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MATEMATICKY CASOPIS
ROCNIK 23 1973 ¢fsLo 2

THE CANTOR EXTENSION OF A LEXICOGRAPHIC
PRODUCT OF I-GROUPS

STEFAN CERNAK, Kogice

Lexicographic products of linearly ordered groups and I-groups were con-
sidered by Malcev [3] and Fuchs [2]. Let G be an Abelian lattice ordered
group. The Cantor extension of G will be denoted by G.. Assume that ¢ is
jsomorphic with the lexicographic product

T Ag(i e I),

where [ is a linearly ordered set. In this Note we prove that if I has no greatest
element, then G, is isomorphic with G. Further we show that if iy is the greatest
element of I, then G, is isomorphic with the lexicographic product 1 B;(i € I)
such that B; = A; for each 1€, 1 #1p and B, = (43,)..

1. Let us recall the definition and some properties of the lexicographic
product of partially ordered groups (cf. Fuchs [2], p. 40).

Let I =40 be a linearly ordered set and let A;(¢ € I) be a set of partially
ordered groups. Denote by UI A;(¢ € I) the set of all functions f: 1 -y 4;
(¢ € I) satisfying the following two conditions:

(a) f(7) € 4; for each ¢ €1,

(b) o(f) = {i € I| f(i) 7 0} is a well ordered set (in the order of I) for each
felll 4; (i e I).

If we put for each f, g € !II 4; (s € I)

(a1) (f + 9)(¢) = f(@) + g(@) for each 2 €1,

(b1) f > 0 if and only if f(¢*) > 0, where ¢* is the least element of o{f).
then !I 4; (¢ € I) is a partially ordered group which will be called the lexico-
graphic product of the partially ordered groups 4; (i € ).

If I ={1,2} (with the natural order), then the lexicographic product
of partially ordered groups 4; (: € I) is denoted by A; . A2. The following
assertions are easy to verify:

(i) a1 4; (¢ e I) is a linearly ordered group if and only if 4; (z € I) are
linearly ordered groups.

(i) If I has no greatest element, then Il 4; (: € I) is an l-group if and
only if A; (¢ € I) are linearly ordered groups.



(i) If there exists the greatest element 4o in 7, then

(a) U1 A; (i € I) is an l-group if and only if 44(¢ € I\{io}) are linearly ordered
groups and A;, is an Il-group.

(b) The set A;, = {felll A; (e l)| f(t) = 0 for each i€, i 5= io} is con-
vex in !l 4; (sel).

In the whole paper we assume that G is an Abelian I-group. By the symbol =~
we denote an isomorphism of I-groups.

2. Now we describe the method for constructing the Cantor completion
of an Abelian I-group @ (the proofs are omitted, cf. Everett [1]and Fuchs[2]
p. 149). We may use (see [1]) ordinary sequences (x;) (n = 1, 2, ...). Denote
by N the set of all positive integers.

If (t) ((t,)) is a descending (increasing)® sequence of elements of G and
if there is t = At, (ne N) (t' = Vt, (ne N)) in G, then we write t,)¢ (£,]¢).
We write x, — x (x, o-converges to x or x is o-limit of x) if there exist mono-
tone sequences (t,) and (t,) such that |, {,}x and t, <, <t, for each
n € N. A sequence (z,) such that &, = x for each n € N will be denoted by (z).
If 2, - 0, then (x,) is said to be a zero sequence. It is easy to verify that
xp = 0 exactly if |ay| <t, (n € N) for some (¢,) such that ¢,)0. The sequence
(xx) is fundamental if there exists a sequence (t,) such that ¢,/0 and |z, —
—xp| <t, for each » and each m > n.

Denote by H the set of all fundamental sequences of G. If we define the
operation -+ in H in a natural way, i.e., if we put (x,) + (yn) = (®n + y»)
for each (zn), (yn) € H, then H is a group. The set F of all zero sequences is
an invariant subgroup of H. Put H/E = G.. If (x,), (y») € H then (z, v y») €
€ H holds. A coset of G, containing a fundamental sequence (z,) will be de-
noted by (,). For (x,), ¥, we put @,) < @, if @,V ¥ = (Un)- Then G,
becomes an I-group. It is said to be the Cantor extension of G.

3. Let 4; # {0}, A2 = {0} be partially ordered groups. Assume that there
exists a mapping ¢ of an Abelian I-group G into A4; . A5 such that

(1) G:AloAz

is true under the mapping ¢. By (iii) (a), 41 is a linearly ordered group and A-
is an l-group. For a component of an element x € G in A,(42) we shall use
the symbol ¢(x) (1) (p(2)(2)). Form the sets

4 = {ze G| pl) (2) = 0},
Az = {x G| p(x) (1) = 0}.

