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0 1 THE MEASUBABIUTY OF FUNCTIONS OF TWO 
VARIABLES 

Roy O. DAVIES, Leicester and J . DRAVEOKY Bratislava 

Introduction 

.It is well known t h a t when a real-valued function / of two real variables 
;.t\ y is Lebesgue measurable in each variable separately it need not be me­
asurable in. (a-, y), and that when / i s continuous in each variable separately 
it need not be continuous in (x, y). However in the latter ease/must be measu­
rable: indeed U r s e l l proved [9] that if/ is continuous in x for each y and 
measurable in // for each x, then it must be measurable in (x9 y). ( M a r c z e w s k i 
and I v y l l - N a r d z e w s k i [5] and N e u b r u n n [7] gave generalizations with 
x running over a separable metric space.) This was extended by M i c h a e l 
and .Ronnie [6] to the following: if/ is measurable in y for almost all x, is 
equal to zero outside a certain measurable set E, and on E is continuous in 
'x with respect to E for almost all y, then / must be plane measurable. One 
of us recently showed [2] that this theorem, with a similar proof, applies in 
products of moi'o general, topological, measure spaces. Here we go further, 
replacing M2 (.R - the real line) by a product X X Y of general or-finite 
.measure spaces of which only X is (second-countable) topological. The method 
of proof is necessarily different from that in [6], which .made use of the topology 
of R"z; in fact it turns out to be somewhat simpler. After stating and proving 
on?* theorem we shorn7' that the second-cou.ntabili.ty of X cannot be dropped 
from the hypotheses. 

Main theorem 

Theorem 1. Let (X,p,) be a o-finite second-countable topological measure space(v) 
and let (Y, v) be any o-finite measure space. Iff: X X Y-->It is v-measurable 
in y for [i-almosl all x, is su x v-'Measurable on the complement of a certain tu x r-

(M That is, tlio or-algebra of subsets of X on which ^ is defined includes the Bore!, sets, 

2 8 5 



-taeamruble set E, and on E is continuous in x with respect to E for P-almosf alf 
y,; then f must be ^ x v-nieasurable. 

Proof. Without loss of generality we may suppose that y(X) < x ami 
p(Y') < x>. Since the completion of/i x v is the same as that of u / X by ii 
and v we may denote the already- completed measures /? and P. respectively. 
On the other hand, sets of measure zero do not affect the eonelusion of the 
theorem, and hence we may assume that the seetiou Kv is //-measurable .-m< 1 
the section/^ i E'u ™> R eontinuous for all y. and that W:): is immeasurable and 
fx i EJ: -> R v-measurablc for all x. Further we may suppose that 0 \\ f\y '!/) ' J 

on E, sinee every real-valued function can. be written (preserving continuity 
and measurability) as a difference of two non-negative ones and each mm • 
-negative function g is equal to lim# n . gn, wh.ere for gM de.Kn.ed by g)(,(x, //) 
. •• ti'"} , inf{n, g(x,y)) we have in fact 0 <gri < \. We must show t h a t / i> 
ii x v -measurable on E. 

Let ^n.. (hi • • • be a countable basis for the non-empty open sets in A", 
(riven any ry define points xn\, ;iV2, . . * e ^f-« by induction as follows.: let 

arid, select .tx* G (/„. with 

K^A\ U &v„,)> &,„. 

.Denote by Fn the set f j I A , and 'by //„ the set. A y: F„. 

Assertion L f^A ~v) [E n ( A x F) \ A ! --»-••• 0. 

P r o o f of A s s e r t i o n J. Observe first that (In y Y and //„• arc* JJ - »••• 
•measurable, and therefore so is the set Kn --• E n ( A y Y) \ II,,. Keneo 
in view of Fobinfs theorem it will be s'ufioient to show that. Y\(KH).\\ ••••• 0 (A 

</j 

all ..r: A A Now for x e A. we have (Kn)x -••• A \ ( J IA«- Consequently, if 
>.: . i. 

v\{Kn)x\ ^ d > 0, then A > rl for all s r '1,2, . . .. and 

ijb eontradietion. Our assertion is proved. 
From Assertion 'I it follows that the set 

Z - ( J [E n (On >•• >') \ Hn\ 

280 

X . 



lias //. A ^-measure zero, and it will be sufficient to prove that /!(/.? \ Z) is 
a >•; r-measurable. Let 

I) -•-= {^x /i =- 1,2, . . . , . * -= l, 2. . . . } . 

For each a define a function fn.: E \ Z -> R as follows: 

if (.r. //) e (E \ Z) \ (Gn X Y) then /„(;*;, y) = J: 

if (.r. //) e {A' \ #) n (f\\ x 7) then fn(x< y) --=-•- Bii.p[/(M\ //): 

w; G ./) n 6 \ and (w, y) e /?}. 

