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THE LATTICE OF ALL SYSTEMS OF r-IDEALS
IN A SET

JUDITA LIHOVA, Kogice

Several authors investigated the partially ordered system .7 consisting
of all topologies (or of all topologies with prescribed properties) that can
be defined on a given set A. E. g. H. Gaifman [2] studied the lattice of
all topologies definable on an arbitrary set A. A. K. Steiner [5] proved that
this lattice is complemented and P. S. Schnare [4] estimated the cardinality
of the set of complements. E. S: Wolk [6] studied the system of all topologies t
defined on a partially ordered set (4; <) such that 7 is consistent in a certain
sense with the given partial ordering on 4.

In the present paper we deal with the system of all generalized topologies
on a set A satisfying the following ,,finiteness condition‘: the closure Z,
of any set Z < A is the set-theoretical union of all closures X, of finite subsets
X of the set Z. The study of such topologies was suggested by paper [1] of
L. Fuchs concerning r-ideals in universal algebras. Our notations are as
follows. The symbols [, U and A, V denote the set-theoretical and lattice
operations, respectively; 4 — B means that 4 is a subset of B (equality not
being excluded). If & is a system of sets, then by (< and |J< the set

) X and | X, respectively, are meant. #(X), where X is a non-empty set,
Xes Xes
denotes the system of all non-empty subsets of the set X, #°(X) the system

of all finite non-empty subsets of X.

Let us have an arbitrary non-empty set 4 and a mapping assigning to
any non-empty finite subset X of 4 a subset X, of 4, such that the following
conditions are satisfied:

1° X c X,;
2°XC YrerC Yr.

Let us extend the domain of this mapping and for infinite subsets Z of the
set 4 put

3 Z, = U X,, where X runs over all non-empty finite subsets of Z. The
range of this mapping is called a system of r-ideals in 4.
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In the above mentioned paper by L. Fuchs and in papers [3], [7] some
results concerning the relations between a system of r-ideals in a universal
algebra (A;F) and algebraic operations in (4;F) were derived.

Let a system of r-ideals in 4 be given. Let us denote /¢, (X) = {Y,: Y €
eA (X)} and let #(X) have a similar meaning. If we use this notation, the
given system of r-ideals in A is in fact the system £, (4) and the axiom 3°
can be rewritten as follows: Z, = |J A +(Z).

First let us introduce some simple consequences following from the defi-
nition of the system of r-ideals in 4.

1. Equality Z, = |J A '+(Z) holds for each set Z e P(A).

Proof. Obviously it is sufficient to prove that this equality holds for
Z e (A). In this case Z, € (Z), therefore Z, < U A r(Z) and the inverse
inclusion is evident.

2. The conditions 1°, 2° are fulfilled also in the case when any of the sets X, Y
is infinite.

Proof. Let X be an infinite set. From the relation |J 2" (X) = | A +(X)
it follows that X < X,.

Let X €#°(A), Y be an infinite subset of 4 and let X < Y,. Let us suppose
that X = {x1, ..., as}, @i € Vi, Viex (Y). Then X < V,, where V =
=Viy...u V? and hence X, c Y, follows.

Let X be an infinite and Y an arbitrary set from the system 2(4) and let.
X < Y,. Then according to the preceding results for each set T €.7(X)
T, < Y, holds, hence X, c Y,. .

As a consequence of this statement we obtain that for any set X € 2(4)
X, = X, holds.

Further we shall introduce a partial ordering into the set &(4) of all systems
of r-ideals in A and we shall prove that with regard to this partial ordering
8(4) is a complete lattice.

Let A be any non-empty set. Let £(4) be the set of all systems of r-ideals
in 4. For two systems 2 (A4), Pr(4) of r-ideals in A let us put Zp(4) <
< P,(A) iff for each set X € #(A4) we have X,, < X,,. The relation < defined
in this way is obviously a relation of partial ordering.

The following statement holds true.

3. Theorem. With regard to the partial ordering defined above, &(4) is a lattice
with the least and the grealest element.

