Matematický časopis

Hilda Draškovičová

Independence of Equational Classes

Matematický časopis, Vol. 23 (1973), No. 2, 125--135
Persistent URL: http://dml.cz/dmlcz/126816

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

INDEPENDENCE OF EQUATIONAL CLASSES

HILDA DRAŠKOVIČOVĀ, Bratislava

Preliminaries. Equational classes $K_{0}, K_{1}, \ldots, K_{n-1}$ of the same type are said to be independent (for $i=0,1$ see [6]) if there exists an n-ary polynomial symbol p [5] such that the identity $p\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=x_{i}$ holds in $\boldsymbol{K}_{i}, i=$ $=0,1, \ldots, n-1$. (We shall also say that the set $\left\{K_{0}, K_{1}, \ldots, K_{n-1}\right\}$ is independent.) $K_{0} \vee K_{1} \vee \ldots \vee K_{n-1}$ will denote the smallest equational class containing all K_{i}, and $K_{0}><K_{1}><\ldots><K_{n-1}$ will denote the class of all algebras which are isomorphic to an algebra of the form $\mathfrak{H}_{0}><\mathfrak{H}_{1}><\ldots><\mathfrak{H}_{n-1}$, $\mathfrak{H}_{i} \in K_{i}, i=0,1, \ldots, n-1$. A set $\left\{\Theta_{\gamma}: \gamma \in \Gamma\right\}$ of congruence relations on an algebra $\mathfrak{A}=<A ; F>$ is called absolutely permutable ${ }^{1}$) ([7], [9]) if for any family $\left(x_{\gamma}: \gamma \in \Gamma\right)$ of elements of A such that $x_{\alpha} \equiv x_{\beta}\left(\vee\left\{\Theta_{\gamma}: \gamma \in \Gamma\right\}\right)$ for any $\alpha, \beta \in \Gamma$, there exists $x \in A$ with $x \equiv x_{\gamma}\left(\Theta_{\gamma}\right)$ for any $\gamma \in \Gamma$. Note that any subset of an absolutely permutable set S of congruence relations is absolutely permutable, in particular any two congruence relations of S are permutable. But the pairwise permutability of S is not sufficient to the absolute permutability of S. We shall use the symbols ω and , for the least and the greatest congruence relations. The symbol \cong will denote an isomorphism.

1. Statement of the results

Theorem 1. Equational classes $K_{i}, i=0,1, \ldots, n-1$, are independent if and only if the following conditions (1) and (2), or (1) and (2'), or (1) and (2') are satisfied:
(1). $K_{0} \wedge K_{1} \wedge \ldots \wedge K_{n-1}$ consists of one-element algebras only.
(2) For every $\mathfrak{A} \in K_{0} \vee K_{1} \vee \ldots \vee K_{n-1}$ the smallest congruence relations Θ_{i} on \mathfrak{A} such that $\mathfrak{H} / \Theta_{i} \in K_{i}, i=0,1, \ldots, n-1$, are absolutely permutable.
(2') Given $\mathfrak{H} \in K_{0} \vee K_{1} \vee \ldots \vee K_{n-1}$ and arbitrary congruence relations Φ_{i} on \mathfrak{A} such that $\mathfrak{H} / \Phi_{i} \in K_{i}, i=0,1, \ldots, n-1$, then $\Phi_{i}(i=0,1, \ldots, n-1)$ are absolutely permutable.

[^0]($\mathfrak{2}^{\prime \prime}$) For every $\mathfrak{H} \in K_{0} \vee K_{1} \vee \ldots \vee K_{n-1}$, arbitrary congruence relations Φ_{i} on \mathfrak{A} such that $\mathfrak{U} / \Phi_{i} \in K_{i}, i=0,1, \ldots, n-1$, satisfy $\Phi_{i} . \wedge\left\{\Phi_{j}: j \neq i, j=\right.$ $=0,1, \ldots, n-1\}=\vee\left\{\Phi_{j}: j=0,1, \ldots, n-1\right\}$ for each $i \in\{0,1, \ldots$, $n-1\}$.
Theorem 2. Let each $\mathfrak{H} \in K_{0} \vee K_{1} \vee \ldots \vee K_{n-1}$ have a distributive congruence lattice and let any two congruence relations on \mathfrak{H} be permutable. Then $K_{i}, i=$ $=0,1, \ldots, n-1$, are independent if and only if (1) and one of the two following conditions hold:
(2a) For each $\mathfrak{H} \in K_{0} \vee K_{1} \vee \ldots \vee K_{n-1}$ the smallest congruence relations Θ_{i} on \mathfrak{N} such that $\mathfrak{H} / \Theta_{i} \in K_{i}, i=0,1, \ldots, n-1$, satisfy $\Theta_{k} \vee \Theta_{j}=\vee\left\{\Theta_{i}: i=\right.$ $=0,1, \ldots, n-1\}$ for each $k \neq j, k, j \in\{0,1, \ldots, n-1\}$.
(2'a) For each $\mathfrak{H} \in K_{0} \vee K_{1} \vee \ldots \vee K_{n-1}$ and arbitrary congruence relations Φ_{i} on \mathfrak{H} such that $\mathfrak{A} / \Phi_{i} \in K_{i}, i=0,1, \ldots, n-1$, the eguality $\Phi_{k} \vee \Phi_{j}=\vee\left\{\Phi_{i}: i=\right.$ $=0,1, \ldots, n-1\}$ holds for each $k \neq j, k, j \in\{0,1, \ldots, n-1\}$.
Theorem 3. Equational classes $K_{0}, K_{1}, \ldots, K_{n-1}$ are independent if and only if for each $i \in\{1,2, \ldots, n-1\}, K_{i}$ and $K_{0} \vee K_{1} \vee \ldots / K_{i-1}$ are independent.

Corollary 1. Let $K_{0}, K_{1}, \ldots, K_{n-1}$ be independent equational classes. Then any subset of $\left\{K_{0}, K_{1}, \ldots, K_{n-1}\right\}$ is independent too. In particular K_{i}, K_{j} are independent for any $i \neq j, i, j \in\{0, \ldots, n-1\}$.

Remark 1. If each proper subset of $\left\{K_{0}, K_{1}, \ldots, K_{n-1}\right\}$ is independent then $K_{0}, K_{1}, \ldots, K_{n-1}$ need not be independent as it can be seen in Example 6, but this holds in special cases (see Theorem 4 and Example 8).

Theorem 4. Let $K_{0}, K_{1}, \ldots, K_{n-1}(n>2)$ be equational classes (of the same type) and let $k \in\{2,3, \ldots, n-1\}$ exist such that the following conditions are satisfied:
(3) Each k classes of the set $\left\{K_{0}, K_{1}, \ldots, K_{n-1}\right\}$ are independent.
(4) There exist $n-k$ classes of the set $\left\{K_{0}, K_{1}, \ldots, K_{n-1}\right\}$ which have only idempotent operations.
Then $K_{0}, K_{1}, \ldots, K_{n-1}$ are independent.
Remark 2. The number $n-k$ of (4) in Theorem 4 cannot be lowered in general, as it can be seen in Example 7.

