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Matematicky &asopis 23 (1973), No. 2

ON THE EXTENSION OF MEASURES IN RELATIVELY
COMPLEMENTED LATTICES

LADISLAV GYORFFY and BELOSLAV RIECAN, Bratislava

In the paper we extend the main result of paper [1] for relatively com-
plemented lattices. Theorem 2 belongs to the first author, Theorem 3 and
Lemma 2 to the second author. Lemma 1 was proved by Prof. M. Kolibiar.
Theorem 1 is a consequence of the lemma. {

First some notations and terminology. A lattice is called o-continuous
if it is o-complete and x, 7z, y, 7y (vesp. n' N\ Z, yn N y) implies x, N
Nyn 72Ny (vesp. Tn U yn N2 U¥y). A measure is any function y: R —
— <0, o0) defined on a lattice B with the least element 0 and satisfying the
following conditions: 1. y(0) = 0. 2. y(z) + 7(y) = y(x Vy) + y(® N y) for
any 2, y€R. 3. If zp /2, 2R (n=1,2,...), x € R, then y(xa) 7 y(x).
A subset M of a g-complete lattice H is called monotone, if x, € M (n = 1,2,...),
Zn /X Tesp. Zn N z, implies z € M. If D C H, then by M(D) we denote the
least monotone set over D.

Theorem 1. Let H be a o-continuous, modular, complemented lattice, R be such
a sublattice of H that a Nb' € R for any a € R and any complement b’ of any
b € R. Let y be a o-finite measure y : B — {0, 00). Then there ts just one measure
v : M(R) - <0, ) which is an extension of y.

Proof. The assumptions of the main theorem of [1] are the same as those
of Theorem 1 except of the following one:

(H) To any =, y, z € H such that x £ y £ z and any complements 2’ resp.
2" of x resp. z such that ' = 2’ there is a complement y’ of y such that 2’ =
zy z=z.

Hence Theorem 1 will be proved if we prove that the condition (H) is
satisfied in any modular complemented lattice.

Lemma 1.%) I'n any modular complemented lattice the condition (H) is satisfied.
Proof. Put t = (y U 2’) N 2. Evidently 2’ < ¢t < z’. Let « be the relative

complement of ¢ in [z, 2], i.e. tNu=2', t Uu = z'. Then

*) Lemma 1 gives the answer to a problem stated in [1] and simultaneously in Case
pést. mat., 93 (1968), p. 236.
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z=untNz=un(yu)Na' Nz=
(yuz)Nz=unyuE Nz)]=uNny,

I
gt!
2D

and

l=rVae=uUtVz=uuUzUllyvuz)nz]=
=uVUygv) NEEua)l=uuyUz =uUy.

Hence v = ¥y’ is a complement of y and 2’ < y" £ 2",

Let H be now a relatively complemented lattice with the zero element 0.
By a — b we denote the set of all complements of @ N b with respect to <0, a),
ie. a—b={z:zNnanb=0, xVU (e Nb)=a}. A sublattice B of H
will be called a lattice ring if a — b < R for any a, b € R. A lattice o-ring is
a o-complete lattice ring.

Theorem 2. Let H be a relatively complemented, modular, o-continuous lattice
with the least element, R C H be a lattice ring, y be a o-finite measure on R.
Then there is just one measure 7 on M(R) that is an extension of y; the measure
18 o-finite.

Proof. For any ceR put Re={zeR;x ¢}, Ho.={xeH;x = c}
and define y.: Rc—> <0, ) by the formula y.(z) = y(x). Then H,, R, y.
satisfy all the assumptions of Theorem 1, therefore there exists just one
measure 7, on M(R,) that is an extension of ..

- -]
Further denote by B the set of all elements b of the form b = U Cn, Cn € R.
n=1

As before put R, = {x € R;x < b}. First we prove: If ¢ = b, ce R and
z € M(Rp), x £ ¢, then x € M(R,). Indeed, the set K = {x € M(Ry); x Nce€
€ M(R.)} is monotone and K D Ry, therefore K D M(Ry).

Let beB, b=|Jcn,cn € R. We can assume ¢, < ¢zr1 (= 1,2,...). Let
n=1

x € M(Ryp). Then we put

() =lim 7, (x N ca) .
N->0
Of course, we must prove that y(x) does not depend on the choice of the
sequence {c,}r ;. First, if ¥y S u £ v,u,ve R,y e M(R,), then 7, is an
extension of y,, hence 7,(y) = 7u(y). Hence, if x € M(Rz), du € R, dy £ dut1
(n =1,2, ...), U d, = d, then

n=1

Mm->00

=1lim 7, ~g. (@ N en Ndy) =

n—>w



=lim §, (x N ey N dw) < lim Ps.(x N dy)

"> m->%

and therefore

lim 3, (x O ¢n) = lim P4, (x N dy) .
Nn->0 m->0
To prove that 7 is a measure put a € M(R,) (k= 1,2, ...). ax 7 x. Then
cvidently 7(z) 2 lim §(xx). On the other hand j(xx) = 7, (¥x N ¢,). therefore

k>

7(x) = lim 7,,(x N ¢y) = lim lim 7, (xx N ¢2) £ lim lim §(2x) = lim 5(ay).