Proof. Let #,(A), #,(A4) be arbitrary systems of r-ideals in 4. The
system {X,:X, = X, N X,,, XeP(4)} is obviously a system of r-ideals
in A and it is the ‘greatest lower bound of the elements % (4), Z,(4) of
the set &(A).

t
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Let X be an arbitrary set of the system £(A4). For every positive integer n
let us define the sets X,, X, by induction as follows:

> > ’ 'a
1. X; = Arlrg- Xl = x\rgn;

. ' - -
2.if we have Xi, Xy(k > 1), then Xin = (Xi)rire X1 = (Xp)rur
ee] oo
> ! . oy . ’
U X» = U X, since for every positive integer k we have Xi < X;,,,

n=1 n=1
o

X ;& Xki1. The system {X,: X, = |J Xu, X € Z(4)} is a system of r-ideals
n=1
in 4. The conditions 1°, 2° from the definition of the system of r-ideals ob-

viously hold. According to 1°, 2°, we have |J #'+(Z) < Z, for any infinite
set Z from Z(A). Conversely, let @ € Z, = |J Z». Then there exists a positive

n=1
integer n such that a € Z,. By induction on » one proves that a € X, for some

set X € 4(Z). This system of r-ideals is the least upper bound of the elements
Pr(A), Pr(4) of £(4). The least and the greatest element of the lattice
&(A) is the system {X,,: X,, = X, X € 2(4)} and the system {X,, : X, —
= A, XeP(4)} of r-ideals in A4, respectively.

Remark. If #,(4), #,.(4) are systems of r-ideals in A4, the system {X,:
X, =X,,uX,,, XeP(A)} need not be in general a system of r-ideals
in A (differing from the system {X,: X, = X, N X,,, X € #(4)}). To show
this let 4 be the set of all integers, %, (A) the system of r-ideals in A defined
by the condition that X, (X € #(4)) is the least subgroup of the additive
group of all integers containing X. Further let 2, (A4) be the system of r-ideals
in A so defined that X,, is the set of all such elements x of 4, for which there
exists such a pair x;, s of elements of X that x; < « < 2. Let X = {3},
Y={24} X< Y, Y. holds, but not X, |J Xy < ¥, U Y.

4. Theorem. Let A be an arbitrary non-empty set. The set &(A) of all systems
of r-ideals tn A s a complete lattice.

Proof. According to Theorem 3 &(4) is a partially ordered set, bounded
below. It is sufficient to show that an arbitrary non-empty subset {Zr,(4)}:c4
of the set &(4) has the least upper bound in &(4).

To each set X € 2(4) let us join the set X, = |J 7 (X), where 7 (X) =
={Xs, ... {tifie1 €0 ({ra}eq)}- Then {X,: X, = | 7 (X), X e P(A)} is
a system of r-ideals in A. Let us take an arbitrary set X € #(4). For each
Ae A we have X < X,, and since X,, € 7 (X), we have X c X,. Let X €
eX(A), YePA),X Y, X={x, ..., 2} Then for eachs ¢t =1, ..., k)
there exists a set {fi, ..., &} €A ({ri}sq), such that ;e Yi.d . BEvi-
dently for each ¢ the following holds Yi..i < Y. .k 2.2 .4 & hence
XcYi.d. If {t,...,t,} is an arbitrary set from A '({ri};,c4), then

ng *
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Xeyooty < Y b 4., Since Yid..,, < Yy, we have Xy ... < Y, and from
this we get U 7 o Yy, i e X, c ¥,

Let Z be an arbitrary infinite set from 2(4). Evidently {J o +(2) < Z,.
Now we shall prove the inverse inclusion. Let a€Z,. Then a€Z;, ...,
(t1, - -, ta} € ({r2}1e4))- It is sufficient to prove that there exists such a set
Xex(Z) and {v1, ..., vp} €X ({ra}scq) that ae Xy, ..., . We are going
to prove this by induction on =.

