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Matematický časopis 23 (1973), No. 2 

INDEPENDENCE OF EQUATIONAL CLASSES 

HILDA D R A S K O V I C O V A , Bratislava 

Preliminaries. Equational classes Ko, Ki, . . . , Kn-i of the same type are 
said to be independent (for i = 0, 1 see [6]) if there exists an w-ary polynomial 
symbol p [5] such t h a t the identity p(xo, Xi, ..., xn-i) = Xi holds in Ki, i = 
= 0, I, ...,n — 1. (We shall also say t h a t the set {Ko, Ki, ..., Kn-±} is 
independent.) KoVKiV ...V Kn-i will denote the smallest equational class 
containing all Ki, and Ko>< K± ><...>< Kn-i will denote the class of all 
algebras which are isomorphic to an algebra of the form 5Io >< 5ti > < . . . > < 5lw-i, 
51/ e Ki, i = 0, I, ..., n — 1. A set {Qy : y e T} of congruence relations 
on an algebra 51 = <A;F> is called absolutely permutable1) ([7], [9]) if for 
any family (xy : y e T) of elements of A such t h a t xa = x&(\J {Qy : y e J7}) 
for any a, /3 e F, there exists x e A with x = xv(Qy) for any y e T. Note 
t h a t any subset of an absolutely permutable set S of congruence relations 
is absolutely permutable, in particular any two congruence relations of # 
are permutable. But the pairwise permutability of S is not sufficient to the 
absolute permutability of S. We shall use the symbols co and i for the least 
and the greatest congruence relations. The symbol ^ will denote an iso
morphism. 

1. Statement of the results 

Theorem 1. Equational classes Ki, i = 0, 1. . . . , n — 1, are independent if 
and only if the following conditions (1) and (2), or (1) and (2'), or (1) and (2") 
are satisfied: 

(1) KoAKiA ...AK%-i consists of one-element algebras only. 
(2) For every 51 e KoV KiV .. .V Kn-i the smallest congruence relations 0$ 

on 51 such that 51/0i e Ki, i = 0, 1, . . . , n — 1, are absolutely permutable. 
(2f) Given 51 e KoV KiV . . . v A V i and arbitrary congruence relations Of on 5( 

such that 5I/0* e Ki, i = 0, 1, . . . , n — 1, then O, (i = 0, 1, ..., n — 1) 
i are absolutely permutable. 

] ) In [7] the term "assoziiert" is used. 
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(2") For every 2t e KoVK\\j . . . v A V b arbitrary congruence relations O* on 2t 
such that 21/0* e Kt, i = 0, 1, ..., n — 1, satisfy O* . A {<->/ -J 7^ *,,/ = 
= 0, 1, . . . , » — 1} = V {®j'J = 0, 1, ...,n— 1} for each i e {0, 1, . . . , 
n — 1}. 

Theorem 2. Let each 2t EKoV-KiV .*.vKn-i have a distributive congruence 
lattice and let any two congruence relations on 2t be permutable. Then Ki, i = 
= 0, 1, . . . , n —- 1, are independent if and only if (1) amZ owe o/ the two fol
lowing conditions hold: 

(2a) For each 21 6 KoV KiV .. .V Kn-\ the smallest congruence relations ®i on 2t 
such that 21/0* e Ki, i = 0, 1, . . . , n — 1, satisfy 0*V 0 ; = V {©* : i = 
= 0, 1, . . . , n — 1} /or eac& & ̂ j,k,je{0, 1, ..., n — 1}. 

(2'a) Kor eocft 21 6 KoV KiV .. .V Kn-\ and arbitrary congruence relations O i on 2t 
sacAthat2I/0* eKi,i = 0,1, ...,n — l,theeguality ®,tV Oj = \/ {<->*:i = 
= 0, 1, . . . , n — 1} holds for each k =£j, k,j e {0, 1, ..., n — 1). 

Theorem 3. Equational classes Ko, K\, . . . , Kn-\ are independent if and only 
if for each i e (1, 2, . . . , n — 1}, Ki and KoV KiV . . . / Ki-\ are independent. 

Corollary 1. Let Ko, K\, ..., Kn~\ be independent equational classes. Then 
any subset of {Ko, Ki, . . . , Kn-\} is independent too. In particular Ki, Kj are 
indeperulent for any i =£j, i,je{0,...,n — 1}. 

R e m a r k 1. If each proper subset of {Ko, K\, ..., Kn-\} is independent 
then Ko, K\, ..., Kn-i need not be independent as it can be seen in Example 6, 
but this holds in special cases (see Theorem 4 and Example 8). 

