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Matematický časopis 22 (1972), No. 1 

T H E L A T T I C E O F A L L S Y S T E M S O F r - I D E A L S 
I N A S E T 

J U D I T A LIHOVA, Kosice 

Several authors investigated the partially ordered system IT consisting 
of all topologies (or of all topologies with prescribed properties) t h a t can 
be defined on a given set A. E. g. H. G a i f m a n [2] studied the lattice of 
all topologies definable on an arbitrary set A. A. K. S t e i n e r [5] proved t h a t 
this lattice is complemented and P. S. S c h n a r e [4] estimated the cardinality 
of the set of complements. E. S. W o l k [6] studied the system of all topologies r 
defined on a partially ordered set (A; < ) such t h a t r is consistent in a certain 
sense with the given partial ordering on A. 

In the present paper we deal with the system of all generalized topologies 
on a set A satisfying the following ,,finiteness condition": the closure Zr 

of any set Z c A is the set-theoretical union of all closures Xr of finite subsets 
X of the set Z. The study of such topologies was suggested by paper [1] of 
L. F u c h s concerning r-ideals in universal algebras. Our notations are as 
follows. The symbols p ) , ( J and f\, V denote the set-theoretical and lattice 
operations, respectively; A a B means t h a t A is a subset of B (equality not 
being excluded). If Sf is a system of sets, then by f]Sf and (JSP the set 
p | X and ( J X, respectively, are meant. 8P(X), where X i s a non-empty set, 
x& xese 
denotes the system of all non-empty subsets of the set X, .yf(X) the system 
of all finite non-empty subsets of X. 

Let us have an arbitrary non-empty set A and a mapping assigning to 
any non-empty finite subset X of A a subset Xr of A, such t h a t the following 
conditions are satisfied: 

l ° I c Xr; 

2 ° I c Yr=> Xr c Yr. 

Let us extend the domain of this mapping and for infinite subsets Z of the 
set A put 

3° Z r = ( J I r . where X runs over all non-empty finite subsets of Z. The 
range of this mapping is called a system of r-ideals in A. 
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In the above mentioned paper by L. Fuchs and in papers [3], [7] some 
results concerning the relations between a system of r-ideals in a universal 
algebra (A;F) and algebraic operations in (A;F) were derived. 

Let a system of r-ideals in A be given. Let us denote Jf r (X) = {Yr : Y G 
e / (X)} and let 0r(X) have a similar meaning. If we use this notation, the 
given system of r-ideals in A is in fact the system 0r(A) and the axiom 3° 
can be rewritten as follows: Zr = ( J Cfcr(Z). 

First let us introduce some simple consequences following from the defi­
nition of the system of r-ideals in A. 

1. Equality Zr = ( J Xr(Z) holds for each set ZG0(A). 

P r o o f . Obviously it is sufficient to prove tha t this equality holds for 
ZeX*(A). In this case Zr eJTr(Z), thereforeZr a ( J jfr(Z) and the inverse 
inclusion is evident. 

2. The conditions 1°, 2° are fulfilled also in the case when any of the sets X, Y 
is infinite. 

P r o o f . Let X be an infinite set. From the relation U Jf(X) a ( J Xr(X) 
it follows tha t X cz Xr. 

Let X eJf(A), Y be an infinite subset of A and let X cz Yr. Let us suppose 
tha t X = {xi, . ..9xn}9 xi e V\, ViGJf(Y). Then X cz Vr, where V = 
= V1 u . . . u Vn and hence Xr cz Yr follows. 

Let X be an infinite and Y an arbitrary set from the system 0(A) and let 
X cz Yr. Then according to the preceding results for each set T G.ff(X) 
Tr a Yr holds, hence Xr cz Yr. 

As a consequence of this statement we obtain tha t for any set X G 0(A) 
Xrr = Xr holds. 

Further we shall introduce a partial ordering into the set $(A) of all systems 
of r-ideals in A and we shall prove that with regard to this partial ordering 
$(A) is a complete lattice. 

Let A be any non-empty set. Let & (A) be the set of all systems of r-ideals 
in A. For two systems 0Tl(A), 0r2(A) of r-ideals in A let us put 0Tl(A) < 
^ 0r%(A) iff for each set X G 0(A) we have XTl cz Xr2. The relation < defined 
in this way is obviously a relation of partial ordering. 

The following statement holds true. 