Theorem 5. Let $K_{i}, i=0,1, \ldots, n-1$, be independent.Then $K_{0} \vee K_{1} \vee \ldots \vee$ $\vee K_{n-1}=K_{0}><K_{1}><\ldots><K_{n-1}$ and each algebra $\mathfrak{A} \in K_{0} \vee K_{1} \vee \ldots \vee K_{n-1}$ has, up to isomorphism, a unique representation $\mathfrak{A} \cong \mathfrak{A}_{0}><\mathfrak{A}_{1}><\ldots><\mathfrak{A}_{n-1}$, $\mathfrak{A}_{i} \in K_{i}, i=0,1, \ldots, n-1$.

Remark 3. In particular case $n=2$ the Theorem 5 yields a somewhat
stronger result ${ }^{2}$) than [6, Theorem 1]. In [6, Theorem 1] to get the unicity, the modularity of the lattice of all congruence relations of each algebra $\mathfrak{A} \in K_{\mathbf{0}} \vee K_{1}$ is postulated.

Remark 4. In [6, Theorem 2] the following assertion is proved: "Let $K_{0} \wedge K_{1}$ consist of one-element algebras only and let every $\mathfrak{A} \in K_{0} \vee K_{1}$ have a modular congruence lattice. Then $K_{0} \vee K_{1}=K_{0}><K_{1}$ if and only if K_{0} and K_{1} are independent." The "only if" part of this assertion cannot be enlarged to the case of more than two equational classes (as the Example 4 shows), even if we replace modularity by distributivity (see Remark 6 in §3). One way of enlarging of this part of the assertion is given in Theorems 6 and 7.

Remark 5. If $K_{i}, i=0,1, \ldots, n-1$, are independent then using Theorem 5 and results of [8], analogously as in [6], we get that in Theorem 2 the condition "each $\mathfrak{H} \in K_{0} \vee K_{1} \vee \ldots \vee K_{n-1}$ has a distributive congruence lattice and any two congruence relations on \mathfrak{A} are permutable" can be replaced by "each $\mathfrak{U}_{i} \in K_{i}, i=0, \ldots, n-1$, has a distributive congruence lattice and any two congruence relations on \mathfrak{H}_{i} are permutable".

Theorem 6. Let the following conditions be satisfied:
(5) $K_{0} \vee K_{1} \vee \ldots \vee K_{n-1}=K_{0}><K_{1}><\ldots><K_{n-1}$.
(6) For each $i \in\{1,2, \ldots, n-1\}$, $\left(K_{0} \vee K_{1} \vee \ldots \vee K_{i-1}\right) \wedge K_{i}$ consists of one--element algebras only.
(7) Every algebra $\mathfrak{A} \in K_{0} \vee K_{1} \vee \ldots \vee K_{n-1}$ has a modular congruence lattice. Then $K_{0}, K_{1}, \ldots, K_{n-1}$ are independent.

Theorem 7. Let the following conditions be satisfied:
(5) $K_{0} \vee K_{1} \vee \ldots \vee K_{n-1}=K_{0}><K_{1}><\ldots><K_{n-1}$.
(6') For tach $i \neq j, i, j=0,1, \ldots, n-1, K_{i \wedge} K_{j}$ consists of one-element algebras only.
(7') Every algebra $\mathfrak{A} \in K_{0} \vee K_{1} \vee \ldots \vee K_{n-1}$ has a distributive congruence lattice. Then $K_{0}, K_{1}, \ldots, K_{n-1}$ are independent.

2. Proofs of the theorems

We shall use the following assertions:
Lemma \mathbf{A} ([7], [9]). Let \mathfrak{H} be an algebra. There exists a one-one correspondence between the non-trivial direct decompositions $\Pi\left(\mathfrak{U}_{\gamma}: \gamma \in \Gamma\right)$ of the algebra \mathfrak{H} and

[^1]the sets $S=\{\Theta \gamma: \gamma \in \Gamma\}$ of non-trivial congruence relations (different from ω and !) on \mathfrak{A} having the folloving properties:
(i) $\backslash\left\{\Theta_{y}: \gamma \in \Gamma\right\}=\omega$.
(ii) $\vee\left\{\Theta_{y}: \gamma \in \Gamma\right\}=\imath$.
(iii) S is alsolutely permutable.

Given the set S, the corresponding direct decomposition is

$$
\mathfrak{A} \cong \Pi\left(\mathfrak{A} / \Theta_{\gamma}: \gamma \in \Gamma\right)
$$

Lemma B [3]. A set $\left\{\Theta_{0}, \Theta_{1}, \ldots, \Theta_{n-1}\right\}$ of congruence relations on an algebra \mathfrak{A} is alsolutely permutable if and only if for every $i \in\{0,1, \ldots, n-1\}$ the next condition holds:

$$
\Theta_{i} . \wedge\left\{\Theta_{j}: j \neq i, j=0,1, \ldots, n-1\right\}=\vee\left\{\Theta_{j}: j=0.1 . \ldots . n-1\right\}
$$

Proof of Theorem 1. The conditions ($2^{\prime \prime}$) and (2^{\prime}) are equivalent by Lemma B.

Necessity. Let $x_{i}, i=0,1, \ldots, n-1$, be elements of $\mathfrak{A} \in K_{0} / K^{\prime} / \ldots \wedge K_{n-1}$; then $p\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=x_{i}, i=0,1, \ldots, n-1$, hence (I) holds. Now we shall show (2'), hence (2) too. Let $x_{0}, x_{1}, \ldots, x_{n-1}$ be elements of $\mathfrak{H} \in K_{0} \vee K$ $\vee \ldots \vee K_{n-1}$. Then $\left[x_{i}\right] \Phi_{i}=p\left(\left[x_{0}\right] \Phi_{i}, \ldots,\left[x_{n-1}\right] \Phi_{i}\right)=\left[p\left(x_{0}, x_{1} \ldots, x_{n-1}\right)\right] \Phi_{i}$ hence $x_{i} \equiv p\left(x_{0}, x_{1} \ldots, x_{n-1}\right)\left(\Phi_{i}\right), i=0,1, \ldots, n-1$. It follows that $\left\{\Phi_{i}: i=\right.$ $=0,1, \ldots, n-1\}$ is absolutely permutable.