Theorem 4. Let Ko, K\, . . . , Kn~\ (n > 2) be equational classes (of the same 
type) and let k e {2, 3, . . . , n — 1} exist such that the following conditions are 
satisfied: 

(3) Each k classes of the set {Ko, K\, ..., Kn~\} are independent. 

(4) There exist n — k classes of the set {Ko, K\, ..., Kn-\} which have only 
idempotent operations. 

Then Ko, K\, . . . , Kn-\ are independent. 
R e m a r k 2. The number n — k of (4) in Theorem 4 cannot be lowered in 

general, as it can be seen in Example 7. 

Theorem 5. Let Ki, i = 0, 1, ..., n — 1, be independent.Then KoV KiV ...V 
V Kn~\ = Ko >< K\>< ... >< Kn-\ and each algebra 2t e KoV KiV .. .V K»-i has, 
up to isomorphism, a unique representation 21 = 2to >< 2Ii >< . . . >< 2tw-i , 
%ieKi, i = 0, l,...,n— 1. 

R e m a r k 3. In particular case n = 2 the Theorem 5 yields a somewhat 
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stronger result2) than [6, Theorem 1]. In [6, Theorem 1] to get the unicity, 
the modularity of the lattice of all congruence relations of each algebra 
31 e KoV K\ is postulated. 

R e m a r k 4. In [6, Theorem 2] the following assertion is proved: "Let 
KoA Ki consist of one-element algebras only and let every 31 e KoV K\ have 
a modular congruence lattice. Then KoV Ki = .Ko >< Ki if and only if Ko 
and Ki are independent." The "only if" par t of this assertion cannot be 
enlarged to the case of more than two equational classes (as the Example 4 
shows), even if we replace modularity by distributivity (see Remark 6 in §3). 
One way of enlarging of this par t of the assertion is given in Theorems 6 and 7. 

R e m a r k 5. If Ki, i = 0, 1, . . . , n —• 1, are independent then using 
Theorem 5 and results of [8], analogously as in [6], we get tha t in Theorem 2 
the condition "each 31 e KoV KiV . . .VK^-i has a distributive congruence 
lattice and any two congruence relations on 31 are permutable" can be replaced 
by "each %i e Ki, i = 0, ..., n— 1, has a distributive congruence lattice 
and any two congruence relations on 31 i are permutable". 

Theorem 6. Let the following conditions be satisfied: 

(5) KoV KiV .. .V Kn-i = Ko >< Ki >< . . . >< Kn-i. 
(6) For each i e {1, 2, ..., n — 1}, (K0VKiV . . .VKi~ i ) \K i consists of one-

-element algebras only. 
(7) Every algebra 31 e KoV KiV .. .V Kn-i has a modular congruence lattice. 
Then Ko, K\, ..., Kn-i we independent. 

Theorem 7. Let the following conditions be satisfied: 
(5) KoV KlV .. .V Kn-1 = KO >< KT >< . . . >< Kra-l. 
(6') For each i^j, i,j = 0,l,...,n—l, KfAKj consists of one-element 

algebras only. 
(T) Every algebra 31 6K0VK1V . . .VKw- i has a distributive congruence lattice. 
Then Ko, Ki, . . . , Kn-x are independent. 

2. Proofs of the theorems 

We shall use the following assertions: 

Lemma A ([7], [9]). Let 31 be an algebra. There exists a one-one correspondence 
between the non-trivial direct decompositions Il(3Iy : y e F) of the algebra 31 and 

2) Added Mai 25, 1972. The manuscript of this paper had been accepted for publication 
before the author knew that a proof of Theorem 5 is obtained (in another way) by T a h -
K a i Hu and P. K e l e n s o n , Independence and direct factorization of universal algebras, 
Math. Nachr. 51, 1971, 8 3 - 9 9 . 
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the sets S = {(-)y : y e T} of non-trivial congruence relations (different from co 
and 0 on 5t having the folloving properties: 

(i) \ { y:yєГ}= to. 

(ü) V { . , : ľ є Г } = .. 

(ІÜ) AS ІS absohitely permutaЫe. 

Given the set S, the corresponding direct decomposition is 

5l^II(5I/0y:yer). 