Observe that if (J\ y) e (E \ Z) r\ (Ou x V) then, (.r, y) e 6 \ X Fn, so a:* ; <7.„ 
and // c EJi>s for some x hence // G ^ for some w e I) n Gn, that is, je e 1) n 6 \ 
and (a\ y) e E for some w\ so tlie supremum is over a non-empty set. Since/,,; 
is obviously (a ;.< r-measurable, it will be enough to prove the following. 

Assertion II, On E \ Z we have f •-•-- inf'nfn. 
Proof of Asser t ion , LI. (a) To show tha t / ( a \ y)< infnfn(x.. y) on E "\ Z, 

we must show that f(x, y) <fn{x, y) for all n. This is obvious if (.**, y) e (E \ 
\ Z) \ (G,„ , Y), because then f(x, y) < 1 •••-••• fn(x* ;?/)* Hence we may suppose 
tiiat (x> //) e (E \ Z) n (Gn X V); in particular x e Gn. I t will be enough to 
show thaf/(;i\ y) • e <fn(xy y) for every e > 0. 

In view of the continuity o:f/̂ , there is an open set G containing x such that 
f(r... y) ' ; f(x, y) e for all z e G n JP. For some m we have x e Gm a G n '6\ . 
Then (,!•:. //) e (E \ Z) n (Gm X 7) , and as observed earlier there exists 
//- c /> n 6\« with (u\ y) e E, Then f(w, y) > / ( # , y) « and, since w e 1) n </„ r 

/«(•<'• //) :r::;/(^\ //) > / ( ; | \ //) -- f a B required. 
(b) Finally we show that f(x,y) > hifnfn(x, y) on E\Z; that is. given 

;-• ;*.-• o we: have / ( J \ //) -f- # > / M ( \ \ If) f°F some m. As above, there* is an open 
set <7 containing x such tha t / (2 , y) <f(x, y) -f- « for all 2 e (7 n A1.'/. For some 
w we have ,r e 6',,- c: G. Then («i\ f/) e (E \ Z) n (Gm X 7) , and for every 
//• G /> n f/Jrt with (;M\ «/) e.® we certainly have w e G n Ev and therefore 
f(if\ y) < f(x: y) x «. Hence fm(x, y) <f(x, y) f- e, as required. 

A counter-example 

Our proof that the seeo.iid-coiintabiIi.ty hypothesis is essential in Theorem .1 
will he based on two key notions: Sierpiuski's paradoxical decomposition of 
li2 \H\ and the density topology on R (see [8]). 

Theorem 2, There exists a a-finite topological measure space (X.ti), a a-finite 
measure space ( 7 . v), and a function f: X X Y ~> M such that ft is v-measurable, 
for all x and ft is continuous for all y, "but f is not ̂  x v-measurable. 
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"Proof. Let >?« be the least possible cardinality for a subnet of {0. 1) having 
positive outer Lebesgue measure, and choose a set 8 cr (0, I) of eardinality 
X,* with m*(S) > 0. Let (8, /J) be the measure space in which the rr-al^ebra. 
consists of the intersections with 8 of the Lebesgue measurable subsets of 
(0, I), and in which p is outer Lebesgue measure on this c-algebra. We consider 
(8 y 8, fi x fjt), the first factor being endowed with the topology induced on 8 
by the density topology on R. 

Let «< be a well ordering of 8 of type coa. Define M. •---••= \(x. //); x -< y\ ami 
observe that (8 X 8 \ M)x has measure zero for ail x e 8 and J/> has measure 
zero for all y e 8. In particular My is a closed set with respect to the density 
topology on R. We can choose a set K ••--- K(y) in R \ M.v which is closed in 
the ordinary topology, such that K H 8 has positive ,#-measure, By the .Remark 
after Theorem 3 of [3] there is a function./*' from (0, 1) to XX I; which is 
continuous with respect to the density topology, such that fy(x) •-•••• I on /t/';; 

and p(x) ------ 0 on K(f). 
L e t / : ;S' X #-><<), 1> be defined by/(a;, f) - • / % ) for (xxy) e 8 / 8„ For 

each, fixed a.\/»; differs from the characteristic function of M% on a set of measure 
zero only, and so 

ff(x,y)df*(!/)=MM*)~ /*($)> 

whiM 

[/(a?, y)efy*(a;) < ^(#) /*[#(?/) n #J < /i(^), 

an amplication of Fubini's theorem yields the desired non-measurability of/ 

Remarks 

'In view" of our results, it is natural to ask whether if (X} su) is an arbitrary 
f7-iinite topological measure space a n d / : X X X--> R is continuous in // for 
all x and continuous in a; for all ?/, the function/ is necessarily ^ x j.»-measura Mo. 
One of us has shown [1 | that the answer is negative?, assuming the existence 
of a non-measurable cardinal, but that the answer is positive* in the special 
case when X is R with the density topology and /i is Lebesgue measure. The 
laftfT result resolves a problem of Mis ik recently quoted by L i p i h s k i ft|„ 
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