Sufficiency. Let (1), (2) hold. Let \mathfrak{F} be the free algebra over $K_{0} \vee K_{1} \backslash^{\prime} \ldots \vee K_{n-1}$ with n generators $x_{i}, i=0,1, \ldots, n-1$. Let $\Theta_{i}, i=0,1, \ldots n-1$, be the smallest congruence relations on \mathfrak{F} such that $\mathfrak{F} / \Theta_{i} \in K_{i}, i=0,1, \ldots n-1$. Since $\mathfrak{F} / \Theta_{0} \vee \ldots \vee \Theta_{n-1}$ is a homomorphic image of $\mathfrak{F} / \Theta_{i}, i=0,1 . \ldots, n-1$, then $\tilde{\mathscr{\delta}} / \Theta_{0} \vee \ldots \vee \Theta_{n-1} \in K_{i}$ for all $i=0,1, \ldots, n-1$, hence $\Theta_{0} \vee \Theta_{1} \ldots \vee \Theta_{n-1}=$ $=\iota$. According to the definition of $\Theta_{i}, \mathfrak{F} / \Theta_{i}$ is the free algebra over K_{i} with n generators $\left[x_{0}\right] \Theta_{i},\left[x_{1}\right] \Theta_{i}, \ldots,\left[x_{n-1}\right] \Theta_{i}, i=0.1, \ldots, n-1$. In view of (2) and $\Theta_{0} \vee \Theta_{1} \vee \ldots \vee \Theta_{n-1}=\iota$, we get that for the elements $x_{0}, x_{1} \ldots, x_{n-1} \in \mathscr{F}$ there exists $p\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in \mathfrak{F}$ such that $x_{i} \equiv p\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)\left(\Theta_{i}\right)$, $i=0,1, \ldots, n-1$. It follows $\left[x_{i}\right] \Theta_{i}=\left[p\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)\right] \Theta_{i}$. hence $\left[x_{i}\right] \Theta_{i}=$
 the algebra $\tilde{y}_{l} \Theta_{i}$ is free over K_{i} with the generators $\left[x_{0}\right] \Theta_{i} \ldots \ldots\left[x_{n-1}\right] \Theta_{i}$, then the identity $p\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)=a_{i}$ holds in any $K_{i}, i=0.1 . \ldots n-1$. Hence $K_{i}, i=0,1, \ldots, n-1$, are independent.

Proof of Theorem 2. By [5, Chap. V., Exercise 68] the Chinese remainder theorem holds in any $\mathfrak{H} \in K_{0} \vee \ldots \vee K_{n-1}$. Hence a set $\left\{\Phi_{0}, \Phi_{1} \ldots, \Phi_{n-1}\right\}$ of congruence relations on $\mathfrak{A} \in K_{0} \vee \ldots \vee K_{n-1}$ is absolutely permutable if and only if $\Phi_{k} \vee \Phi_{j}=\vee\left\{\Phi_{i}: i=0,1, \ldots, n-1\right\}$ holds for any $k \neq j . k, j \in$ $\in\{0, \ldots, n-1\}$ (see Lemma B). Now it suffices to use Theorem 1.

Proof of Theorem 3. Let $K_{0}, K_{1}, \ldots, K_{n-1}$ be independent, then there
exists an n-ary polynomial symbol p such that $p\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=x_{j}$ in $K_{j}, j=0,1, \ldots, n-1$. Now it is sufficient to take the binary polynomial symbol $q\left(x_{0}, x_{i}\right)=p\left(x_{0}, x_{0}, \ldots, x_{0}, x_{i}, x_{0}, \ldots, x_{0}\right)$. The identity $q\left(x_{0}, x_{i}\right)=x_{0}$ holds in any $K_{j}, j=0, \ldots, i-1$, hence it holds in $K_{0} \vee K_{1} \vee \ldots \vee K_{i-1}$ too, and $q\left(x_{0}, x_{i}\right)=x_{i}$ in K_{i}. Hence K_{i} and $K_{0} \vee K_{1} \vee \ldots \vee K_{i-1}$ are independent. The converse assertion will be proved by induction. For $n=2$ it is trivial. Let it hold for an index n and let the classes $K_{0}, K_{1}, \ldots, K_{n}$ satisfy the conditions of Theorem 3. Because of independence of $K_{0}, K_{1}, \ldots, K_{n-1}$ there exists an n-ary polynomial symbol s such that $s\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=x_{j}$ in $K_{j}, j=0,1, \ldots, n-1$. Because of independence of $K_{0} \vee K_{1} \vee \ldots \vee K_{n-1}$ and K_{n}, there exists a binary polynomial symbol t such that $t\left(x_{0}, x_{1}\right)=x_{0}$ in $K_{0} \vee K_{1} \vee \ldots \vee K_{n-1}$ and $t\left(x_{0}, x_{1}\right)=x_{1}$ in K_{n}. Now it suffices to take the $(n+1)$-ary polynomial symbol $r\left(x_{0}, x_{1}, \ldots, x_{n}\right)=t\left(s\left(x_{0}, x_{1}, \ldots, x_{n-1}\right), x_{n}\right)$. In $K_{j}, j=0,1, \ldots, n-1, r\left(x_{0}, x_{1}, \ldots, x_{n}\right)=s\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=x_{j}$ holds. In $K_{n}, r\left(x_{0}, x_{1}, \ldots, x_{n}\right)=x_{n}$. Hence $K_{0}, K_{1}, \ldots, K_{n}$ are independent.

Proof of Theorem 4 . We shall proceed by induction on n. First let $n=3$. Then $k=2$. Let K_{0} be the class having only idempotent operations. Since $K_{i}, i=0,1,2$, are pairwise independent hence for each $i, j \in\{0,1,2\}$, $i<j$, there exists a polynomial symbol $p_{i j}$ such that $p_{i j}\left(x_{i}, x_{j}\right)=x_{i}$ in K_{i} and $p_{i j}\left(x_{i}, x_{j}\right)=x_{j}$ in K_{j}. Now it suffices to take the polynomial symbol $q\left(x_{0}, x_{1}, x_{2}\right)=p_{12}\left(p_{01}\left(x_{0}, x_{1}\right), p_{02}\left(x_{0}, x_{2}\right)\right)$. Obviously $q\left(x_{0}, x_{1}, x_{2}\right)=x_{i}$ in K_{i}, $i=0,1,2\left(\right.$ for $q\left(x_{0}, x_{1}, x_{2}\right)=p_{12}\left(x_{0}, x_{0}\right)=x_{0}$ in $\left.K_{0}\right)$, hence $K_{i}, i=0,1,2$, are independent. Assume now that the assertion of the Theorem holds for $n=m$ and let the assumptions of the Theorem be fulfilled for $n=m+1$. Let $K_{0}, K_{1}, \ldots, K_{m-k}$ be the classes having only idempotent operations. Assume first $k<m$. In the set $\left\{K_{0}, K_{1}, \ldots, K_{m-1}\right\}$ the classes K_{0}, K_{1}, \ldots, K_{m-k-1} have only idempotent operations and each k classes are independent, hence by induction assumption
(b) $\quad K_{i}, i=0,1, \ldots, m-1$, are independent.

By the similar argument (by replacing K_{m-1} by K_{m}) we get that
(c) $\quad K_{i}, i=0,1, \ldots, m-2, m,(i \neq m-1)$ are independent.