Lemma B [3]. A set {0O, 0 i , . . . , Qn-\} of congruence relations on an algebra 51 
is absolutely permutable if and only if for every i e {0, 1, .... n — 1} the next 
condition holds: 

©*.A { 0 ; : j ^i,j = 0,l,...,n- 1} = V {0; : j - 0. 1 n - 1}. 
P r o o f of T h e o r e m 1. The conditions (2") and (2') are equivalent by 

Lemma B. 
.Necessity. Let xi, i = 0, 1, . . . , n — 1, be elements of 51 e KV, K / ...A Kw-i; 

then p(xo, x\, ..., xn-\) = X{, i = 0, 1, . . . , n —- 1, hence (1) holds. Xow we 
shall show (2'), hence (2) too. Let xo,x\, ..., xn-\ be elements of 51 e KoV K 
V...\/Kn-\. Then [Xi]Q>i = p([x0]<&i, . . . , [xn-i]^>i) = [p(xo, xj. . . . , x„-j )]<!>/ 
hence xt = J>(#o, #j . . . . , xn-\)($>i), i = 0, 1, . . . , n — 1. I t follows that {<!>*•: i = 
= 0, 1, ..., n — 1} is absolutely permutable. 

Sufficiency. Let (1), (2) hold. Let g be the free algebra over A"0 / KiV .. .V Kn-i 
with n generators xt, i = 0, 1, . . . , n — 1. Let 0*, i = 0,1, — M — 1, be the 
smallest congruence relations on g- such t h a t $/Qi e Ki, i = 0, 1 ft — 1. 
Since $/0oV ...v0%-i is a homomorphic image of 5/0i, i = 0, 1. . . . , w. — I, 
then 5/0oV .. .V 0^-i e Kt for all i = 0, ], . . . , n — 1, hence 0OV 0 i .. .V 0 w - i = 
= i. According to the definition of Qt, 5/0* * s ^he free algebra over Kt with 
n generators [xo]0i, [#i]0s, . . . , [xn-\]Qi, i = 0. I, ..., n — 1. I n view of (2) 
and 0oV 0iV ...V ®n-i = i, we get t h a t for the elements xo, X\. ..., xn-\ e5 
there exists p(xo, x\, ..., xn-±) e g such t h a t Xi = p(x0, x\, . . . , xn-i)(®i), 
i = 0, 1, ...,?? — 1. I t follows [xi]®i = [p(xo, x\, . . . , .r»-i)]0f, hence [z*]0f = 
= p{[zo\®t> [#i]®*> ••> [»»-i]©*) holds in 5/©*> * = ^ *» •••»7' — *• Because 
the algebra 5/©« * s ^ree over Kt- with the generators [-To]0/ [xn~i]Qi, 
then the identity p(a0,a\, ..., an-\) = a^ holds in any Ki, i = 0. 1 w — I. 
Hence Ki, i = 0, 1, . . . , n — 1, are independent. 

P r o o f of T h e o r e m 2. By [5, Chap. V., Exercise 68] the Chinese remainder 
theorem holds in any 51 e KoV ...V Kn-\. Hence a set {O0, Oi . . . . , Ow_i} 
of congruence relations on 5t e K0V ...\/Kn-\ is absolutely permutable if and 
only if <lV/<t>; = V {<->« *i = 0, 1, . . . , n — 1} holds for any k = j . k, j e 
e {0, . . . , n — 1} (see Lemma B). Now it suffices to use Theorem 1. 

P r o o f of T h e o r e m 3. Let K0, Ki, . . . , Kw-i be independent, then there 
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exists an w-ary polynomial symbol p such tha t p(x0,xi, ...,xn-\) = Xj in 
Kj, j = 0, I, ...,n — 1. Now it is sufficient to take the binary polynomial 
symbol q(x0, Xi) = p(xo, x0, ..., x0, Xi, x0, ..., x0). The identity q(x0, xi) = x0 

holds in any Kj, j = 0, ...,i — 1, hence it holds in KoV KiV ...V K*-i too, 
and q(x0,xt) = #$ in KV Hence K* and KoV KiV ...V Kz-i are independent. 
The converse assertion will be proved by induction. For n == 2 it is trivial. 
Let it hold for an index n and let the classes Ko, Ki, . . . , Kn satisfy the 
conditions of Theorem 3. Because of independence of Ko,Ki, K«-i 
there exists an n-ary polynomial symbol s such tha t s(x0, x±, . . . , xn-i) = Xj 
in Kj, j = 0, I, . . . , n — 1. Because of independence of KoV KiV ...V Kn-i 
and KTj, there exists a binary polynomial symbol t such tha t t(x0, xi) = x0 

in KoVKiV ...VKw-i and l(#o, #i) = #i in Kw. Now it suffices to take the 
(n -I- l)-ary polynomial symbol r(x0, xi, ..., xn) = t(s(x0, xi, ..., xn-i). xn). 
In Kj, j = 0, 1, ...,n — 1, r(x0, xi, . . . , xn) = s(#o, #i , •••, ^w-i) = #/ holds. 
In Kn, r(x0, xi, ..., xn) = xn. Hence Ko, Ki, . . . , Kn are independent. 