3. Theorem. With regard to the partial ordering defined above, S(A) is a lattice 
with the least and the greatest element. 

P r o o f . Let 0ri(A), 0U(A) be arbitrary systems of r-ideals in A. The 
system {Xr : Xr = Xri O Xr„ X G 0(A)} is obviously a system of r-ideals 
in A and it is the greatest lower bound of the elements 0fl(A), 0rt(A) of 
the set <f(A). 
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Let A be an arbitrary set of the S3rstem 0(A). For every positive integer n 
let us define the sets Xn, Xn by induction as follows: 

1. Ai = A r i r 2 , X1 = A r 2 r i ; 

2. if Ave have Xk, Xk(k ^ I), then Xk+i = (Xk)rir„ Xk+1 = (X'k)rtfl. 
oo oo 

U Xn = U ^C> since for every positive integer k we have A*; c: A [ + 1 , 
?i = l n = l 

oo 

A .̂cz Xk+i. The system {Ar : A r = U Xn, X e 0(A)} is a system of r-ideals 
n=i 

in A. The conditions 1°, 2° from the definition of the system of r-ideals ob­
viously hold. According to 1°, 2°, we have U ^r(Z) c: Zr for any infinite 

oo 

set Z from 0(A). Conversely, let a eZr = \J Zn. Then there exists a positive 
71=1 

integer n such that a eZn. By induction on n one proves that a e Xn for some 
set A eC^(Z). This system of r-ideals is the least upper bound of the elements 
0Tl(A), 0r*(A) of S(A). The least and the greatest element of the lattice 
S(A) is the system {Aro : Aro = X X e 0(A)} and the system {Ari : A r i = 
= A, X e 0(A)} of r-ideals in A, respectively. 

R e m a r k . If 0ri(A), 0n(A) are systems of r-ideals in A, the system {Ar : 
A r = A f l u A f2, A e 0(A)} need not be in general a system of r-ideals 
in A (differing from the system {Ar : A r = A r i n A r2 , A e0(A)}). To show 
this let A be the set of all integers, 0ri(A) the system of r-ideals in A defined 
by the condition tha t Xri(X e 0(A)) is the least subgroup of the additive 
group of all integers containing A. Further let 0r2(A) be the system of r-ideals 
in A so defined that Af2 is the set of all such elements x of A, for which there 
exists such a pair xi, x% of elements of A tha t xi ^ x ^ xi. Let A = {3}, 
Y = {2,4}. A c Yri U Yr2 holds, but not A r . U xr c YTl u Yri. 

4. Theorem. Let A be an arbitrary non-empty set. The set S(A) of all systems 
of r-ideals in A is a complete lattice. 

P r o o f . According to Theorem 3 6°(A) is a partially ordered set, bounded 
below. I t is sufficient to show that an arbitrary non-empty subset {0n(A)}XeA 

of the set S(A) has the least upper bound in S(A). 
To each set X e 0(A) let us join the set A r == U &~(X)> w h e r e :T(X) = 

= {Xtl . . . u : {tt}U eX({rK}leA)}. Then { A r : A r = U #*{X)9 X e 0(A)} is 
a system of r-ideals in A. Let us take an arbitrary set A e 0(A). For each 
X e A we have A c: ArA and since Xn e 0~(X), we have A cz A r . Let A e 
eJf(A), Y e 0(A), X cz Yr, X = {xx, . . . , xk}. Then for each i (i = 1, . . ., k) 
there exists a set {t\, . . . , tn} eX^({n}XeA), such tha t x\ e Yt\..Jni. Evi­
dently for each i the following holds Yt\...tni cz Yt\...t\it\...tl2...t\...t

1
n]k hence 

A c : Yt\...t\k. If {h, ...,tn} is an arbitrary set from ^r({r^XeA), then 

•52 



Xt_...t„ cz Yt\..4ktv..tn. Since Yt\...tn cz Yr, we have Xt_ . . . in c Yr and from 
this Ave get ( J LT(X) CZ Yr, i. e. Xr cz 7 r . 

Let Z be an arbitrary infinite set from 3P(A). Evidently \J^Tr(Z) cz Zr. 
Now we shall prove the inverse inclusion. Let aeZr. Then aeZtl . . . tn 

({h, • • •> tn} €^({rx}te/_))- 1^ i s sufficient to prove tha t there exists such a set 
X eX'(Z) and {v±9 . . ., up} eJT({r^}Ae/1) tha t a e XVl . . . Vp. We are going 
to prove this by induction on n. 