If $k=m$ the assertions (b), (c) are trivial, for by the assumption each k classes are independent. Using Corollary 1 and the conditions (b), (c) we get:
(d) For each $h \in\{1, \frown, \ldots, k-1, k\}$ the classes $K_{0}, \ldots, K_{m-k}, K_{m+h-k}$ are independent.
Hence for each $h \in\{1,2, \ldots, k\}$ there exists an $(m+2-k)$-ary polynomial symbol p_{h} such that $p_{h}\left(x_{0}, x_{1}, \ldots, x_{m-k}, x_{m+h-k}\right)=x_{j}$ in $K_{j}, j=0,1, \ldots$, $m-k, m+h-k$. Using condition (3) for $n=m+1$ we get that the classes $K_{m+h-k}, h=1,2, \ldots, k$. are independent, hence there exists an k-ary polynomial symbol q such that $q\left(x_{m+1-k}, x_{m+2-k}, \ldots, x_{m+h-k} \ldots, x_{m}\right)=x_{m+h-k}$
in $K_{m+h-k}, h=1, \ldots, k$. Now it suffices to take the $(m+1)$-ary polynomial symbol $p\left(x_{0}, x_{1}, \ldots, x_{m}\right)=q\left(p_{1}\left(x_{0}, \ldots, x_{m-k}, x_{m+1-k}\right), p_{2}\left(x_{0}, \ldots, x_{m-k}, x_{m+2-k}\right)\right.$, $\left.\ldots, p_{h}\left(x_{0}, \ldots, x_{m-k}, x_{m+h-k}\right), \ldots, p_{k}\left(x_{0}, \ldots, x_{m-k}, x_{m}\right)\right)$. In $K_{j}, j=0,1, \ldots$, $m-k, p\left(x_{0}, \ldots, x_{m}\right)=x_{j}$ because of idempotent operations. In K_{m+h-k}, $h=1,2, \ldots, k, p\left(x_{0}, x_{1}, \ldots, x_{m}\right)=p_{h}\left(x_{0}, x_{1}, \ldots, x_{m-k}, x_{m+h-k}\right)=x_{m+h-k}$. Hence $K_{0}, K_{1}, \ldots, K_{m}$ are independent.

Proof of Theorem $5 .{ }^{3}$) We proceed by induction. First we shall prove the Theorem for $n=2$. Let K_{0}, K_{1} be independent. We shall show that:
(8) $K_{0}><K_{1}$ is equational class and
(9) $\quad \mathfrak{H}_{0}><\mathfrak{H}_{1} \cong \mathfrak{A} \cong \mathfrak{B}_{0}><\mathfrak{B}_{1}, \mathfrak{H}_{i} \in K_{i}, \mathfrak{B}_{i} \in K_{i}, i=0,1$ imply $\mathfrak{H}_{i} \cong \mathfrak{B}_{i}$, $i=0,1$.
Proof of (8): a) Let $\mathfrak{B}=<B ; F>$ be a subalgebra of $\mathfrak{A}_{0}><\mathfrak{H}_{1}, \mathfrak{A}_{i} \in \boldsymbol{K}_{i}$, $i=0,1$. Denote $B_{0}=\left\{b_{0}\right.$: there exists $\left.a_{1} \in \mathfrak{A}_{1},\left(b_{0}, a_{1}\right) \in B\right\}, B_{1}=\left\{b_{1}\right.$: there exists $\left.a_{0} \in \mathfrak{H}_{0},\left(a_{0}, b_{1}\right) \in B\right\}$. It is clear that $\mathfrak{B}_{i}=<B_{i} ; F>$ is a subalgebra of $\mathfrak{A}_{i}, i=0,1$. We shall show that $B=B_{0}><B_{1}$. If $\left(b_{0}, b_{1}\right) \in B_{0}><B_{1}$, then there exist $a_{i} \in \mathfrak{A}_{i}, i=0,1$, such that $\left(a_{0}, b_{1}\right),\left(b_{0}, a_{1}\right) \in B$. This implies $\left(b_{0}, b_{1}\right)=\left(p\left(b_{0}, a_{0}\right), p\left(a_{1}, b_{1}\right)\right)=p\left(\left(b_{0}, a_{1}\right),\left(a_{0}, b_{1}\right)\right) \in B$. Hence $B \supset B_{0}><B_{1}$. The converse inclusion is trivial.
b) To prove that $K_{0}><K_{1}$ is closed under epimorphic images we use the following easy assertions.

Let $h: \mathfrak{A} \rightarrow \mathfrak{H}^{\prime}$ be an epimorphism of algebras and Θ_{h} the corresponding congruence relation on $\mathfrak{A}\left(x \equiv y\left(\Theta_{h}\right)\right.$ iff $\left.h(x)=h(y)\right)$. Let Φ be a congruence relation on \mathfrak{A} which is permutable with Θ_{h}. Define the relation Φ^{\prime} on \mathfrak{H}^{\prime} as follows. $x^{\prime} \equiv y^{\prime}\left(\Phi^{\prime}\right)$ if $x, y \in \mathfrak{H}$ exist such that $x \equiv y(\Phi)$ and $x^{\prime}=h(x)$, $y^{\prime}=h(y)$. Then Φ^{\prime} is a congruence relation on \mathfrak{A}^{\prime} and the mapping $h^{\prime}: \mathfrak{H} / \Phi \rightarrow$ $\rightarrow \mathfrak{A}^{\prime} / \Phi^{\prime}$ defined by $h:[x] \Phi \mapsto[h(x)] \Phi^{\prime}$ is an epimorphism. If Φ_{1}, Φ_{2} are congruence relations on \mathfrak{A}, both permutable with Θ_{h}, such that $\Phi_{1} . \Phi_{2}=\imath$ then the corresponding congruence relations $\Phi_{1}^{\prime}, \Phi_{2}^{\prime}$ on \mathfrak{A}^{\prime} satisfy $\Phi_{1}^{\prime} . \Phi_{2}^{\prime}=\mathrm{c}$.

Now let $h: \mathfrak{A}_{0}><\mathfrak{A}_{1} \rightarrow \mathfrak{C}, \mathfrak{A}_{i} \in K_{i}, i=0,1$, be an epimorphism. Let Φ_{0}, Φ_{1} be the congruence relations on $\mathfrak{H}_{0} \times \mathfrak{H}_{1}$ corresponding to the direct decomposition $\mathfrak{H}_{0}><\mathfrak{A}_{1}$ (Lemma A). Φ_{0} and Θ_{h} are permutable: Let $\left(a_{0}, a_{1}\right)$. $\left(b_{0}, b_{1}\right),\left(c_{0}, c_{1}\right) \in \mathfrak{H}_{0}><\mathfrak{A}_{1}$ and $\left(a_{0}, a_{1}\right) \Phi_{0}\left(b_{0}, b_{1}\right) \Theta_{h}\left(c_{0}, c_{1}\right)$. Then $a_{0}=b_{0}$ and $h\left(b_{0}, b_{1}\right)=h\left(c_{0}, c_{1}\right)$. Further $h\left(c_{0}, a_{1}\right)=h\left(p\left(c_{0}, a_{0}\right), p\left(c_{1}, a_{1}\right)\right)=h\left(p\left(\left(c_{0}, c_{1}\right)\right.\right.$, $\left.\left.\left(a_{0}, a_{1}\right)\right)\right)=p\left(h\left(c_{0}, c_{1}\right), h\left(a_{0}, a_{1}\right)\right)=p\left(h\left(b_{0}, b_{1}\right), h\left(a_{0}, a_{1}\right)\right)=h\left(p\left(\left(b_{0}, b_{1}\right)\right.\right.$,