(1) If 2, (n € N) are elements of a partially ordered set and z1 < z2 < ..., then
(z2) is said to be an increasing sequence. Analogously we define a descending sequence.
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It is clear that A;, A2 are subgroups of G and
(2) Zl jad A]_, Zg jad Az

hold. Let p be a mapping of G into A7 - A2 such that p(z) = (¢~(g(z)(1), 0),
@ 1(0, p(x)(2))) for all  in G. Then

(3) G~ 4.4,

under the mapping y. For any element x€ G we put z(1) (2(2)) instead of
p(@)(1) (p(x)(2)). It is easily seen that

x € Ay if, and only if, x(2) = 0,
(*) x € A, if, and only if, z(1) = 0.

4. If t,/0(10) in G, then there exists no € N such that t, € Ay for each ne N,
n > nyp.

Proof. Assume that ¢,/0. First let us prove that there exists ng € N such
that t,,(1) = 0. Suppose (by way of contradiction) that £,(1) > 0 for each =.
Because of 42 # {0}, we can find an element g € @ such that ¢ > 0, g(1) =
== 0. Then g < t, for each n contrary to At, = 0 and thus with respect to
(*) tn, € A5 for some ng € N. Since by (iii) (b) Az is convex in G and t, <y,
whenever n > ng, we have t, € 45 for each n > ng. If t,10, the proof is similar.

5. If x, — 0 in G, then there exists no € N such that x, € A for each n e N,
n > ng.

Proof. There exists ¢,]0 such that |x,| <t, for each n. By 4 there exists
np € N such that t, € 45 for each n > ng. The convexity of Az in G implies
xp € A2 for each n > ng.

Let E'(H') be the set of all zero (fundamental) sequences in Az. A coset
of (d2). containing a sequence (a,) € H' will be denoted by (@)

6. If (x,)€E, then (xn(2))€E'.

Proof. If (x,) € E, then there exist t,}0, £,10 in G such that £, < zy <ty
for each n. By 4 there exist n;, nz € N such that ¢, € A, for each n >mn
and t, € A, for each n > n;. We have to show that there are z,,0, z,]0 in
A, such that z, < an(2) <z, for each n. Put zp = 2,(2) V&uu1(2) V...
Van-1(2) Via, forn = 1,2, ..., m"1, 2, =t, for each n > n1, 2z, = xa(2) A
ATni1(2) Ao AZnp-1 (2) ALy, for m=1,2,...,m2 — 1. z, =t, for each
n > n2. The sequences (z;) and (z,) satisfy the m=ntioned conditions.

7. If (x,) is a fundamental sequence in G, then there exists no € N such that
Zn(1) = 2y, (1) for each n'e N, n > no.

Proof. Using the definition of the fundamental sequence we get |z, —
— &m| <ty for some t,/0, each n and each m > n. Because of 4 there exists
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ny < N such that ¢, € A2 for each n > ny. The convexity of A in ¢ implies
Xp — ¥ € Az, thus x,(1) = xp(1) for each n > n.

8. If (x,) € H, then (xp(2))e H'.

Proof. There exists t,0 such that |x, — am| <¢, for each n and each
1, > n. Using 4 and 7 we obtain that there exists no € N such that ¢, = t,(2)
and x, — Xy = 2,(2) — 2n(2) for each n > np and each m >n. We have
to show that there exists 2,0 in A; such that [#,(2) — x,(2)| < 2z, for each
and each m > n. In view of [2], p. 112, the property J we obtain

@n0-1(2) — Tm(@)] = [(@n-1(2) — 2al(2)) + @al(2) — 2n(2) <
< @ne-1(2) — @) F [20(2) — 2u(@)] < [Tae-1(2) — Ta(2) + b,
for each m > ng — 1. Thus we may put
Zn = [@a(2) — Zar1(2)] + ..+ [Br-1(2) — @n(2)] L
+ ity for n =1,2, ..., 09 — 1,
2p = t, for each m > ny.

Let (x2), (¥2) be fundamental sequences in G.

9. @) = (¥ if and only if there exists nge N such that x,(1) = y,(1) for
each n > mno and (X,(2)) = Y(2)-

Proof. If (x,) = (y,) or equivalently (x, — yx) € E, then by 5 there exists
nq € N such that x, (1) = y, (1) for each n > ng and by 6 (,(2) — yu(2)) € E’.
i. e, (2n(2) = Wa(2)). Conversely, let (v,(2)) = @,(2) and x,(1) = y,(1)
for each n >mno. Then (xa(2) — ya(2)) = ((xn — ¥#)(2)) € E’. Since (v, —
— ya)(1) = 0, by (%) we get (xn — yx)(2) = xn — Ya for each n > ny. Then
in a similar way as in the proof of 6 we can find sequences (f,) and (t,) such
that £,]0, £,}0 in G and ¢, <, — y, <t,, for each n. Thus (x, — y,) € E.
Loe, (¥,) = (Ya)

10. G, ~ A; o (42),.

Proof. Let (x,) be an arbitrary element of G,. By 7 there exists npe .V
such that z,(1) = 24,(1) for each n > ng. Define a mapping « of G, into A,

(d2) by the rule a((@,)) = (@n,(1), (@,(2))). In view of 8 and 9« is a one-to-
one mapping of G, into A; o (ds).. If (a, (by)) € 410 (A2):, then ((a.by)) is
a fundamental sequence in A; - A2 and thus because of (3) it is clear that «
is a mapping of G. onto A1 o (Az)c. It can be easily verified that « preserves
the group operation and the lattice operations. Then (2) completes the proof.