Let n = 1. Then a e Z a (A e /l). Since Z n = \J tfn(Z) holds, there exists 
such a set X e Jf(Z) tha t a E Xn. 

Now let us suppose that if aeZtl . . . tkl ({ti}\zl e^({r*)teA))> then there 
exists such a set X GJf(Z) and {<$_, . . ., 8;} ^C/T({rj)le/y) tha t a e XSl . . . Si. 
Let fl6^...v If tk = r ; o then from Ztl...tk__rA =- \J ^rx (Ztl ... tki) 
we obtain aeSn, where S E JT(Ztl . .. ty _). Let $ = { ? / i , ...,ym}. Since 

2/z G ^ . . . * (i = I, . . ., ra), we have yt E Z*» ? , where X* E -3f (Z), 
1 &i 

m 
{s[< . . . s]l}eX'({rA}teA). Let us take X = \J XK Evidently XzX(Z), 

i = l 

S cz X?}... 8}x if... -sf2... 4
/?... *£. Since a e #fj., then also a e Xs\... sfm rx. The 

system {Xr : Xr = \J ' V ( X ) , Xe0>(A)} of r-ideals in A is the 
supremum of the set {0>rA(A)}^A. Evidently 0>rA(A) ^ 0>r(A) holds. Let 
further £Pr'(A) be such a system of r-ideals in A that 0>'r9(A) ^ &rx(A) for 
each A E A From this X t l . . . tn cz Xtl . . . _n__r> cz Xtl . . . tn__r'r' = 
= Xtl .. . tn__r cz . . . cz Xtir- cz Xrr = Xr\{t_, . . ., tn} eJf({r,},eA), X E ^ ( 4 ) ) 
follows. Thus ive have \JF(X) c X / , i. e. X r - Xr'. Hence holds ^ r ( .4) < 
< ^ r - (^ ) holds. 

The question arises, what the infimum of the subset {&rx(A)}leA of S(A) 
in S(A) is. According to the considerations in section 3 we could suppose 
that the system {Xr:Xr= f] Xr^ X e 0>(A)} will be the infimum. This 

conception is wrong, the mentioned system need not even be a system of 
r-ideals in A. To show it let A\ = {an}n_^_ be an arbitrary infinite countable 
set and let us put A = A\ \J {a}, where a<£ A±. 'For any positive integer n 
let us put Xrn = X if an £ X and Xfn = X \J {a} if ane X. Evidently {Xrn : 
: X E 8P(A)} is a system of r-ideals in A. Let us put Xr = f\ Xrn (N is the 

neN 

set of all positive integers) for every set X e£P(A). Then (A_)r =£ \J Cfcr(A\)h 
The construction of the infimum is given in the following statement. 

5. Let A be an arbitrary non-empty set, let {^rA(A)}XeA be an arbitrary set 
of systems of r-ideals in A. For any set Z e 0>(A) let us put Zr = \J(\~\ Xr?). 

XeX(Z) teA 

Then {Zr :Z e0>(A)} is the infimum of the set {^rx(A)}AeA in the lattice S(A). 

Proof , a) 0>r(A) is a system of r-ideals in A. Thus let Z e0>(A). If X e 
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^^(Z), then X <z f] XrjL, hence Z c Zr. Let Z c C/r {Z, Ue0>{A)). Let 
Ae.4 

us take a e Z r . Then there exists such a set XG-yT(Z) that a e p | X r A . Let 
Aezl 

-X" == {a:i, . . . , xn}. For each i e {I, 2, . . ., n} there exists I7*' G J f (?7) such 

tha t ^ e P | T*|. Let us denote T = \J T*. Evidently T eX{U), X <= TTk for 
Ae/l t = l 

each X e A. From this we obtain XTx a TTA for each X e A. Then a e p | Ttx 
9 XeA 

holds and hence a e Ur. The equality Zr = \j C^r(Z) for an arbitrary infinite 
set Z e £P(A) is true according to the definition of the set Zr, since evidently 
for each set XeCf(A) there is Xr = f] X T A . 