[^2]$\left.\left.\left(a_{0}, a_{1}\right)\right)\right)=h\left(p\left(b_{0}, a_{0}\right), p\left(b_{1}, a_{1}\right)\right)=h\left(a_{0}, a_{1}\right)$, hence $\left(a_{0}, a_{1}\right) \Theta_{h}\left(c_{0}, a_{1}\right) \Phi_{0}\left(c_{0}, c_{1}\right)$. Similarly, Φ_{1} and Θ_{h} are permutable. By the above assertions h induces congruence relations $\Phi_{0}^{\prime}, \Phi_{1}^{\prime}$ on \mathbb{C} such that $\Phi_{0}^{\prime} . \Phi_{1}^{\prime}=\imath$ and $\mathbb{C} / \Phi_{i}^{\prime}$ is an epimorphic image of $\mathfrak{A}_{0}><\mathfrak{A}_{1} / \Phi_{i} \cong \mathfrak{A}_{i}$, hence $\mathfrak{C}_{/} \Phi_{i}^{\prime} \in K_{i}, i=0$, 1 . It remains to show that $\Phi_{0}^{\prime} \wedge \Phi_{1}^{\prime}=\omega$. If $c \equiv d\left(\Phi_{0}^{\prime} \wedge \Phi_{1}^{\prime}\right)$ then $c=h\left(a_{0}, a_{1}\right), d=h\left(a_{0}, b_{1}\right), c=$ $=h\left(e_{0}, e_{1}\right), d=h\left(f_{0}, e_{1}\right)$. Because $\mathbb{C} \in K_{0} \vee K_{1}$ and $p(x, x)=x$ holds in K_{0} and in K_{1} too, we get $c=p(c, c)=p\left(h\left(a_{0}, a_{1}\right), h\left(e_{0}, e_{1}\right)\right)=h\left(p\left(\left(a_{0}, a_{1}\right)\right.\right.$, $\left.\left.\left(e_{0}, e_{1}\right)\right)\right)=h\left(p\left(a_{0}, e_{0}\right), p\left(a_{1}, e_{1}\right)\right)=h\left(a_{0}, e_{1}\right)$. By the same argument we get $d=h\left(a_{0}, e_{1}\right)$ hence $c=d$. By [1, Chap. VI., Th. 22], (8) holds. Now we prove (9): Let $\mathfrak{B}_{0}><\mathfrak{B}_{1} \cong \mathfrak{A} \cong \mathfrak{A}_{0}><\mathfrak{H}_{1}, \mathfrak{H}_{i}, \mathfrak{B}_{i} \in K_{i}, i=0$, 1. There exists an isomorphism $i: \mathfrak{A}_{0}><\mathfrak{H}_{1} \rightarrow \mathfrak{B}_{0}><\mathfrak{B}_{1}$. We have to show $\mathfrak{H}_{i} \cong \mathfrak{B}_{i}, i=0$, l. We shall prove $\mathfrak{A}_{0} \cong \mathfrak{B}_{0}$. First we show:
$\left(\mathrm{a}_{1}\right) \quad i(x, y)=\left(x_{1}, y_{1}\right) \quad$ and $\quad i\left(x, y_{2}\right)=\left(x_{2}, z_{1}\right) \quad$ imply $\quad x_{1}=x_{2}$.
$\left(\mathrm{a}_{2}\right) \quad i(x, y)=\left(x_{1}, y_{1}\right) \quad$ and $\quad i\left(x_{2}, y\right)=\left(x_{3}, y_{2}\right) \quad$ imply $\quad y_{1}=y_{2}$.
From the assumption of (a_{1}) we get $\left(x_{2}, y_{1}\right)=\left(p\left(x_{2}, x_{1}\right), p\left(z_{1}, y_{1}\right)\right)=p\left(\left(x_{2}, z_{1}\right)\right.$, $\left.\left(x_{1}, y_{1}\right)\right)=i p\left(\left(x, y_{2}\right),(x, y)\right)=i\left(p(x, x), p\left(y_{2}, y\right)\right)=i(x, y)=\left(x_{1}, y_{1}\right)$. Hence $x_{2}=x_{1}$. The proof of (a_{2}) is similar. Now we shall define a mapping $t: \mathfrak{A}_{0} \rightarrow \mathfrak{B}_{0}$ as follows: Let $t(x)$ be an element of \mathfrak{B}_{0} such that for an $y \in \mathfrak{A}_{1}, i(x, y)=$ $=\left(t(x), y_{1}\right)$. We assert that t is an isomorphism. t is surjective, because if $x_{1} \in \mathfrak{B}_{0}, y_{1} \in \mathfrak{B}_{1}$ and if we denote $(x, y)=i^{-1}\left(x_{1}, y_{1}\right)$, then $i(x, y)=\left(x_{1}, y_{1}\right)$, hence $x_{1}=t(x) . t$ is injective, for if $t(x)=t\left(x_{1}\right)$ then for $y \in \mathfrak{A}_{1}$ we get $i(x, y)=$ $=\left(t(x), y_{1}\right), i\left(x_{1}, y\right)=\left(t\left(x_{1}\right), y_{2}\right)$. By $\left(\mathrm{a}_{2}\right), y_{1}=y_{2}$. Hence $i(x, y)=i\left(x_{1}, y\right)$. This implies $(x, y)=\left(x_{1}, y\right)$, hence $x=x_{1} . t$ is a homomorphism: Let f be an n-ary operation, $x_{1}, \ldots, x_{n} \in \mathfrak{A}_{0}, y_{1}, \ldots, y_{n} \in \mathfrak{H}_{1}$. Let $i\left(x_{k}, y_{k}\right)=\left(t\left(x_{k}\right), y_{k}^{0}\right)$. Then $\left(f\left(t\left(x_{1}\right), \ldots, t\left(x_{n}\right)\right), f\left(y_{1}^{0}, \ldots, y_{n}^{0}\right)\right)=f\left(\left(t\left(x_{1}\right), y_{1}^{0}\right), \ldots,\left(t\left(x_{n}\right), y_{n}^{0}\right)\right)=$ $=f\left(i\left(x_{1}, y_{1}\right), \ldots, i\left(x_{n}, y_{n}\right)\right)=i f\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)=i\left(f\left(x_{1}, \ldots, x_{n}\right)\right.$, $\left.f\left(y_{1}, \ldots, y_{n}\right)\right)$. This implies $t f\left(x_{1}, \ldots, x_{n}\right)=f\left(t\left(x_{1}\right), \ldots, t\left(x_{n}\right)\right)$. Hence $\mathfrak{A}_{0} \cong \mathfrak{B}_{0}$. $\mathfrak{A}_{1} \cong \mathfrak{B}_{1}$ can be proved analogously.

