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M A T E M A T I C K Ý Č A S O P I S 
R O Č N Í K 2 3 1973 Č Í S L O 2 

THE CANTOR EXTENSION OF A LEXICOGRAPHIC 
PRODUCT OF I GROUPS 

STEFAN CERNAK, Kosice 

Lexicographic products of linearly ordered groups and /-groups were con­
sidered by M a l c e v [3] and F u c h s [2]. Let G be an Abelian lattice ordered 
group. The Cantor extension of G will be denoted by Gc. Assume t h a t G is 
•somorphic with the lexicographic product 

mAt(ieI), 

where / is a linearly ordered set. In this Note we prove that if I has no greatest 
element, then Gc is isomorphic with G. Further we show t h a t if i0 is the greatest 
element off, then Gc is isomorphic with the lexicographic product 'II Bt(i e I) 
such that Bi = Ai for each i e I, i ^ i 0 and Bi3 = (Au)c. 

1. Let us recall the definition and some properties of the lexicographic 
product of partially ordered groups (cf. F u c h s [2], p. 40). 

Let I =£ 0 be a linearly ordered set and let Ai(i G I) be a set of partially 
ordered groups. Denote by *II A%(i e I) the set of all funct ions/ : I -> u At 
(i e I) satisfying the following two conditions: 

(a) f(i) e Ai for each i e I, 
lb) a(f) = {i e I\f(i) -?-- 0} is a well ordered set (in the order of I) for each 

felUAi (iel). 
If we put for each / , g e lU Ai (i e / ) 
(ai) (/ + g)(i) =f(i) + g(i) for each i G I, 
(bi) / > 0 if and only if f(i*) > 0, where i* is the least element of a(f). 

then 'II Ai (i el) is a partially ordered group which will be called the lexico­
graphic product of the partially ordered groups Ai (i e I). 

If I = {I, 2} (with the natural order), then the lexicographic product 
of partially ordered groups Ai (i e I) is denoted by A± CA2. The following 
assertions are easy to verify: 

(i) lYl Ai (i el) is a linearly ordered group if and only if Ai (i e I) are 
linearly ordered groups. 

(ii) If / has no greatest element, then lY\ Ai (i e I) is an Z-group if and 
only if Ai (i e I) are linearly ordered groups. 
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(iii) If there exists the greatest element i0 in I, then 
(a) 'II Ai (i e I) is an Z-group if and only if A%(i e I\{io}) are linearly ordered 

groups and Au is an Z-group. 
(b) The set Aio = {felU At (i eI)\ f(i) = 0 for each i el, i ^ i0} is con­

vex in 'II At (i el). 
In the whole paper we assume that G is an Abelian Z-group. By the symbol ~ 

we denote an isomorphism of Z-groups. 

2. Now we describe the method for constructing the Cantor completion 
of an Abelian Z-group G (the proofs are omitted, cf. E v e r e t t [1] and F u c h s [2] 
p. 149). We may use (see [1]) ordinary sequences (xn) (n = 1, 2, . . . ) . Denote 
by N the set of all positive integers. 

If (tn) ((itl)) is a descending (increasing)*1) sequence of elements of G and 
if there is t = f\tn (n e N) (f = \jin (n e N)) in G, then we write tn\t (tn\t). 
We write xn -> x (xn o-converges to x or x is o-limit of xn) if there exist mono­
tone sequences (tn) and (tn) such that tn\x, tn]x and tn < xn < tn for each 
n e N. A sequence (xn) such that xn = x for each n e N will be denoted by (x). 
If xn -> 0, then (xn) is said to be a zero sequence. I t is easy to verify tha t 
%n -> 0 exactly if \xn\ <tn(ne N) for some (tn) such that tn\0. The sequence 
(xn) is fundamental if there exists a sequence (tn) such that tn\0 and \xn — 
— xm\ < tn for each n and each m >n. 