P r o o f of T h e o r e m 4. We shall proceed by induction on n. First let 
n = 3. Then k = 2. Let K0 be the class having only idempotent operations. 
Since Ki. i = 0, 1, 2, are pairwise independent hence for each i,j e {0X 1, 2}, 
i <j, there exists a polynomial symbol pij such tha t pij(xi, Xj) = x« in Ki 
and ptj(xi.Xj) = #;- in K/. Now it suffices to take the polynomial symbol 
q(x0, xi, x2) = pi2(poi(xo, xi), p02(x0, x2)\. Obviously q(x0, xi, x2) = xt in Ki, 
i = 0,1,2 (for q(x0, x\, x2) = ^12(^0, #0) = #0 in Ko), hence Ki, i = 0,1, 2, 
are independent. Assume now tha t the assertion of the Theorem holds for 
n — m and let the assumptions of the Theorem be fulfilled for n = m + 1. 
Let Ko, Ki, . . . , Km-k be the classes having only idempotent operations. 
Assume first k < m. In the set {Ko, Ki, . . . , Km-i} the classes Ko, Ki, . . . , 
Km-jc-i have onlyr idempotent operations and each k classes are independent, 
hence by induction assumption 
(b) Ki, i = 0, 1, . . . , m — 1, are independent. 
By the similar argument (by replacing Km-i by Km) we get that 
(c) Kt, i = 0, 1, . . . , m — 2, m, (̂  7^ m — 1) are independent. 
If k = 772, the assertions (b), (c) are trivial, for by the assumption each k classes 
are independent. Using Corollary 1 and the conditions (b), (c) we get: 

(d) For each h e {I, 2, . . . , k — I, k) the classes Ko, . . . , Km-k, Km+h-k are 
independent. 

Hence for each h e {I, 2, . . . , k} there exists an (m + 2 — k)-ary polynomial 
symbol ph such tha t ph(x0, x±, . . . , xm-k, xm+h-k) = xj in Ku j = 0, 1, . . . , 
m — k, m + h — k. Using condition (3) for n = m + 1 we get tha t the classes 
Km+h-k, h = 1,2, ..., k. are independent, hence there exists an k-ary poly
nomial symbol q such tha t q(xm+i-k, xm+2-k, ..., xm+h-k. ..., xm) = xm+h-k 
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in Km+h-k, h = 1, ..., h. Now it suffices to take the (m + l)-ary polynomial 
symbolp(x0, x\, ..., xm) = q(pi(x0, ..., xm-k, xm+\-k),p2(x0, ..., xm-k, xm+o-k), 
...,ph(x0, ..., xm-k, xm+h-k), ..., pk(x0, ..., xm-k, xm)). In Kj, j = 0, 1, ..., 
m — k,p(x0, ..., xm) = Xj because of idempotent operations. In Km+h-kf 

h = 1, 2, ..., Jc, p(x0, x\, ..., xm) = ph(%o,xi, .-.,xm-k,xm+h-k) = xm+h-k. 
Hence K0, K\, ..., Km are independent. 

P r o o f of T h e o r e m 5.3) We proceed by induction. First we shall prove 
the Theorem for n = 2. Let K0,K\ be independent. We shall show t h a t : 
(8) Jio >< K\ is equational class and 
(9) 2ro><2Ii^2lQo23o><23i , 2T*eK*, 23* eK* , i = 0, 1 imply 2t*£o23*, 

i = 0, 1. 
Proof of (8): a) Let $ = <B;F> be a subalgebra of 2l0><2Ii, 21* eKiy 

i = 0,1. Denote B0 = {b0: there exists a\ e 2 l i , (bo, a\) eB), B^ = {b\: there 
exists a0 e2lo, («o, h) eB}. I t is clear that 23* = <Bi,F> is a subalgebra 
of 21*, i = 0, 1. We shall show tha t B = B0xB\. If (b0, h) EB0XB\, 

then there exist a* e 21*, i = 0, 1, such tha t (a0, b\), (bo, a\) e B. This implies 
(bo, h) = (p(b0, a0), p(a\, b\)) =p((b0, a\), (a0, b\)) eB. HenceB => B0xB\. 
The converse inclusion is trivial. 

b) To prove tha t K0 x K\ is closed under epimorphic images we use the 
following easy assertions. 