11. Theorem 1. Assume that a linearly ordered set (finite or infinite) has the
greatest element 19 and Ai(i € I) are partially ordered groups such that A; = {0}
for each iel. If G is an Abelian l-group such that G ~ 1 A; (i € I). then
G. ~ M B; (1€l). where B; = A; for each 1 € I, © # iy and B;, = (di,)c-
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Proof. From the assumption we get G ~ A . A;, whare 4 =1Ul 4;
(¢ € I\ {io}) with respect to (i) isalinearly ordered group. By 10 we conclurle
de ~ A o (ds)e, which completes the proof.

12. Now assume that a linearly ordered set I # () has no greatest element
and d; (i € I) are partially ordered groups such that 4; 7 {0} for any 7 € [.
Let there exist a mapping ¢ of an Abelian I-group ¢ into I 4; (¢ € I) such
that

(4) G~UlA; (el
under the mapping ¢. Let ¢ €l be fixed and let us put

di = {xe@ o) (j) =0 foreach jel, j#i}.
A; is a subgroup of G and 4; ~ A; for each ¢ € I. Then

(3) G~UlAd;(iel).

~

If x € ¢ and if under the isomorphism (5) x — f, then we denote z(¢) = f(4).
Since I has no greatest element, for a fixed element ¢ € I there exists je [,
Jj > . If we denote

At =Ul4;(jel,j <i), At=M A;(jel, j>1i),
then
(6) G~ Ai, A

Let {,,0 in G and let ¢, denote the least element of o(¢,). Then t,(in) > 0
holds. The sequence (i,) is increasing, since the sequence (t,) is descending.

With respect to (6) and 4, 5, 7 we get the following assertions:

13. For each ¢ € I there exists n; € N such that ¢, > i for each n € N, n > a;.

14. If (v,) € K, then for each i€ I there exists nie N such that xn (t) = 0
for each n e N, n > n;.

15. If (xn) € H, then for each i € I there exists n; € N such that x,(i) = =, (i)
for each ne N, n > n;.

Let (v,) € H and for any 7€ let n; € N be as in 15. Put x: = X, (¢) for
ecach ¢ € I. With this denotation we have:

16. There exists an element x € G such that x(¢) = x; for each i€ I.

Proof. Since z; € 4; for each i eI, we have only to prove that the set
A = {iel a; # 0} is well ordered. To show this pick out any set Iy ==,
1, = 4 and any element i € I;. If iy is not the least element of I, then I. =

{ieli|i < i} # 0 holds. According to 13 for iy there exists noe N such
that 7,, > ip. Then we have t,,(¢) = 0 for each ¢ € I, ¢ <ip. This implies
2a(i) — Xuo(i) for each n > my and each ¢ € I, ¢ <ip. Thus a,(t) = 2 for
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each 1 eI, 1 <. We infer x,,(2) % 0 for each ¢ € I», and so Is < o(xn,)-
Since the set o(xy,) is well ordered, the set Iz is well ordered, too, and so I»
has the least element 2*. Then 7* is the least element in I, too.

17. Suppose that (x,), (ya) € H and x,y € G such that x(i) = ], y(i) = y;
for each i € I. Then (x,) = (y,) if and only if v = y.

Proof. Let (x,) = (y,), that is, (¥, — y»)€E. By 14 and 15 for each
i € I there exists n; € N such that (x, — y,)(¢) = 0 and z,(i) = 2}, ya(i) = ¥,
for each ne N, » > n;. Thus v = y. The converse is obvious.

18. Corollary. (z,) = (¥) where x € G such that x(i) = «; for each i€ l.
19. G ~ G..

Proof. Define a mapping « of @ into G, by the rule «(g) = (9 for any
g€ @. By 17 and 18 « is a one-to-one mapping of G onto G,. We can easily

verify that « preserves the group operation and the lattice operations. thus
G~ G,.

We have arrived at

Theorem 2. Let a linearly ordered set I = & have no greatest element and let
Ai(v € I) be partially ordered groups such that A; == {0} for each iel. If
1s an Abelian l-group such that G ~ 1 A; (i € I), then G, ~ G.
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