Denote by H the set of all fundamental sequences of G. If we define the 
operation -f in B in a natural way, i.e., if we put (xn) -f- (yn) = (xn -f- yn) 
for each (xn), (yn) e H, then H is a group. The set E of all zero sequences is 
an invariant subgroup of H. Pu t HjE = Gc. If (xn), (yn) e H then (xn v yn) e 
e H holds. A coset of Gc containing a fundamental sequence (xn) will be de­
noted by "(Sj. For ~Jxn~), ~^yn~) we put ~{x^ < ~(y^ if (xn y yn) = ~(yn). Then Gc 

becomes an Z-group. I t is said to be the Cantor extension of G. 

3. Let A\ ^ {0}, A2 -^ {0} be partially ordered groups. Assume that there 
exists a mapping <p of an Abelian Z-group G into Ai 0 A2 such tha t 

(1) G~AloA2 

is true under the mapping cp. By (iii) (a), Ai is a linearly ordered group and A% 
is an Z-group. For a component of an element x e G in Ai(A2) we shall use 
the symbol <p(x) (1) (<p(x)(2)). Form the sets 

Z i = {x e G\ <p(x) (2) = 0} , 

A2 = {x e G\ <p(x) (1) = 0} . 

(1) If xn (n G N) are elements of a partially ordered set and X\ < xo < . • ., then 
(xw) is said to be an increasing sequence. Analogously we define a descending sequence. 
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I t is clear that A\, A2 are subgroups of G and 

(2) Ai ~ A±, A2 ~ A2 

hold. Let y) be a mapping of G into A± o ..42 such tha t y>(#) = ((P'^1((p(x)(l)9 0), 
^--(0, p(-r)(2))) for all x in O. Then 

(3) G ~ J i o A2 

under the mapping ip. For any element xeG we put x(l) (%(2)) instead of 
tp(x)(l) (ip(x)(2)). I t is easily seen that 

x e A\ if, and only if, x(2) = 0, 

(*) x e A2 if, and only if, x(\) = 0. 

4. If tn|0(|0) in G, then there exists no e N such that tne A2 for each n e N, 
n > no. 

Proof . Assume that tn\0. First let us prove tha t there exists no e N such 
that tno(l) = 0. Suppose (by way of contradiction) tha t tn(l) > 0 for each n. 
Because of ^42 ^ {0}, we can find an element g e G such tha t g > 0, g(l) = 
= 0. Then g < tn for each n contrary to f\tn = 0 and thus with respect to 
(*) tno e A2 for some n0 e N. Since by (iii) (b) ^42 is convex in G and tn < tm 

whenever n > ?io, we have tn e A2 for each n > no. If tn\ 0, the proof is similar. 

5. If xn -> 0 in G, then there exists no e N such that xn e A2 for each ne N, 
n > no. 

Proo f . There exists tn\0 such that \xn\ < tn for each n. By 4 there exists 
no e N such that tn e A2 for each n > no. The convexity of ^42 in G implies 
xn e A2 for each n >no. 

Let E'(H') be the set of all zero (fundamental) sequences in A2. A coset 
of (A2)c containing a sequence (an) eH' will be denoted by (an). 

6. If (xn)eE, then (xn(2))eE\ 
Proo f . If (xn) eE, then there exist tn\0, in\0 in G such tha t in < xn < tn 

for each n. By 4 there exist n\, n2e N such tha t tn e A2 for each n > n± 
and in e A2 for each n >n2. We have to show tha t there are zn\0, zn\0 in 
.A2 such that zn<xn(2) <zn for each n. Pu t zn = xn(2) \Jxn+x(2) V . • • 
V^Wl-i(2) \Jt?ll for n = 1, 2, . . . , m~l, zn = tn for each n > m9 zn = xn(2) f\ 
A»n+i(2) A . . . A«n,-i ( 2 ) A ( , for n = 1,2, ...,n2 — 1. zn = in for each 
n >n2. The sequences (zn) and (zn) satisfy the mentioned conditions. 