Let h : 21 -> 21' be an epimorphism of algebras and 0^ the corresponding 
congruence relation on 21 (x = y(Qh) iff h(x) = h(y)). Let O be a congruence 
relation on 21 which is permutable with 0^. Define the relation <t>; on 21' 
as follows, x' = 2/'(<D') if x, y 6 21 exist such tha t x = y($) and x' = li(x), 
y' = h(y). Then O' is a congruence relation on 21' and the mapping h' : 2t/<l> -> 
~>2170' defined by h : [x]<S> {-* [h(x)]<&' is an epimorphism. If <t>i, 0 2 are 
congruence relations on 21, both permutable with 0^, such tha t <&\ . O2 -=- 1 
then the corresponding congruence relations O ' I , 0'2 on 2V satisfy Ox. Oo = 1. 

Now let h: 2lo >< 2Ii ->d , 2t*GK*, i = 0,l, be an epimorphism. Let 
Oo, ^1 be the congruence relations on 2Io X 2Ii corresponding to the direct 
decomposition 2lo >< 2ti (Lemma A). Oo and 0^ are permutable: Let (a0, a\). 
(b0, h), (c0, c\) e 2to >< 2Ii and (a0, a\)<&0(bo, b\)Qh(co, c\). Then a0 = b0 and 
h(b0,b\) = h(c0,cj). Further h(c0,a\) = h(p(c0, a0), p(c\, a\)) = h(p((c0)c\), 
(a0,a\))) = p(h(c0,c\), h(a0,a\)) = p(h(b0,b\), h(a0,a\)) = h(p((b0,b\), 

3) One can prove Theorem 5 by the similar method as that of [6, Th . 1] for ?i = 2„ 
To get the unicity of given representation in the proof of [6, Th. 1] it suffices to use 
[1, Chap. IV., Th. 13], hence the modularity of congruence lattices in [6, Th. 1] need not 
be postulated. In the proof of Theorem 5 by the similar way it suffices to use [2, Corollary 
3.5 (vi)] to get the unicity of the given representation. We give here another proof of 
Theorem 5 by induction. The first step, the proof of Theorem 5 for n = 2, differs from 
tha t in [6, Th. 1]. 
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(a0, ai))) = h(p(b0, a0), p(b\,a\)) = h(a0, a±), hence (a0, a\)@n(c0, a\)®0(c0, C\). 
Similarly, <J>i and 0^ are permutable. By the above assertions h induces con
gruence relations <D0, Ox on (£ such tha t OQ . <t>{ = i and Ct/O^ is an epimorphic 
image of 2Io >< 2ti/®j <>2 21*, hence G/O^ eKi, i = 0, 1. I t remains to show 
tha t OQAO{ = co. If c = d(OoA®i) then c = h(a0, a\), d = h(a0, b\), c = 
= h(e0, e\), d = h(f0, e\). Because (J e K0V K\ and p(x, x) = x holds in K0 

and in Ki too, we get c = p(c, c) = p(h(a0, a\), h(e0,e\)) = h(p((a0,a\), 
(eo, ei))) = h(p(a0, e0), p(a\, ex)) = h(a0, ex). By the same argument we get 
d = h(a0, ex) hence c = d. By [1, Chap. VI. , Th. 22], (8) holds. Now we prove 
(9): Let So >< 23i £2 2t £2 2Io >< 2Ii, 21*, 95* e Kt, i = 0,1. There exists an 
isomorphism i: 2Io >< 2Ii -> So >< S i . We have to show 9t«^23<, i = 0, 1. 
We shall prove 2Io^23o- First Ave show: 

(ai) i(x, y) = (x\,y\) and i(x, y2) = (x2, z\) imply 0:1 = 0:2. 

(a2) i(x, y) = (x\, ijx) and i(x2, y) = (x3, y2) imply y\ = y2. 

From the assumption of (ai) we get (x2, y\) = (p(x2, x\),p(z\,y\)) = p((x2, z\), 
(x\, y\)) = ip((x, y2), (x, y)) = i(p(x, x), p(y2»y)) = i(x, y) = (x\,y\). Hence 
x2 == x\. The proof of (a2) is similar. Now we shall define a mapping t: 2Io -> So 
as follows: Let t(x) be an element of So such tha t for an y e 2 t i , i(x, y) = 
= (t(x), y\). We assert tha t t is an isomorphism, t is surjective, because if 
xi G S O , y\ e S i and if we denote (x, y) = i~1(x1, y\), then i(x, y) = (x\, y\)y 

hence x\ = t(x). t is injective, for if t(x) = £(#1) then for y e 2Ii we get i(x, y) = 
= (t(x), y\), i(x\,y) = (t(x\), y2). By (a2), y\ = y*. Hence i(x, y) = i(xx, y). 
This implies (x, y) = (x^, y), hence x = x\. t is a homomorphism: Let / be 
an w-ary operation, x\, ..., xn e 2Io, y\, . . . , yn e 2Ii. Let i(xjc, yk) = (t(xk), y°k). 
Then (f(t(x\), ..., t(xn)), M, . . . , yl)) = f((t(xx), y\), ..., (t(zn), yl)) = 
= f(i(x\,yx), ...,i(xn,yn)) = if((x\,y\), ..., (xn,yn)) = i(f(x\, ..., xn), 

f(yi, ...,yn)). This implies tf(xx, ...,xn) = f(t(x\), ..., t(xn)). Hence 2 I o ^ So . 
2Ii ^ S i can be proved analogously. 