XeA 

b) 0»r{A) is the lower bound of the set {^T>(A)}leA in the lattice £(A). The 
proof is clear. 

c) 0*r(A) is the greatest lower bound of the set {&rk(A)}XeA in the lattice 
S(A). Let 0>ri{A) be a system of r-ideals in A such tha t 0>ri(A) ^ &Tx{A) 
for each XeA. Let aeZn (Ze0>(A)). Then there exists a set XeX(Z) 
such tha t a e Xri. Then a e XTx holds for each index XeA, hence a e p | XTx 

teA 

^ind from this we get aeZr. Hence &*ri(A) < &r(A). 
In paper [7] the lattice S(A) of all systems of r-ideals in the set containing 

three elements is constructed. There is a table there, in which there are all 
systems of r-ideals in A (there are 45 of them) given and the diagram of the 
lattice S(A). 

We need the following two simple lemmas . 
6. Let A\, A2 be arbitrary non-empty disjoint sets. Let &ri(A\) and 3PU(A2) 

be systems of r-ideals in A\ and in A2, respectively. Then it is possible to derive 
from SPn(A\) and £Pn(A2) a system of r-ideals in A = A\ \j A2 as follows: 
For Xe&(A) let us put: 

l.Xr = Xri if Xe0>(A\); 
2.Xr = Xu if XeSP(A2y, 
3. Xr = (Xn A\)ri u (X n A2)r2 if X n A\ 7^ 0 and simultaneously X n 

n A2 =?-- 0. This statement is evident. 

7. Definition. Following the notations introduced in the preceding lemma we 
shall say that the system &r(A) of r-ideals is induced by the systems 0*fl(A\), 
^rz(A2) of r-ideals in the set A = A\\j A2 and we shall denote it comp {£Pri(A\), 
0>n(A2)}. 

8. Let A\, A2 be arbitrary disjoint sets. Let 0>r(A\) be an arbitrary fixed system 
of r-ideals in A\, let £(A2) = {0>ri(A2)}ieI. Then the set {comp {3Pr(A\), 
&rt(A2)}}ieI is a sublattice of the lattice S(A) of all systems of r-ideals in A = 
= A\ u A2 isomorphic with the lattice <f?(A2). 
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P r o o f . Let us take 0>Hl{A2), 0>rit{A2) eS(A2), Xe0>{A). Distinguishing 
three cases: I c i i , X a A2, X n A\ 7-- 0 & X n A2 =£ 0 one can easily 
show tha t the equalities 

comp {0r(Ai), 0Hl(A2)} A comp {0r{Ai), 0rk(A2)} = 
= comp {0>r{A{)9 0ril(A2) A 0>n^(A2)} 

comp {0>r{Ai)9 0>rix{A2)} V comp {0>r{Ax)9 0>rit{A2)} = 
= comp { ^ ( - 4 L ) , ^ t ( - 4 2 ) V 0ri2(A2)} 

are valid. 
The isomorphism is given by the mapping: 

0>n(A2) -> comp {^(^x) , 0>n{A2)}. 
We are going to examine whether the lattice S(A) is modular and comple­

mented. 

9. Theorem. If the set A contains at least three elements, then lattice S(A) 
is not modular. 

P r o o f . First of all let us suppose that the set A contains just three elements 
a, b, c. Let us consider the systems of r-ideals in A == {a, b, c} described in 
the following table. 

Гí r-z rз r\ rъ 

{«} {«} {a} {«} {«} W 
{b} {b,c} {Ь,c} {b,c} {a, b, c} {a, b, c} 

{c} W Ы {Ъ,c} {a, b, c} {a,c} 
{a,Ъ} {a, Ъ, c} {a, b, c} {a, Ъ, c} {a, b, c} {a, Ъ, c} 
{b,c} {Ъ,c} {b,c} {Ъ,c} {a, b, c} • {a, b, c} 

{a,c} {a, c} {a, b, c} {a, b, c} {a, Ъ, c} {a,c} 
{a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, Ъ, c} 

The following holds 0ri(A) < 0r2(A) < 0n(A) < 0>U{A), 0>ri{A) < 
< 0r5(A) < 0U(A). The element 0Th{A) of the lattice S(A) is incomparable 
with the elements 0>fM{A), 0r*(A) of the lattice S(A). Further evidently 
0>r§{A) A &r%{A) = 0rXA), 0n(A) V 0>r.{A) = 0>U{A), hence 0>fl{A), • - • 
^r5(A) form the pentagonal non-modular sublattice of the lattice $(A). 