NL N> k>0 n->0 k>0 ) S

hence

y(x) = lm ().

k>

Finally let a. y € M(Rs), then

7@) + 7(y) = lim 7, (x N cn) + lim 7,(y N ep) =

N—>0 N->L

=limy ((xNci))U(yNen))+limy (xNyne,) =

n—->0 n->%x
=JleVy) + 7Ny

(since (xNec)) YU (yNey) /xVy, 2Ny NCa TxNY).
We have proved that 7 is a measure on the set M = | M (). Since Ry C R

Len

for every b. we have M(Ry) C M(R), hence M C M(R). But J/ is a monotone
set, I D R. Therefore M O M(R) and 7 is a measure on JM(R).

Now we prove that 7 is unique. Let 7 be an extension of y. 7: M(R) —
—<0,00). If ce R, x € M(R;) then 7(x) = $(x), since 7.7 are extensions
of yo on M(R.). Lat x e M(R) i.e. x < b, beB, ¢, /b, ¢, € R. Then

() = lim 7(c, N ) = lim §(cn N ) = J(a).

N->x >0

o
The measure y is ¢-finite, since theset N = {x e M(R); 2 < Cn.v(cn) o)
7 / )
=1
is monotone and contains R.

Let S(R) be the lattice o-ring generated by R. Finally we prove:

Theorem 3. If R is a lattice ring in a o-continuous, modular. relatively com-
plemented lattice with the least element, then M(R) = S(R).
In the proof of Theorem 3 we need the following lemma:

Lemma 2. Let H be a modular, relatively complemented lattice with the least
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element. Let a,b,c e H, a < c. Then to any x €a — b there is y ec — b such

that z £ y. .
Proof. Since x ea — b, we havez NanNbdb=0,x2 U (a Nb) = a. Let i be

a relative complement of a U (b N¢) in the interval <{z,¢), i.e. y N[z U
Udne)]=2xand yua U ((dnc)=c. Evidently a Ny = x. Further

c=yVaubne)=yv(@ndbuzubne) =
=and)ucnNnd)]u@Euy)=(bnNc)Vy,

hence

(1) bNne)vy=c.

The proof of the relation (b N¢) Ny = 0 is a little more complicated. First
we have

evy)yNnevdne)]l=avynlay(dnec)]) =
=aVUx=a,

hence

zubne)=(@ny)ubnec)=
=({avy) navBnollny udne =
=@wNavdnNne)])udnec) =
=yubne)]nNneaudne)]=

cNfav(bnNne)] =

=aVU ((bnNc).

I

Finally
0=anbnz=anbnany=anbny=

={lavdnelNn@uy)inbny =

=favubne)Nndbny=

=zubnNne)]nNnbny=

=@NnbNny)ubnNnecny)=bNcnNy,
hence

(2) =@Gne)ny.

&~

From (1) and (2) we get that y ec — b. Moreover y = x, hence the proof

is complete.

Proof of Theorem 3. Since S(R) is a monotone set, evidently M(R) C S(R).
It is sufficient to prove that M(R) is a lattice ring. Indeed then M(R) is
a lattice o-ring, hence M(R) D S(R).

It is not difficult to prove that M(R) is a lattice. The only difficulty is
in proving that a,b € M(R), x €a — b imply x € M(R).
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First let b € R be a fixed element and put
K={aecMR);, xca —b=xecMQR)}.

Evidently K O R. We prove that K is monotone. Hencelet a, € K (n = 1,2,...),
an 7 a, x € a — b. Since H is o-continuous, we have a, N b 7 a N b. According
to Lemma 1 there are x, € @« — a, N b such that z, N\ z. But x, Na, ca, —
—ap,Nb=ay,—0>b, since xpNapnNa,Nb=0 and (x, Nay) VU (a, Nb) =
=[x, V(anNb)]Nar=anNa,=a, Thus z, N a,eI(R). Since I(R)

m

is a lattice, also apm Nap = n (s N ag) € M(R) for every m = n. Hence

i=n

xNay =) 2aNar€ M(R) (n=1,2,...) and therefore x = 2 Na =
=N

C-]
= |J (& N a,) € M(R). We have proved that K is closed under limits of non-de-

fn=1
creasing sequences.

Now let ap e K (n=1,2,...), an N @, x €a — b. According to Lemma 2
there are y, € a, — b such that y, = x. Since a, € K, we have y, € M(R)

and also y = () ya = () ) ¥i € M(R). We assert that y = z. Indeed, first

n=1 n=1 4=1

(3) yn@Nd) 2ynNay,Nb=0;
further

yvlend)zzu@nNd) =a
and

yuv@nd) =N WaV@nd) 2 WV (@nb)) =
n=1 N=1
= Op = @,
n=1

hence
(4) yY(anbd) =a.

The relations (3) and (4) with y > x give y = xz. Hence z € J[(R), therefore
a e K.

Now let @ € J[(R) be a fixed element. Put
L= {beMR); x e M(R) for every x€a — b} .

We have L o R. Now with the help of Lemma 1 it is not difficult to prove
that L is a monotone set. Hence L > M(R) and x € M(R) for every a,b €
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€ M(R), x € ¢« — b. Since M(R) is now evidently a’ lattice ¢-ring, the proof
is complete.
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