Now let Theorem 5 hold for n = h and let K0, K\, ..., Kk be independent. 
Using Theorem 3 we get tha t K0VK\V ...VKjt-i and Kk are independent, 
hence (K0y KiV .. .V Kjc-\)\/ Kk = (K0y K\\f.. .V KA;-i) >< Kk and any algebra 
21 e KoV K\W .. .V Kk has, up to isomorphism, a unique representation 2f ^ 
^ S >< 21* where S e K0V .. .V K*-i, 21A; e Kk. By Corollary 1, K0, K\,...,Kk-\ 
are independent, too, and using the induction assumption we get K0V...V 
VKjc-\ = K0>< ... >< Kk-\ and S has, up to isomorphism, a unique represen
tation S ^o 2Io ><. . .>< 2I*-i , WieKi, i = 0, 1, . . . , h — 1. Hence K0W K\\J 
N/ . . .VK*-iVK k = K0 >< K\ >< ... >< Kk-\ >< Kjc and 21 £2 S >< 2 1 * ^ 2to >< 
>< 2Ii >< . . . >< 2l*-i >< 21* where the representation is unique up to isomor
phism. This completes the proof. 
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P r o o f of T h e o r e m 6. We shall proceed by induction. For n = 2 this 
theorem holds by [6, Theorem 2]. Let the theorem hold for n = k and let 
the conditions (5), (6), (7) be satisfied for n = k + 1. We assert tha t (5) holds 
for n = k, too. Indeed, let 51 e KoV ...\/Kk-i c K0v . . . / Kk-iV Kk = 
= K0 >< . . . >< K*-i >< Kk, then 51 ^ 5Io >< 5ti >< . . . >< 51*, 51* e Ki, i = 
= 0, 1, ..., k. Hence 51* e KoV .. .V Kk-i because 51* is a homomorphic image 
of 51. With respect to (6), 51* is one-element algebra. Hence 51 ^ 5Io >< • •. >< 
><5t*-i. By the induction assumption Ko, Ki, . . . , K*-i are independent. 
Now the two classes Kk and KoV ...V K*-i satisfy the assumptions of Theorem 6 
for )i = 2 and this implies tha t Kk and KoV . . .VK*-i are independent. By 
Theorem 3, Ko, Ki, . . . , K*-i, Kk are independent, too. 

P r o o f of T h e o r e m 7. We shall use Theorem 1. The condition (1) is 
obviously fulfilled. Now we shall prove the condition (2). Let 51 e K0 / . . .V Kn-\. 
Then (by Lemma A and (5)) 51 ^ 5I/O0 >< . . . >< 5I/0„_i, where 51/OieK* . 
i = 0,1, ...,n — 1, and {O0, Oi, . . . , Ow-i} is absolutely permutable. From 
Lemma A and Lemma B we get 0/*vO; = V {®i :i = 0.1, — n — 1} = i 
for any h ^zj,h,j = 0, 1, ..., n — 1. Let 0 / , i = 0, 1, ..., n — 1, be the least 
congruence relations on 51 such tha t 51/01 eKi, i = 0. 1, — n — 1. With 
respect to (6') we get 0$v 0 / = i for any i =fij, i,j = 0.1 n — 1. Using 
(!') we get: 
0* / (A {<->*: i ^j,i,j = 0,l,...,n- 1}) = 
= \ {(QjV Of) : i =£j, i = 0, 1, ..., n — 1} = i. Then O; = < V \ = 
= ®jA[®jV /\ {®i 'i =£j, i = 0,l,...,n—l\\ = QjV (o = Qj 
for each j = 0, 1, ..., n — 1. Hence the set {0O, 0 i , — Qn-i) is absolutely 
permutable and Ko, Ki, . . . , Kn-i are independent. 

3. Examples 

The first two examples wall give independent equational classes Kt,i = 
= 0, 1, . . . , n — 1, (of the same type) such that not every algebra 51 of 
KoVKiV . . . v A V i has a modular congruence lattice. 