Now let Theorem 5 hold for $n=k$ and let $K_{0}, K_{1}, \ldots, K_{k}$ be independent. Using Theorem 3 we get that $K_{0} \vee K_{1} \vee \ldots \vee K_{k-1}$ and K_{k} are independent, hence $\left(K_{0} \vee K_{1} \vee \ldots \vee K_{k-1}\right) \vee K_{k}=\left(K_{0} \vee K_{1} \vee \ldots \vee K_{k-1}\right)><K_{k}$ and any algebra $\mathfrak{A} \in K_{0} \vee K_{1} \vee \ldots \vee K_{k}$ has, up to isomorphism, a unique representation $\mathfrak{H} \cong$ $\cong \mathfrak{B}><\mathfrak{A}_{k}$ where $\mathfrak{B} \in K_{0} \vee \ldots \vee K_{k-1}, \mathfrak{A}_{k} \in K_{k}$. By Corollary $1, K_{0}, K_{1}, \ldots, K_{k-1}$ are independent, too, and using the induction assumption we get $K_{0} \vee \ldots \vee$ $\vee K_{k-1}=K_{0}><\ldots><K_{k-1}$ and \mathfrak{B} has, up to isomorphism, a unique representation $\mathfrak{B} \supseteq \mathfrak{A}_{0}><\ldots><\mathfrak{A}_{k-1}, \mathfrak{H}_{i} \in K_{i}, i=0,1, \ldots, k-1$. Hence $K_{0} \vee K_{1} \vee$ $\vee \ldots \vee K_{k-1} \vee K_{k}=K_{0}><K_{1}><\ldots><K_{k-1}><K_{k} \quad$ and $\mathfrak{A} \cong \mathfrak{B}><\mathfrak{A}_{k} \cong \mathfrak{A}_{0}><$ $><\mathfrak{A}_{1}><\ldots><\mathfrak{A}_{k-1}><\mathfrak{A}_{k}$ where the representation is unique up to isomorphism. This completes the proof.

Proof of Theorem 6. We shall proceed by induction. For $n=2$ this theorem holds by [6, Theorem 2]. Let the theorem hold for $n=k$ and let the conditions (5), (6), (7) be satisfied for $n=k+1$. We assert that (5) holds for $n=k$, too. Indeed, let $\mathfrak{A} \in K_{0} \vee \ldots \vee K_{k-1} \subset K_{0} \vee \ldots . K_{k-1} \vee K_{k}=$ $=K_{0}><\ldots><K_{k-1}><K_{k}$, then $\mathfrak{A} \cong \mathfrak{A}_{0}><\mathfrak{A}_{1}><\ldots><\mathfrak{H}_{k}, \quad \mathfrak{H}_{i} \in K_{i}, \quad i=$ $=0,1, \ldots, k$. Hence $\mathfrak{A}_{k} \in K_{0} \vee \ldots \vee K_{k-1}$ because \mathfrak{A}_{k} is a homomorphic image of \mathfrak{Y}. With respect to (6), \mathfrak{H}_{k} is one-element algebra. Hence $\mathfrak{A} \cong \mathfrak{H}_{0}><\ldots><$ $><\mathfrak{N}_{k-1}$. By the induction assumption $K_{0}, K_{1}, \ldots, K_{k-1}$ are independent. Now the two classes K_{k} and $K_{0} \vee \ldots \vee K_{k-1}$ satisfy the assumptions of Theorem 6 for $n=2$ and this implies that K_{k} and $K_{0} \vee \ldots \vee K_{k-1}$ are independent. By Theorem 3, $K_{0}, K_{1}, \ldots, K_{k-1}, K_{k}$ are independent, too.

Proof of Theorem 7. We shall use Theorem 1. The condition (1) is obviously fulfilled. Now we shall prove the condition (2). Let $\mathfrak{A} \in K_{0} / \ldots \vee K_{n-1}$. Then (by Lemma A and (5)) $\mathfrak{H} \cong \mathfrak{H} / \Phi_{0}><\ldots><\mathfrak{H} / \Phi_{n-1}$, where $\mathfrak{H} / \Phi_{i} \in K_{i}$. $i=0,1, \ldots, n-1$, and $\left\{\Phi_{0}, \Phi_{1}, \ldots, \Phi_{n-1}\right\}$ is absolutely permutable. From Lemma A and Lemma B we get $\Phi_{h} \vee \Phi_{j}=\vee\left\{\Phi_{i}: i=0,1, \ldots n-1\right\}=$! for any $h \neq j, h, j=0,1, \ldots, n-1$. Let $\Theta_{i}, i=0,1, \ldots, n-1$, be the least congruence relations on \mathfrak{H} such that $\mathfrak{H} / \Theta_{i} \in K_{i}, i=0,1, \ldots n-1$. With respect to (6^{\prime}) we get $\Theta_{i} \vee \Theta_{j}=\iota$ for any $i \neq j, i, j=0,1 \ldots . n-1$. Using (7^{\prime}) we get:
$\Theta_{j} /\left(\wedge\left\{\Phi_{i}: i \neq j, i, j=0,1, \ldots, n-1\right\}\right)=$
$=\backslash\left\{\left(\Theta_{j} \vee \Phi_{i}\right): i \neq j, i=0,1, \ldots, n-1\right\}=\imath$. Then $\Phi_{j}=\Phi_{j \wedge}:=$
$=\Phi_{j} \wedge\left[\Theta_{j} \vee \wedge\left\{\Phi_{i}: i \neq j, i=0,1, \ldots, n-1\right\}\right]=\Theta_{j} \vee \omega=\Theta_{j}$
for each $j=0,1, \ldots, n-1$. Hence the set $\left\{\Theta_{0}, \Theta_{1}, \ldots . \Theta_{n-1}\right\}$ is absolutely permutable and $K_{0}, K_{1}, \ldots, K_{n-1}$ are independent.

3. Examples

The first two examples will give independent equational classes $K_{i}, i=$ $=0,1, \ldots, n-1$, (of the same type) such that not every algebra \mathfrak{N} of $K_{0} \vee K_{1} \vee \ldots \vee K_{n-1}$ has a modular congruence lattice.

Example 1. Let $K_{i}, i=0,1, \ldots, n-1$, consist of all algebras $\mathfrak{A}_{i}=$ $=<A_{i} ; f>$, where f is an n-ary operation and $f\left(x_{0}, \ldots, x_{n-1}\right)=x_{i}$ in K_{i}, $i=0,1, \ldots, n-1$. Then $K_{i}, i=0,1, \ldots n-1$, are independent (for it is sufficient to take $p\left(x_{0}, \ldots, x_{n-1}\right)=f\left(x_{0}, \ldots, x_{n-1}\right)$) hence $K_{0} \ldots K_{n-1}$ $=K_{0}><\ldots><K_{n-1}$. Any equivalence relation Ψ on $\mathfrak{A}_{i}(i \in\{0.1 \ldots, n-1\})$ is a congruence relation on $\mathfrak{A}_{i} \in K_{i}$, because $x_{j} \equiv y_{j}(\Psi), j=0.1 . \ldots, n-1$, imply $f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=x_{i} \equiv y_{i}=f\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)(\Psi)$. Hence by [1] congruence lattices on the algebras of K_{i} are not modular if card $A_{i}>3$.