Now let the set A contains more than three elements. Let us put A2 = {a, b, c}, 
where a, b, c are arbitrary different fixed elements of the set A and A\ = A — 
— A2. Let 0r(Ai) be an arbitrary fixed system of r-ideals in A\, {0n(A2)}m 

the set of all systems of r-ideals in A2 = {a, 6, c}. According to the preceding 
part of the proof and Lemma 8, there exist indexes i i , . . ., i$e I such t h a t 
comp {0r(A{), 0rii(A2)}, . . . , comp {0r(Ai), 0rJA2)} form the pentagonal 
non-modular sublattice of the lattice S(A). 

10. Theorem. Let A be an arbitrary set which contains at least three elements. 

Then the lattice S(A) is not complemented. 
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Proof . Let a be an arbitrary fixed element of the set A. For X e 0(A) 
let us put X f l = A if a e X", X ^ {a}, X r , = A — {a} if a £ X and {&}n = {a}. 
We shall prove tha t the element 0Tl(A) of the lattice $(A) has no complement 
in <?(A). Let us suppose that there exists a system 0rz(A) of r-ideals in A such 
tha t 0ri(A) A 0rXA) is the least element of the lattice S(A). Let us take 
X e 0(A). Xri n Xu = X holds. If a e X, X -^ {a}, then we must have 
X r2 = X. Let X = {a}. \ibeA, b =£•- a, we have {a, 6}r2 = {a, b}. There­
fore {a,}r2 c {a,b}. The last inclusion holds for any element b(e A) different 
from a. Since A contains at least three elements, {a}f2 = {a}. From the equali­
ties {a}ri = {a}r2 = {a} it follows that ^r i(^4) V ^r*(A) is not the greatest 
element of the lattice S(A). Namely the mapping belonging to this system 
of r-ideals in A assigns to the set {a} the same set {a} (cf. section 3). 

The following question seems to be natural : do there exist elements 0Tl(A) 
and 0r,(A) in the set S(A) such tha t 0Tl(A) is a complement of 0r%(A)l 
The answer is positive. To show this let A be an arbitrary set which contains 
at least three elements. Let a be an arbitrary element of the set A. Then the 
system {Xri : X n = X \j {a}, X e 0(A)} of r-ideals in A is evidently a comple­
ment of the system {Xr., : Xr2 = A if a e X, Xf2 = A — {a} if a $ X, X e 
e0(A)} of r-ideals in A in the lattice S(A). 

11. It is easy to verify that if the set A contains one or two elements, the lattice 
S(A) of all systems of r-ideals in A is modular and uniquely complemented. 

In the following part of the present paper we shall investigate whether 
the lattice S(A) has atoms, dual atoms and we shall prove tha t the lattice 
$(A) is dually!- atomic, when A contains at least two elements. 

12. Let A be an arbitrary non-empty set. Let 0r(A) be a system of r-ideals in A. 
If there exists such a set X° e 0(A) that A — X° contains at least hvo elements 
and X° y^ X ° , then 0r(A) is not an atom in the lattice S(A) of all systems of 
r-ideals in A. 

Proo f . Let us take an arbitrary set Xe0(A). If 1 c X°, let us p u t 
X f l = X and if X £ X°, let us put X n = X r . Evidently {Xri : X e 0(A)} 
is a system of r-ideals in A and 0ri(A) < 0r(A) . 0Tl(A) is different from 
the least element of the lattice S(A), because there exists such a set Y e 0(A) 
tha t X° J Y, a $ Y, where a is some element of the set X r — X°. Then 
aeYri- Y. 

From this lemma we obtain as an immediate consequence the following 
statement. 

13. / / 0r(A) is an atom in the lattice S(A), then for each set X e 0(A) such 
that A — X contains at least two elements X = X r holds true. 
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14. Theorem. If the set A is infinite, then the lattice S\A) has no atom. If 
the set A has n elements, where n > 2, then the lattice S(A) has n atoms. 

Proo f . Let us suppose first of all that the set A is infinite and tha t the 
system 0*r(A) of r-ideals in A is an atom in the lattice S(A). According to 
the statement 13 there exists such an element a of the set A tha t (A — {a})r = 
= A. Let us denote Z = A — {a} . Z is an infinite set, hence Zr — \j tfr(Z) 
holds. On the other hand for each set X e C/T(Z) we have Xr = X (again 
according to the statement 13), hence \j C/fr(Z) = Z ^ Zr, which is a contra­
diction. 