Let n = 1. Then a €Zy, (A€ A). Since Z,, = |J # (%) holds, there exists
such a set X e (Z) that ae X,,.

Now let us suppose that if a€Z, ..., ({t:}i) € ({ri};eq)), then there
exists such a set X €4 (Z) and {s1, ..., i} €A {n}ze,,) that ae X;, ... 5.
Let aeZ, .... If tx=r;, then from Zityootyyr, = U A2 Zsy ou,,)
we obtain a€S;,, where SeX(Z;, ... ). Let S={y1, ..., ym}. Since

(t=1,...,m), we have y; eXZi i, where X¢eX(Z),

2,

inZh... t

(s, ... sy eX ({ri}sen). Let us take X = |J X¢. Evidently X eX'(Z),

i=1
Sc X s sf ..o, Since aeS,, then also aeXsl..g"r,. The
system {X,:X, = |J J(X), XeZ?(4)} of r-ideals in A is the
supremum of the set {Z,(4)},,. Evidently #, (4) < #(A4) holds. Let
further 2,'(A) be such a system of r-ideals in 4 that £, (4) > % (A4) for
each AeA. From ¢this X; ..., < Xi ... < Xpy oon ¢ ,rr =
=Xy ooty C... C Xty € Xpr = Xo({t1, ..., ta} € ({12}1e4), X € P(A))
follows. Thus we have | J7(X) < X,’, i. e. X, — X,’. Hence holds Z,(4) <
< Zr(4) holds.

The question arises, what the infimum of the subset {Z, (4)},., of &(4)
in &(A) is. According to the considerations in section 3 we could suppose
that the system {X,:X,= [ X, XeZ(4)} will be the infimum. This

2eA
conception is wrong, the mentioned system need not even be a system of

r-ideals in 4. To show it let 4; = {a,},; be an arbitrary infinite countable
set and let us put 4 = 4, | {a}, where a ¢ 4,.'For any positive integer n
let us put X, = X ifa, ¢ X and X, = X { {a} if as € X. Evidently {X,

: X e P(A)} is a system of r-ideals in 4. Let us put X, = n X,, (V is the

neN
set of all positive integers) for every set X € Z(4). Then (A1), # |J A r(41)s
The construction of the infimum is given in the following statement.

5. Let A be an arbitrary non-empty set, let {Py (A)}eq be an arbitrary set
of systems of r-ideals in A. For any set Z € P(A) let us put Z, = | J () Xr))-

Xex (Z) dea

Then {Z,:Z € P(A)} is the infimum of the set {Pr,(A)}eq 0 the lattice &(A).
Proof. a) Z,(A) is a system of r-ideals in A. Thus let Ze Z(4). If X e
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€X' (Z), then X < () Xy,, hence Z < Z,. Let Z = U, (Z, U € P(A4)). Let

Aea

us take a € Z,. Then there exists such a set X e#'(Z) that ae [} X,,. Let
AeA
X = {21, ..., 24}. For each ie€{1,2,...,n} there exists 7% e (U) such

n
that z; € M) T Let usdenote T = |J 7. Evidently T'e X (U), X < T, for
AeA i=1
each 1€ A. From this we obtain X, < T}, for each A€ A. Thena € () T,
° AeA
holds and hence a € U,. The equality Z, = U & y(Z) for an arbitrary infinite

set Z € Z(A) is true according to the definition of the set Z,, since evidently
for each set X e#"(4) there is X, = () X,,.

led

b) #r(A) is the lower bound of the set {#; (4)};,c, in the lattice &(A4). The
proof is clear.

c) Z,(4) is the greatest lower bound of the set {#,(4)},., in the lattice
S&(A). Let #,,(4) be a system of r-ideals in A such that £, (4) < % (4)
for each 1€ A. Let a€Z, (Ze P(A)). Then there exists a set X € #(Z)
such that a € X;,. Then a € X,, holds for each index A€ A, hence a € [ Xy,

Aea

and from this we get ae€Z,. Hence 2, (4) < Z,(A).