E x a m p l e 1. Let Ki, i = 0, 1, ..., n — 1, consist of all algebras 51* = 
= <Ai,f>, where / is an w-ary operation and f(x0, . . . , xn-\) = xt in Kt, 
i = 0, 1, ..., n — 1. Then Ki, i = 0,1, n —- 1, are independent (for it is 
sufficient to take p(x0, . . . , xn-i) = f(x0, ..., xn-\)) hence K0 . . . K«-i 
= Ko >< . . . >< Kw-i. Any equivalence relation Y on tyLi(i e {0. 1. ..., n — 1}) 
is a congruence relation on 51 i e Ki, because Xj = 2^(*F), j = 0. 1, ..., n — i, 
imply f(xo,x±, ..., xn-±) = xt = yt = f(yo, yi, . . . , yn-i) (Y). Hence by [1] 
congruence lattices on the algebras of Ki are not modular if card ^4/ > 3. 

E x a m p l e 2. Let K0 consist of all groups <& = < O ; / o , / i > where f0(x. y) 
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= XIJ> fi(x« y) = xy~x- Let K\ consist of all skew-lattices (Schiefverband? [4J) 
5 = <S;f0,fi> where f0(x, y) = xAy, fi(x,y) = x\jy. In jKi the identity 
(xA y)V y = y holds. Ko and Ki are independent for it suffices to set p(x, y) = 
= fi(f0(x, y), y). There are skew-lattices such tha t any equivalence relation 
on them is a congruence relation. For example the algebra dt = <M; A,V> 
where x/\y = x, x\f y = y for any x, y of the set M is such a skew-lattice, 
hence by [1] the congruence lattice on Jt is not modular if card M > 3. 

E x a m p l e 3. Let Kp. (where pi, i = 0, \, ..., n — 1, are distinct primes) 
denote the equational classes of Abelian groups satisfying pix = 0, i = 
= 0, \, . . . , n — 1. Denote m = popi ...pn-i and qt = m\p%. Let t\. i = 
= 0, \, ..., n —- 1, be integers satisfying qiti = \(pi). Then it suffices to set 
p = qohxo + qihxi + . . . + qn-itn-i

xn-i because qj = 0(pi) for i z£j, i = 
= 0, \, ..., n —- 1. I t follows tha t Kp., i = 0, 1, . . . , n — 1, are independent 
hence Kpo\l . . . V KPnl = Kpo ><...>< Kpnl. The same result can be obtained 
if we replace Kp.(i = 0, \, ..., n —- 1) by the class of all rings of the charac
teristic pi. 

E x a m p l e 4. We give an example of equational classes Ko, Kx, K2 with 
the following properties: 
(a) KoAKiAK2 consists of one-element algebras only. 
(b) Every algebra 31 e KoV KiV K2 has a modular congruence lattice. 
(c) K0V KiV K2 = K0 >< Ki >< K2. 
(d) Ko,Ki,K2 are not independent. 
Let Co, Ci, C2 are the classes Kp. of Exercise 3 where pi = 3, 5, 7, respectively. 
Then Ko-Oo><Ci, K1 = C1xC2, K2 = C0xC2 and K0VK1VK2-
= Co >< Oi >< O2 are equational classes. The condition (a) can be easily veri
fied. Since the algebras of the class KoV KiV K2 are groups, the condition (b) 
is satisfied. Finally, let 21$ eCi (i = 0, \, 2) be groups having more than one 
element. Then the algebra 2Io >< 5Ii >< 512 has more than one representation 
as a direct product of algebras of Ki (i = 0, 1, 2). Hence Ko, Ki, .K2 cannot 
be independent by Theorem 5. 

R e m a r k 6. There are equational classes Ko,Ki,K2 satisfying conditions 
(a), (c), (d) of Example 4 and the next condition: 
(b') Every algebra 21 e KoV KiV K2 has a distributive congruence lattice. 
Such an example can be constructed by the same way as in Example 4 by 
replacing classes Co, C±, C2 by the following classes: C'0, C[, <X are classes 
of algebras 21 = <A;A,W,f> where <A; A,V> are lattices and/(.ro, x±, x2) = 
= Xi in C'i,i = 0, 1, 2. 