Example 2. Let K_{0} consist of all groups $\mathscr{G}=<G ; f_{0}, f_{1}>$ where $f_{0}(x, y)$
$=x y, f_{1}(x, y)=x y^{-1}$. Let K_{1} consist of all skew-lattices (Schiefivcrbände [4]) $\Im=<S ; f_{0}, f_{1}>$ where $f_{0}(x, y)=x \wedge y, f_{1}(x, y)=x \vee y$. In K_{1} the identity $(x \wedge y) \vee y=y$ holds. K_{0} and K_{1} are independent for it suffices to set $p(x, y)=$ $=f_{1}\left(f_{0}(x, y), y\right)$. There are skew-lattices such that any equivalence relation on them is a congruence relation. For example the algebra $\mathscr{M}=\langle M ; \Lambda, \vee\rangle$ where $x \wedge y=x, x \vee y=y$ for any x, y of the set M is such a skew-lattice, hence by [1] the congruence lattice on \mathscr{M} is not modular if card $M>3$.

Example 3. Let $K_{p_{i}}$ (where $p_{i}, i=0,1, \ldots, n-1$, are distinct primes) denote the equational classes of Abelian groups satisfying $p_{i} x=0, i=$ $=0,1, \ldots, n-1$. Denote $m=p_{0} p_{1} \ldots p_{n-1}$ and $q_{i}=m_{/} p_{i}$. Let $t_{i} . i=$ $=0,1, \ldots, n-1$, be integers satisfying $q_{i} t_{i} \equiv 1\left(p_{i}\right)$. Then it suffices to set $p=q_{0} t_{0} x_{0}+q_{1} t_{1} x_{1}+\ldots+q_{n-1} t_{n-1} x_{n-1}$ because $q_{j} \equiv 0\left(p_{i}\right)$ for $i \neq j, i=$ $=0,1, \ldots, n-1$. It follows that $K_{p_{i}}, i=0,1, \ldots, n-1$, are independent hence $K_{p_{0}} \vee \ldots \vee K_{p_{n-1}}=K_{p_{0}}><\ldots><K_{p_{n-1}}$. The same result can be obtained if we replace $K_{p_{i}}(i=0,1, \ldots, n-1)$ by the class of all rings of the characteristic p_{i}.

Example 4 . We give an example of equational classes K_{0}, K_{1}, K_{2} with the following properties:
(a) $K_{0} \wedge K_{1} \wedge K_{2}$ consists of one-element algebras only.
(b) Every algebra $\mathfrak{A} \in K_{0} \vee K_{1} \vee K_{2}$ has a modular congruence lattice.
(c) $\quad K_{0} \vee K_{1} \vee K_{2}=K_{0}><K_{1}><K_{2}$.
(d) K_{0}, K_{1}, K_{2} are not independent.

Let C_{0}, C_{1}, C_{2} are the classes $K_{p_{i}}$ of Exercise 3 where $p_{i}=3,5,7$, respectively. Then $\quad K_{0}=C_{0}><C_{1}, \quad K_{1}=C_{1}><C_{2}, \quad K_{2}=C_{0}><C_{2} \quad$ and $\quad K_{0} \vee K_{1} \vee K_{2}=$ $=C_{0}><C_{1}><C_{2}$ are equational classes. The condition (a) can be easily verified. Since the algebras of the class $K_{0} \vee K_{1} \vee K_{2}$ are groups, the condition (b) is satisfied. Finally, let $\mathfrak{A}_{i} \in C_{i}(i=0,1,2)$ be groups having more than one element. Then the algebra $\mathfrak{A}_{0}><\mathfrak{H}_{1}><\mathfrak{H}_{2}$ has more than one representation as a direct product of algebras of $K_{i}(i=0,1,2)$. Hence K_{0}, K_{1}, K_{2} cannot be independent by Theorem 5 .

Remark 6. There are equational classes K_{0}, K_{1}, K_{2} satisfying conditions (a), (c), (d) of Example 4 and the next condition:
(b') Every algebra $\mathfrak{H} \in K_{0} \vee K_{1} \vee K_{2}$ has a distributive congruence lattice. Such an example can be constructed by the same way as in Example 4 by replacing classes C_{0}, C_{1}, C_{2} by the following classes: $C_{0}^{\prime}, C_{1}^{\prime}, C_{2}^{\prime}$ are classes of algebras $\mathfrak{H}=<A ; \wedge, \vee, f>$ where $<A ; \wedge, \vee>$ are lattices and $f\left(x_{0}, x_{1}, x_{2}\right)=$ $=x_{i}$ in $C_{i}^{\prime}, i=0,1,2$.

Example 5. As an application of Theorem 1 we shall show that the following classes K_{0}, K_{1} are not independent. Let K_{0}, K_{1} be equational classes of algebras $<A ; f_{0}, f_{1}, f_{2}>$, where in $K_{0}<A ; f_{0}, f_{1}, f_{2}>$ are lattices
with the least element (the operation f_{2}), $f_{0}(x, y)=x \wedge y, f_{1}(x, y)=x \vee y$. In $K_{1},<A ; f_{0}, f_{1}, f_{2}>$ are Boolean rings, $f_{0}(x, y)=x . y, f_{1}(x, y)=x+y$, (f_{2} represents the zero element). Let \mathfrak{A} be the two-element lattice with the elements o, i and \mathfrak{B} the two-element Boolean ring with the elements 0,1 . The subset $C=\{(0,0),(i, 0),(i, 1)\}$ of the direct product $\mathfrak{U}><\mathfrak{B}$ forms a subalgebra of $\mathfrak{A}><\mathfrak{B}$, hence $\mathfrak{C} \in K_{0} \vee K_{1}$. Consider the equivalence relations on $C:(a, b) \equiv(c, d)\left(\Theta_{0}\right)$ iff $a=c$, and $(a, b) \equiv(c, d)\left(\Theta_{1}\right)$ iff $b=d$. Then Θ_{0}, Θ_{1} are congruence relations on \mathbb{C} and $\mathfrak{C} / \Theta_{i} \in K_{i}$. Nevertheless Θ_{0} and Θ_{1} are not permutable, hence K_{0}, K_{1} are not independent (by Theorem 1). Moreover \mathfrak{C} cannot be represented as a direct product $\mathfrak{C}_{0}><\mathfrak{C}_{1}, \mathfrak{C}_{i} \in K_{i}$, hence $K_{0} \vee K_{1} \neq K_{0}><K_{1}$. (Note that the same result can be obtained with K_{0} as the class of distributive lattices with the least element.)