*7- If (xn) is a fundamental sequence in G, then there exists no e N such that 
xn(\) = xno(l) for each ne N, n > no. 

Proof . Using the definition of the fundamental sequence we get \xn — 
— Xm\ < tn for some tn\0, each n and each m > n. Because of 4 there exists 
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no e N such that tn e _A2 for each _ > wo- The convexity of _A2 in G implies 
xn — xm G_A2, thus _rw(l) -= xno(\) for each ?i > n0. 

8. / / (a;--) e H, then (xn(2)) e H'. 
Proof . There exists tn\0 such that \xn — xm\ < tn for each n and each 

m > n. Using 4 and 7 we obtain that there exists no _ N such that lw = tn(2) 
and _"w — xm = xn(2) — xw(2) for each n > no and each m > n. We have 
to show tha t there exists zn\0 in A2 such that \xn(2) — xm(2)\ < zn for each _ 
and each m >n. In view of [2], p. 112, the propert}" J we obtain 

|_W_i(2) - xm(2)\ = |(_n_i(2) - ^ ( 2 ) ) + (xno(2) - „-OT(2)) < 

< |a?n_-i(2) - xno(2)\ + \xno(2) - xm(2)\ < |xWo_i(2) - xno(2) + fM. 

for each m > no — 1. Thus we may put 

zn = 1^(2) - „v»+i(2)| + . . . + |^0_i(2) - xno(2)\ -L 

+ f„0 for _ = 1, 2, . . ., wo — 1, 

zn = £w for each n >n$. 

Let (.TW), (2/̂ ) be fundamental sequences in G. 
9. (xn) = (yn) if and only if there exists n$eN such that xn(\) = yn( 1) for 

each n >no and (xn(2)) = (yn(2)). 
P roo f . If (xn) = (yn) or equivalently (xn — yn) eE, then by 5 there exists 

?}(, e N such tha t xn (1) = t/w (1) for each n > no and by 6 (xn(2) —yn(2)) eE'. 
J- e., ten(2)) = (._"„(-.). Conversely, let Fw(2)) = ^ ( 2 ) ) and xn(\) = yn(\) 
for each w > n0. Then (_cn(2) — yn(2)) = ((xn — yn)(2)) eE'. Since (xn — 
— _.»)(--) = 0, by (*) we get (_*w — 2/n)(2) = xn — yn for each n >n0. Then 
in a similar way as in the proof of 6 we can find sequences (tn) and (t)t) such 
tha t tn\0, tn\0 in G and tn < xn — yn < tn, for each n. Thus (xw — yn) e K, 
i. e., (_ )̂" = "«/_)• 

10. Gc - ^ io_M 2 ) c . 
P roo f . Let (ay be an arbitrary element of Gc. By 7 there exists ?.0 _-V 

such tha t xn(l) = xno(l) for each n > no. Define a mapping a of Gc into _Ai 
(A2)c by the rule ot((xn)) = (xno(l), (xn(2))). In view of 8 and 9a is a one-to-

one mapping of Gc into A\ 0 (A2)c- If («, (bn))
 e Ai o (^2)c, then ((«, 6,,)) is 

a fundamental sequence in A\ o --2 and thus because of (3) it is clear that a 
is a mapping of Gc onto _Ai 0 (_l2)c- I t can be easily verified that a preserves 
the group operation and the lattice operations. Then (2) completes the proof. 

11. Theorem 1. Assume that a linearly ordered set (finite or infinite) has tJu 
greatest element io and Ai(i e I) are partially ordered groups such that Ai -_= {0} 
for each iel. If G is an Abelian l-group such that G ___ lH Ai (i e I), then 
Gc — *n B% (i el), where Bi = Ai for each i e l , i ^ io and Bl0 = (Ai0)c. 
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Proof . From the assumption Ave get G ~ A o Au, wlura A =lilAi 
(i e I \ {i0}) with respect to (i) is a linearly ordered group. By 10 we conclude 
Gc ~ A o (Ai0)c, which completes the proof. 