In paper [7] the lattice &(A) of all systems of r-ideals in the set containing
three elements is constructed. There is a table there, in which there are all
systems of r-ideals in 4 (there are 45 of them) given and the diagram of the
lattice &(4).

We need the following two simple lemmas.

6. Let Ay, Ay be arbitrary non-empty disjoint sets. Let Pr (A1) and Py, (As)
be systems of r-ideals in Ay and in As, respectively. Then it is possible to derive
from Pr(4:) and P,(A2) a system of r-ideals in A = A, U Az as follows:
For X € P(A) let us put:

1. X, = X,, if XeP(4);

2. Xy = X,, if XeP(4s);

3. Xr = (XN A1)r, U (X N 4)y, if X N A; 0 and simultaneously X N
N Ay # 0. This statement is evident.

7. Definition. Following the notations introduced in the preceding lemma we
shall say that the system P (A) of r-ideals is induced by the systems Pr (A1),
Py (A2) of r-ideals in the set A = Ay U As and we shall denote it comp {Py,(41),
Pr(42)}-

8. Let Ay, As be arbitrary disjoint sets. Let (A1) be an arbitrary fixed system
of r-ideals in Ay, let &(A2) = {2, (A2)}ier- Then the set {comp {P(41),
Pr(A2)}}ier is a sublattice of the lattice &(A) of all systems of r-ideals in A =
= A1V A4z isomorphic with the lattice &(As).
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Proof. Let us take Py (A2), Zr(A2) € 6(A2), X € #(4). Distinguishing
three cases: X c A;, X < 42, XN A1 #0& X N 4, # 0 one can easily
show that the equalities

comp {Zr(41), Pr; (42)} A\ comp {Pr(41), Pr; (42)} =
= ¢comp {9,(111), -@”1(1‘12) A gfi.(Az)}
comp {Zr(41), gari,(A2)} V comp {Z(41), gri,(Aﬂ} =
= comp {Pr(A1), Pr;(A2) V Pr;(As)}
are valid.
The isomorphism is given by the mapping:
P, (Az) - comp {Z)(41), Z,(42)}.

We are going to examine whether the lattice &(4) is modular and comple-

mented.

9. Theorem. If the set A contains at least three elements, then lattice &(A)
is mot modular.

Proof. First of all let us suppose that the set 4 contains just three elements
a, b, c. Let us consider the systems of r-ideals in 4 = {a, b, ¢} described in
the following table.

‘ 71 72 3 T4 5

@ @ @} @} @ @}

{b} {b, ¢} {b, ¢} {b, ¢} {a, b, ¢} {a, b, ¢}
¢} {c) {c} B fabd o
{a, b} {a, b, ¢} {a, b, ¢} {a, b, ¢} {a, b, ¢} {a, b, ¢}
{b, ¢} {b, ¢} {b, ¢} {b, ¢} {a,b,¢} - {a, b, c}
{a, ¢} {a, ¢} {a, b, ¢} {a, b, ¢} {a, b, c} {a, c}
{a, b, c} {a, b, ¢} {a, b, ¢} {a, b, ¢} {a, b, c} {a, b, c}

The following holds £, (4) < Z,(4) < Z,(4) < Z,(4), 2, (4) <
< 2,(4) < 2,,(4). The element Z,,(A4) of the lattice &(4) is incomparable
with the elements %,(A4), £,,(4) of the lattice &(A). Further evidently
Pr(A) N\ Pry(A) = Pr(A), Pr,(A) N Pr(A) = P, (4), hence P (4), ...
Pr(A) form the pentagonal non-modular sublattice of the lattice &(4).