E x a m p l e 5. As an application of Theorem 1 we shall show tha t the 
following classes K0, Ki are not independent. Let K0,Ki be equational 
classes of algebras < - 4 ; / 0 , / i , / 2 > , where in K0 <A;f0,fi,f2> are lattices 
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with the least element (the operation f2), f0(x,y) = xAy, f\(x, y) = x\f y. 
In K\, <A;f0,f\,f2> are Boolean rings, f0(x, y) = x . y, f_(x, y) = x + y, 
(f2 represents the zero element). Let 21 be the two-element lattice with the 
elements o, i and 93 the two-element Boolean ring with the elements 0, 1. 
The subset C= {(o,0), (i,0), (i, 1)} of the direct product 21 >< S forms 
a subalgebra of 91 >< 23, hence (£ e KoV K\. Consider the equivalence relations 
on G : (a, b) = (c, d)(60) iff a = c, and (a, b) = (c, d) (Q\) iff b = d. Then 
©o, Oi are congruence relations on (£ and £ / 0 i 6 K ^ . Nevertheless 0O and 0 i 
are not permutable, hence Ko, K\ are not independent (by Theorem 1). More
over (£ cannot be represented as a direct product (Eo><(£i, Ci e K s , hence 
K0\J K\ 9-= K0xK\. (Note that the same result can be obtained with K0 

as the class of distributive lattices with the least element.) 
E x a m p l e 6. We shall give an example of classes K0,K\,K2 such that 

for any couple (i, j), i zfij, i,j = 0, 1, 2, K% and Kj are independent but 
Ki, i = 0, 1, 2, are not independent. Let Ki, i = 0,1,2, be equational classes 
of algebras <At; f\,f2,fz>, where in K0 :f\(x, y) = x,f_(x, y) = x,f_(x, y) = 
= fs(u, v), in K\\ f\(x, y) = y, f2(x, y) = f2(u, v), f_(x, y) = x, in K2: f\(x, y) = 
= fi{u> v),f2(x, y) = y,fz(x, y) = y. Consider the algebras 21* = <At ;f\,f2 Jz> e 
eKi, i = 0, 1, 2, where At = {0, 1} and f3(x, y) = 0 in 2Io, h(x, y) = 0 
in 2li, f\(x, y) = 0 in 2I2. Obviously the set A0>< A\>< A2 — {(1,1,1)} forms 
a subalgebra of 2lo >< 2li >< 2I2 but cannot be decomposed into a direct product 
So >< S i >< ©2, where S i e Ki, i = 0, I, 2. To show the independence of every 
couple Ki,Kj, i ^j, i, j = 0,1,2, it suffices to take p(x, y) = f\(x, y) 
(for K0,K\), p(x, y) = f2(x, y) (for K0,K2), p(x, y) = f3(x, y) (for K\, K2). 

E x a m p l e 7. This example shows tha t the number n — k of Theorem 4 
cannot be lowered. I t suffices to join to the classes Ki, i = 0, 1, 2, of Example G 
the class K3 of algebras <A;f\,f2,f3> where <A;f\,f_> are lattices 
(f\(x, y) = xA y, f2(x, y) = x\j y) and f_(x, y) = x -f- y where -f- satisfies the 
following identities: x + x = x, xA (x + y) = y, x + (x\jy) = x. Hence in K3 
there are idempotent operations only. For each i e {0, 1, 2}, Ki and K3 are 
independent: The corresponding polynomial symbols p(x, y) are f\(f2(x, y),y), 
f\(x,fz(x,y)) and fz(x,f2(x,y)), respectively. Every triple Ki,Kj,Kz is 
independent for each i ^j, i}j = 0,l, 2, by Theorem 4. But Ko, K\, K2, K3 
are not independent because Ko, K\, K2 are not independent (see Corollary 1). 

E x a m p l e 8. In the paper [6] it is shown that the equational class A"o of all 
groups (5 = <G;f0,f\>, where f0(x, y) = xy,f\(x, y) = xy-1 and the class K\ 
of all algebras <L;f0,f\> where S is a lattice, fo(x,y) = x\ly, f\(x,y) = 
= XA y, are independent. In Example 3 it is shown tha t KVi, i = 0, 1, ...,?? — 1, 
are independent. Hence K\ and Kp. are independent for each i e {0,1, — 
n —- 1}. Because K\ has only idempotent operations, using Theorem 4 more 
times we get tha t K\, KVo, KPl, ..., KPn_x are independent, too. (Note that 
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the independence of these classes can also be obtained by using Theorem 3.) 
The same result holds if we replace the class jKi of Example 8 by the class of all 
skew-lattices from Example 2 or if we replace the mentioned classes by the 
classes of all algebras <A;fo,fi,f2> where K± is the class of Brouwerian 
lattices (f0(x, y) = x\/ y, fi(x, y) = xA y, f2(x, y) = x:y) and Kpi (i = 0, 1, . . . , 
n — 1) is the class of rings of characteristic pt (fo(x, y) = x -\- y, fi(x, y) = 
= x — y, h(x, y) = x . y). 
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