12. Now assume tha t a linearly ordered set I ^ 0 has no greatest element 
and Ai (i e I) are partially ordered groups such tha t Ai ^ {0} for any i el. 
Let there exist a mapping 99 of an Abelian /-group G into *II A% (i e I) such 
that 

(4) G ~ mAt(ieI) 

under the mapping cp. Let i el be fixed and let us put 

Ai = {x e G\ (p(x)(j) = 0 for each j e I, j 7^ i } . 

Ai is a subgroup of G and Ai ~ Ai for each i e I. Then 

(5) G ~ mli(iel). 

If x G G and if under the isomorphism (5) .r -> / , then we denote x(i) = / ( i ) . 
Since I has no greatest element, for a fixed element i el there exists J e I, 

j > i. If Ave denote 

A1 = lU Aj (j el,j < i), A'* = m Aj(j el, j > i), 

then 

(6) G~A*0A\ 

Let tn\0 in G and let i^ denote the least element of o(tn). Then tn(in) > 0 
holds. The sequence (in) is increasing, since the sequence (tn) is descending. 

With respect to (6) and 4, 5, 7 Ave get the folloAving assertions: 

13. For each i el there exists iii e N such that in > i for each ne N, n > m. 

14. If (xn) e E, then for each i e I there exists iii e N s^cch that xn (i) = 0 
for each n e N, n > w«. 

15. If (xn) e H, then for each i e I there exists ni e N s^lch that xn(i) = a \ ( i ) 
for each n e N, n > m. 

Let (xn) e H and for any i el let m eN be as in 15. Put x* = xHi(i) for 
each i e I. With this denotation Ave have: 

16. There exists an element x e G such that x(i) = x* for each i e I. 
P r o o f . Since x* e Ai for each iel, we have only to prove tha t the set 

A = [i e I x* ^ 0} is Avell ordered. To shoAv this pick out any set I± ^- 0, 
Ii <= A and any element io £ Ii • If io is not the least element of J i , then 72 — 

{i e h\ i < io} # 0 holds. According to 13 for io there exists n0 e N such 
that iiu > i0. Then Ave have t,l0(i) = 0 for each i e l , i < i0 . This implies 
xn(i) — xno(i) for each n > no and each i e l , i < io. Thus xno(i) = x* for 
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each iel, i <io> We infer %no(i) 7^0 for each i e I2, and so 72 ^ a(xnQ). 
Since the set o(xno) is well ordered, the set I2 is well ordered, too, and so I? 
has the least element i*. Then i* is the least element in Ji, too . 

17. Suppose that (xn), (yn) e H and x,yeG such that x(i) = x*, y(i) = y* 
for each iel. Then (xn) = (yn) if and only if x = y. 

P r o o f . Let (xn) = (yn), tha t is, (xn — yn) eE. By 14 and 15 for each 
i e l there exists ni e N SLich that (xn — yn)(i) = 0 and xn(i) = x*, yn(i) = y*t 

for each neN, n > ni. Thus x = y. The converse is obvious. 

18. C o r o l l a r y . (xn) = (x) where x e G such that x(i) = x* for each i el. 

19. G ~ Ge. 

Proof . Define a mapping a of G into Gc by the rule a(g) = (g) for any 
<j e G. By 17 and 18 a is a one-to-one mapping of G onto Gc. We can easily 
verify that a preserves the group operation and the lattice operations, thus 
G ~ Gc. 

We have arrived at 

Theorem 2. Let a linearly ordered set I ^ 0 have no greatest element and let 
Ai(i el) be partially ordered groups such that At •=?=- {0} for each i e I. If G 
is an Abelian l-group such that G ~ lU At (i el), then Gc 21 G. 
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