Now let the set 4 contains more than three elements. Let us put 4s = {a, b, ¢},
where a, b, ¢ are arbitrary different fixed elements of the set 4 and 4; = 4 —
— As. Let #¢(41) be an arbitrary fixed system of r-ideals in A1, {Z,(42)}is
the set of all systems of r-ideals in A = {a, b, c¢}. According to the preceding
part of the proof and Lemma 8, there exist indexes¢;, ..., 45 € [ such that
comp {Z(41), 2, (4z2)}, ..., comp {Z+(41), 2, (A2)} form the pentagonal
non-modular sublattice of the lattice &(A).

10. Theorem. Let A be an arbitrary set which contains at least three elements.
Then the lattice £(4) is not complemented.

<t
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Proof. Let a be an arbitrary fixed element of the set A. For X € 2(4)
let us put Xy, = difae X, X # {a}, X;, = A — {a} ifa ¢ X and {a},, = {a}.
We shall prove that the element £,,(A4) of the lattice £(4) has no complement
in &(4). Let us suppose that there exists a system #,,(4) of r-ideals in 4 such
that Z,,(4) A\ £,,(A) is the least element of the lattice &(A4). Let us take
XePd). X;,nX;,= X holds. If ae X, X # {a}, then we must have
Xy, = X. Let X ={a}. If be 4, b +# a, we have {a,b};, = {a, b}. There-
fore {a},, = {a, b}. The last inclusion holds for any element b(c A) different
from a. Since 4 contains at least three elements, {a},, = {a}. From the equali-
ties {a};, = {a}r, = {a} it follows that £, (4) V Z.(4) is not the greatest
element of the lattice &(4). Namely the mapping belonging to this system
of r-ideals in A assigns to the set {a} the same set {a} (cf. section 3).

The following question seems to be natural: do there exist elements £, (4)
and Z,,(A) in the set &(A4) such that %, (A) is a complement of %, (4)?
The answer is positive. To show this let 4 be an arbitfary set which contains
at least three elements. Let a be an arbitrary element of the set A. Then the
system {X,, : X,, = X U {a}, X € #(4)} of r-ideals in 4 is evidently a comple-
ment of the system {X, : X, =4 if aecX, X,, =4 —{a} if a¢ X, Xe
€ #(A)} of r-ideals in A in the lattice &(4).

11. It is easy to verify that if the set A contains one or two elements, the lattice
&(A) of all systems of r-ideals in A is modular and uniquely complemented.

In the following part of the present paper we shall investigate whether
the lattice &(4) has atoms, dual atoms and we shall prove that the lattice
&(4) is dually atomie, when 4 contains at least two elements.

12. Let A be an arbitrary non-empty set. Let P(A) be a system of r-ideals in A.
If there exists such a set X° € P(A) that A — X° contains at least two elements
and X° £ X7, then P.(A) is not an atom in the lattice &(A) of all systems of
r-ideals in A.

Proof. Let us take an arbitrary set X € Z(4). If X < X°, let us put
Xy, = X and if X ¢ X°, let us put X, = X,. Evidently {X, : X € #(4)}
is a system of r-ideals in 4 and %,,(4) < Zr(A4) . P, (A4) is different from
the least element of the lattice &(4), because there exists such a set ¥ € #(4)
that X° ¢ Y, a¢ Y, where a is some element of the set X, — X°. Then
acY, — 7.

From this lemma we obtain as an immediate consequence the following

statement.

13. If 2,(A) is an atom in the lattice &(A), then for each set X € P(A) such
that A — X contains at least two elements X = X, holds true.
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14. Theorem. If the set A is infinite, then the lattice §(A) has no atom. If
the set A has n elements, where n > 2, then the lattice &(A) has n atoms.

Proof. Let us suppose first of all that the set A is infinite and that the
system Z,(A) of r-ideals in A is an atom in the lattice &(A4). According to
the statement 13 there exists such an element a of the set 4 that (4 — {a}), =
= A. Let us denote Z = 4 — {a} . Z is an infinite set, hence Z, = U A (%)
holds. On the other hand for each set X € #(Z) we have X, = X (again
according to the statement 13), hence U J ((Z) = Z # Z,, which is a contra-
diction.