Example 6. We shall give an example of classes K_{0}, K_{1}, K_{2} such that for any couple $(i, j), i \neq j, i, j=0,1,2, K_{i}$ and K_{j} are independent but $K_{i}, i=0,1,2$, are not independent. Let $K_{i}, i=0,1,2$, be equational classè of algebras $<A_{i} ; f_{1}, f_{2}, f_{3}>$, where in $K_{0}: f_{1}(x, y)=x, f_{2}(x, y)=x, f_{3}(x, y)=$ $=f_{3}(u, v)$, in $K_{1}: f_{1}(x, y)=y, f_{2}(x, y)=f_{2}(u, v), f_{3}(x, y)=x$, in $K_{2}: f_{1}(x, y)=$ $=f_{1}(u, v), f_{2}(x, y)=y, f_{3}(x, y)=y$. Consider the algebras $\mathfrak{A}_{i}=<A_{i} ; f_{1}, f_{2}, f_{3}>\in$ $\in K_{i}, i=0, \mathbf{l}, 2$, where $A_{i}=\{0,1\}$ and $f_{3}(x, y)=0$ in $\mathfrak{H}_{0}, f_{2}(x, y)=0$ in $\mathfrak{H}_{1}, f_{1}(x, y)=0$ in \mathfrak{H}_{2}. Obviously the set $A_{0}><A_{1}><A_{2}-\{(1,1,1)\}$ form. a subalgebra of $\mathfrak{A}_{0}><\mathfrak{A}_{1}><\mathfrak{A}_{2}$ but cannot be decomposed into a direct product $\mathfrak{B}_{0}><\mathfrak{B}_{1}><\mathfrak{B}_{2}$, where $\mathfrak{B}_{i} \in K_{i}, i=0,1,2$. To show the independence of ever! couple $K_{i}, K_{j}, \quad i \neq j, i, j=0,1,2$, it suffices to take $p(x, y)=f_{1}(x, y)$ (for K_{0}, K_{1}), $p(x, y)=f_{2}(x, y)\left(\right.$ for $\left.K_{0}, K_{2}\right), p(x, y)=f_{3}(x, y)$ (for K_{1}, K_{2}).

Example 7. This example shows that the number $n-k$ of Theorem 4 cannot be lowered. It suffices to join to the classes $K_{i}, i=0,1,2$, of Example 6 the class K_{3} of algebras $<A ; f_{1}, f_{2}, f_{3}>$ where $<A ; f_{1}, f_{2}>$ are lattices $\left(f_{1}(x, y)=x \wedge y, f_{2}(x, y)=x \vee y\right)$ and $f_{3}(x, y)=x+y$ where + satisfies the following identities: $x+x=x, x \wedge(x+y)=y, x+(x \vee y)=x$. Hence in K_{3} there are idempotent operations only. For each $i \in\{0,1,2\}, K_{i}$ and K_{3} are independent: The corresponding polynomial symbols $p(x, y)$ are $f_{1}\left(f_{2}(x, y), y\right)$, $f_{1}\left(x, f_{3}(x, y)\right)$ and $f_{3}\left(x, f_{2}(x, y)\right)$, respectively. Every triple K_{i}, K_{j}, K_{3} is independent for each $i \neq j, i, j=0,1,2$, by Theorem 4. But $K_{0}, K_{1}, K_{2}, \check{H}_{3}$ are not independent because K_{0}, K_{1}, K_{2} are not independent (see Corollary 1).

Example 8. In the paper [6] it is shown that the equational class K_{0} of all groups $\mathfrak{G}=<G ; f_{0}, f_{1}>$, where $f_{0}(x, y)=x y, f_{1}(x, y)=x y^{-1}$ and the class K_{1} of all algebras $<L ; f_{0}, f_{1}>$ where \mathscr{Z} is a lattice, $f_{0}(x, y)=x \vee y, f_{1}(x, y)=$ $=x \wedge y$, are independent. In Example 3 it is shown that $K_{p_{i}}, i=0,1, \ldots, n-1$, are independent. Hence K_{1} and $K_{p_{i}}$ are independent for each $i \in\{0,1, \ldots$. $n-1\}$. Because K_{1} has only idempotent operations, using Theorem 4 more times we get that $K_{1}, K_{p_{0}}, K_{p_{1}}, \ldots, K_{p_{n-1}}$ are independent, too. (Note that
the independence of these classes can also be obtained by using Theorem 3.) The same result holds if we replace the class K_{1} of Example 8 by the class of all skew-lattices from Example 2 or if we replace the mentioned classes by the classes of all algebras $<A ; f_{0}, f_{1}, f_{2}>$ where K_{1} is the class of Brouwerian lattices $\left(f_{0}(x, y)=x \vee y, f_{1}(x, y)=x \wedge y, f_{2}(x, y)=x: y\right)$ and $K_{p i}(i=0,1, \ldots$, $n-1$) is the class of rings of characteristic $p_{i}\left(f_{0}(x, y)=x+y, f_{1}(x, y)=\right.$ $\left.=x-y, f_{2}(x, y)=x \cdot y\right)$.

REFERENCES

[1] BIRKHOFF, G.: Lattice theory. 3. ed. Providence 1967.
[2] CHANG, C. C.-JÓNSSON, B.-TARSKI, A.: Refinement properties for relational structures. Fundam. math. 55, 1964, 249-281.
[3] DRAŠKOVIČOVÁ, H.: Permutability, distributivity of equivalence relations and direct products. Mat. časop. 23, 1973, 69-87.
[4] GERHARDTS, M. D.: Zur Charakterisierung distributiver Schiefverbände. Math. Ann. 161, 1965, 231-240.
[5] GRÄTZER, G.: Universal algebra. 1. ed. Princeton 1968.
[6] GRÄTZER, G.-LAKSER, H.-PLONKA, J.: Joins and direct products of equational classes. Canad. Math. Bull. 12, 1969, 741-744.
[7] KOLIBIAR, M.: Über direkte Produkte von Relativen. Acta Fac. rerum natur. Univ. Comenianae Math. 10. III., 1965, 1-8.
[S] PIXLEY, A. F.: Distributivity and permutability of congruence relations in equational classes of algebras. Proc. Amer. Math. Soc. 14, 1963, 105-109.
[9] WENZEL, G.H.: Note on a subdirect representation of universal algebras. Acta math. Acad. scient. hung. 18, 1967, 329-333.

Received August 13, 1971
Katedra algebry a teórie čisel
Prirodovedecká fakulta
Univerzity Komenského

[^0]: ${ }^{1}$) In [7] the term "assoziiert" is used.

[^1]: ${ }^{2}$) Added Mai 25, 1972. The manuscript of this paper had been accepted for publication before the author knew that a proof of Theorem 5 is obtained (in another way) by TahKai Hu and P. Kelenson, Independence and direct factorization of unicersal algebras, Math. Nachr. 51, 1971, 83-99.

[^2]: ${ }^{3}$) One can prove Theorem 5 by the similar method as that of [6, Th. 1] for $n=2$. To get the unicity of given representation in the proof of [6, Th. l] it suffices to use [1, Chap. IV., Th. 13], hence the modularity of congruence lattices in [6, Th. 1] need not be postulated. In the proof of Theorem 5 by the similar way it suffices to use [2, Corollary 3.5 (vi)] to get the unicity of the given representation. We give here another proof of Theorem 5 by induction. The first step, the proof of Theorem 5 for $n=2$, differs from that in [6, Th. 1].

