-i 

(n - 1) ! 
ft(s)ds. 

Letting fc -> -f oo, it follows that 

lim inf є(k,R) < y(t)- 1 + 
&-»+oo 

R 

( « - - í )«- l 
R 

(n-- 1 ) ! 
/ (s , */(«)) ds < lim sup e(fc, B)* 

fc-»+oo 

and as 7? -> + oo in (25). 
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lim inf s[k, B) and lim sup e(k, M) approach zero and y(t) satisfies (22). 
( l . l ° b ) . If n is odd, then consider the following integral equations 

(26) y(t) = 1 + 

+ 00 

(n - 1) ! 
f(s,y(s))ds. 

If (26) has a non-negative continuous and bounded solution y(t) on [T, +oo) , 
then y(t) is also a solution of equation (1) with lim y(t) = 1 and lim yW(t) = 0 

t->+00 t->+oo 

for i = 1, 2, . . ., n — 1. 
Following the same method as in the previous subcase, ( l . l°a) , one can 

show tha t (26) has a non-oscillatory solution with the property 

lim y(t) = 1 and lim yl*)(t) = 0 for i = 1, 2, . . ., n — 1 . 
t-»+oo t-»+oo 

+oo 

Case 1.2°. Suppose that | tn~la(t) dt < + o o . According to the possibilities 
o 

when n is even or odd, respect., we have two subcases. 

( 1 . 2 ° a ) . If n is even, then consider the following integral equation 

+00 

f (S - t)"-l 
(27) y(t) = - 1 - — f(s, i/(s)) ds. 

J (n - 1) ! 
t 

( 1 . 2 ° b ) . If n is odd, then consider the following integral equation 

(28) y(t) = - 1 + 

+00 
r (s — í ) и - 1 

1 ) ! 
f(s,y(s))ds. 

By the same method of proof as in the subcase (l.l°a) one can show that 
both (28) and (27) has a non-oscillatory solution with lim y(t) = — 1 and 

<->+oo 

lim yM(t) = 0, i = 1, 2, . . ., n — 1, which is also a solution of (1). 
<t->+oo 

This completes the proof of the theorem. 

Theorem 2. Let n ^ 2 be an integer, f(t, x) be continuous on 8 = [0, + oo) X 
X ( — oo, + c o ) , with a(t)P(x) ^ f(t, x) g b(t)y(x) for (t, x) eS, where 

(a) a(t) and b(t) are non-negative locally integrable functions, 

(b) //(#) and y(x) are non-increasing with x/3(x) < 0 and xy(x) < 0 for x ^ 0, 
on (—oo, + o o ) and for some a > 0, 
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+oo ~oo 
r —dv r 

< +oo, y(v) 

—dv 
< +00. 

ß(v) 

Then 
(i) For n even, any non-trivial solution of equation (I) is either oscillatory or 

it tends monotonically to zero or to infinity as t -> + oo together with all its de
rivatives of the order up to (n — 1) included, iff, 

+oo +oo 

(2) \ t*~ib{t) dt = j t"-la(t) dt=+oo. 
0 0 

(ii) For n odd, any non-trivial solution of equation (1) is either oscillatory or 
it tends monotonically to infinity as t -> + oo together with all its derivatives of 
the order up to (n — 1) included, iff, (2) holds. 

The outline of the proof of the sufficiency part in Theorem 2 is the same as 
t ha t in Theorem 1, except for case 3 and case 6. 

One can also prove the necessity part in Theorem 2 in the same way as 
in Theorem 2. 

For this reason we shall prove case 3 and case 6 in the sufficiency part. 

P roo f . Suppose that (2) holds and (1) has a non-oscillatory solution, 
say y(t). If y(t) > 0, then y{n~1](t) is nondecreasing in [T, +oo) . If Lk = 
= lim y^(t), then Lk _: 0 for k — 0, 1, . . . , n — 1. ., • ,. j 

*-*+oo 

Now the following cases might arise: 

Case 2.1. L\ = L%= . . . = i-^-i = 0. 
Let T ^ si g . . . ^ sn_i g t < + oo. 

Case 2.2. Suppose that there exists a positive integer k, 1 :_ k ^ n — 2 
such tha t _vw_i = . . . _ = Ln^ic = 0 and 0 < Ln-u-i < + oo then Ln^-2 = 
= . . . = L0 = +oo . 

C a s e 2.3. Suppose that 0 < Ln^\ S + oo, then Ln-2 =F • • • = L0 = +oo'. 
Let T ^ 5i ^ . . . ^ sn-i ^ t < + o o . 

If Ivw_i = + o o , then there is nothing to prove. Therefore, we shall assume 
tha t 0 < Ln-i < +oo . 

Choose T large enough so that yW(tj > 0 for T <> t < +oo , i = 0, 1, . . ., 
n — 1. 

Hence there exists a positive number Co such that 

y<»-D(*i) 2; C0. 
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Integrating the above inequality from T to 82 gives 

y<»-»(*a) ^ C0(S2-T). 

Continuing this process (n — 2) times, yields 

(t - T)"-i 
y{t) = Co~< 7TT ' 

(n - 1) ! 

After multiplying both sides of the above inequality by IV-i, it becomes 
C0(t - T)»-i 

Ln-iy(t) H — — — Ln_i _% 0 . 
(n — 1) ! 

Integration of (1) from T to t implies tha t 

t 

y(n-l)(t) ^ - ff{u,y{u))&U> 0 . 
T 

Since Ln_x __ i/n~l)(t) > 0 for all t __ T, then 

- C o \{U-T)«-L 
y(t) ^ ~f(u,y(u))du>0. 

Ijn-i J (n — 1) ! 

Co 
Lot C* = > 0, then the above inequality becomes 

Ln-i 

У(t) г - O* 7T-f(u> УІU)) dм > 0, 
(n — 1) ! 

г 

which yields 
+0O 

I tn~lb(t) dt < -foo. This is a contradiction to (2). 

In the case when y(t) < 0 for t _% T > 0, then y^n~l)(t) is non-increasing 

in [_\ + o o ) . Let j _ * = limy<*>(«), then all Zr* ^ 0 for i = 0, 1, . . . , n — 1. 
t->+oo 

Now the following cases might arise: 

C a s e 2.4. L*n_x = ... = L*0 = 0. 

Let T _i 8i g . . . __ sn-i __ t < + oo. 

Case 2.5. Suppose t h a t there exists a positive integer k, \ __ k t_ 7i — 2 

such t h a t - o o ^ ^I-it-i < 0, then L*n_k_2 =...= IJ*0 = -co. 

Let T ^ 8i ^ . . . g 8w_i g £ < + o o . 
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Case 2.6. Suppose that — oo __ L*n_± < 0, then L*n_2 = . . . = L*0 = — oo. 

Let T __ 8i __ . . . __ 8w-i S * < + o o . 

If Ln_i = — oo, then there is nothing to prove. Hence we shall assume t h a t 

— oo < L 0 < oo. 

By a suitable choice of T, we can make yM(t) < 0, for T __ t < + o o and 

i = 0, 1, . . ., n — 1. Also we can find a real number C0 < 0 such t h a t 

^ - D ( 8 i ) __ C0. 

Integrating the above inequality (n — 1) times yields 

C0(t - T)"-i 
y{t) = ~~i—\vr-

(n — 1) ! 

Following the procedure in case 2.3, one can obtain the following inequality 

y(t) __ - C* 

yields 

(u - T ) " - 1 Co 
f(u, y(u)) du < 0, where C* = > 0, which 

(n - 1) ! Ln_i 

\ ,tn'^a(t)dt < +oo 

which contradicts assumption (2). 
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