Let the set A contains n elements (n ^ 2). Let us take an arbitrary element 
a of the set A and let us put (A — {a})ra = A, Xra = X if X ^ A — {a}. 
I t can be readily seen that the system {XTa : X e 0>(A)} is a system of r-ideals 
in A and an atom in the lattice S(A). If a will run over the whole set A, we 
shall obtain n different atoms and those are already all atoms of the lattice 
S{A). 

15. Theorem. Let A be an arbitrary set which contains at least two elements. 
Let us denote by ~A the cardinality of the set A. The lattice S(A) of all systems 
of r-ideals in A has 2A_2 dual atoms. 

P r o o f . Let 1 ° be an arbitrary non-empty fixed proper subset of the set A. 
Let X e 0>(A). Let us put Xr = A - X° if X n X° = 0 and Xr = A if 
X n X° ^ 0. I t is easy to show that {Xr : X e 0>(A)} is a system of r-ideals 
in A. Evidently 0>

r(A) is not the greatest element of the lattice S(A). Let 
0>r\A) be an arbitrary system of r-ideals in A such tha t 0*ri(A) > 0*r(A). 
Then there exists a set X1 e 0(A) such that X\ I X\. Obviously A* n 1 ° = 0, 
X] = A — X°. Therefore there exists an element x° e X° such tha t x° e A*x. 
Since {x°}r cz {x°}ri and {x°}r = A, the following holds X\ = A. Let Y be an 
arbitrary set from the system 0>(A) such that Yr = A — X°. From the 
relation X1 c Yri it follows that Yri = A, hence 0>

r\A) is the greatest ele­
ment of the lattice S(A). In this way it is proved that 0*r(A) is a dual atom 
in the lattice S(A). Evidently for different non-empty proper subsets X° 
of the set A we obtain different systems of r-ideals in A. Let 0*ri(A) be an. 
element of the lattice S(A) different from the greatest. Then there exists 
a set X G 0*(A) such tha t Xri J A. Let us put X° = A — XTl and let us take 
the corresponding dual atom of the lattice S(A), i. e. the system of r-ideals 

in A constructed by the method described at the beginning of the proof. 
Let. Ye0>(A). If 1 ° n Y ^ 0, then Yr = A and evidently Yri c Yr. 
Let Aro nY = 0. Then Y c A - X° and since A - 1 ° = Xrii Yri cz 
cz A r i = A — X° = Yr. In this way it is proved that 0>

fl(A) < 0>r(A). 
Therefore the lattice S(A) has as many dual atoms as there are non-empty 
proper subsets in the set A, i. e. 2A — 2. 
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16. Definition. A lattice L with the greatest element 1 is called dually atomic 
iff each its element x -7-= 1 is the meet of some dual atoms of the lattice L. 

17. Theorem. The lattice $(A) of all systems of r-ideals in A is dually atomic. 
Proo f . Let &r(A) be a given arbitrary system of r-ideals in A different 

from the greatest. Let us denote 2P'(A) the system consisting of those sets X 
of the system £P(A), for which Xr =£ A. Further let 3?fx(A) be a dual atom of 
the lattice S(A) such tha t X° = A - Xr, Xe0>'(A) (cf. Theorem 15), i. e. 
for the set Ye&(A) YTx = Xr if 7 c I r and Yrx = A if Y £ Xr. Let 
us denote &U(A) = A &fx(A). 

Xe&'(A) 

Let Y e X(A) n 0>'(A). Then (cf. statement 5) Yfl = f | Yr* = f l Yrx = 
Xe&'(A) " Xe&'(A) 

XrO Y 
= p | Xr. Evidently Yr <z f | Xr holds and since Ye&'(A), Yr => 7 , the 

XeP'(A) XeP'(A) 
XrDY XrDY 

inverse inclusion is valid too. Therefore YTl = Yr. 
Let YGJT(A), Yr = A. If Xe&'(A), then Y ĉ  Xr (because otherwise 

it would have to be Yr c Xr), hence Yrx = A. Then Yri = A and hence 
again Yri = Yr. 

Let Z be an infinite set from the system 8P(A). Then the following holds 
.Zri = U JtTri(Z) = U ^r(Z) =Zr. 

Therefore the equality 0>Tx(A) = SPr(A) is true. 
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