Let the set A contains n elements (n > 2). Let us take an arbitrary element
a of the set 4 and let us put (4 — {a}), =4, X, =X if X £ 4 — {a}.
It can be readily seen that the system {X, : X € 2(4)} is a system of r-ideals
in 4 and an atom in the lattice &(4). If @ will run over the whole set A4, we

shall obtain n different atoms and those are already all atoms of the lattice
E(A).

15. Theorem. Let A be an arbitrary set which conlains at least two elements.
Let us denote by A the cardinality of the set A. The lattice §(A) of all systems
of r-ideals in A has 24_2 dual atoms.

Proof. Let X° be an arbitrary non-empty fixed proper subset of the set 4.
Let XeP(A). Let us put X, =4 — X° if XNnX°=0 and X, =4 if
X N X° £ 0. 1t is easy to show that {X,: X € #(4)} is a system of r-ideals
in A. Evidently £,(A4) is not the greatest element of the lattice &(4). Let
2,(A) be an arbitrary system of r-ideals in 4 such that £, (4) > Z,(4).
Then there exists a set X1 € #(4) such that X} 2 X!. Obviously X1 N X° = 0,
X} = A — X°. Therefore there exists an element z° € X° such that 2° e X7,.
Since {x°}, < {#°},, and {z°}, = 4, the following holds X} = 4. Let Y be an.
arbitrary set from the system £(4) such that Y, = 4 — X°. From the
relation X! < Y, it follows that Y, = 4, hence £, (4) is the greatest ele-
ment of the lattice &(A4). In this way it is proved that Z,(4) is a dual atom
in the lattice &(4). Evidently for different non-empty proper subsets X°
of the set 4 we obtain different systems of r-ideals in. 4. Let Z,(4) be an.
element of the lattice &(4) different from the greatest. Then there exists
a set X € Z(4) such that X,, ¢ 4. Let us put X° = 4 — X,, and let us take-
the corresponding dual atom of the lattice £(4), i. e. the system of r-ideals
in A constructed by the method described at the beginning of the proof.
Let. YeP(4). If X°NY #0, then Y, =4 and evidently Y, < Y,.
Let X°NY =0. Then Y c 4 — X° and since 4 — X° =X,, Y, <
cX,,=4—X°=7Y,. In this way it is proved that £, (4) < Z.(4).
Therefore the lattice 6(4) has as many dual atoms as there are non-empty
proper subsets in the set 4, i. e. 24 — 2.
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16. Definition. A lattice L with the greatest element 1 is called dually atomic
iff each its element x # 1 is the meet of some dual atoms of the lattice L.

17. Theorem. T'he lattice &(A) of all systems of r-ideals in A is dually atomic.

Proof. Let #(A4) be a given arbitrary system of r-ideals in 4 different
from the greatest. Let us denote #’(4) the system consisting of those sets X
of the system #(4), for which X, # 4. Further let #, (A4) be a dual atom of
the lattice &(A4) such that X° = 4 — X,, X € #'(4) (cf. Theorem 15), i. e.
for the set YeP(A) Y, =X, if Y<cX,and ¥, =4 if ¥ ¢ X,. Let
us denote Z,(4) = A Z,.(4).

Xe?'(4)
Let Y e A (4) N #'(A). Then (cf. statement 5) ¥, = Y,., =N Y,, =
Xed’'(4) .%:eg”l(’A)
= n X,. Evidently Y, < [} X, holds and since Y € #'(4), Y, o Y, the
Xe®'(4) Xe#’(4)
oY XDOY
inverse inclusion is valid too. Therefore Y, = Y,.

Let Yed(A), Y, =A4. If XeP'(4), then Y ¢ X, (because otherwise
it would have to be Y, < X,), hence ¥, = 4. Then Y, = A and hence
again Y, = Y,.

Let Z be an infinite set from the system Z(A4). Then the following holds
Ly, = U A (L) = v HWZ) = Z. _

Therefore the equality £,,(4) = Z,(4) is true.
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