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ON THE MEASURABILITY OF FUNCTIONS OF TWO
VARIABLES

Roy O. DAVIES, Leicester and J. DRAVECKY Bratislava

Introduction

It is well known that when a real-valued function f of two real variables
x, y is Lebesgue measurable in each variable separately it need not be me-
asurable in (x, y), and that when f is continuous in each variable separately
it need not be continuous in (2, ). However in the latter case f must be measu-
rable: indeed Ursell proved [9] that if f is continuous in « for each y and
measurable in y for each «, then it must be measurable in (2, y). Marczewski
and Ryll-Nardzewski [5] and Neubrunn [7] gave generalizations with
x running over a separable metric space.) This was extended by Michael
and Rennie [6] to the following: if f is measurable in y for almost all x, is
equal to zero outside a certain measurable set #, and on ¥ is continuous in
x with respect to £ for almost all ¥, then f must be plane measurable. One
of us recently showed [2] that this theorem, with a similar proof, applies in
products of more general topological measure spaces. Here we go further,
replacing B2 (R — the real line) by a product X x Y of general o-finite
measure spaces of which only X is (second-countable) topological. The method
of proof is necessarily different from that in [6], which made use of the topology
of R%; in fact it turns out to be somewhat simpler. After stating and proving
our theorem we show that the second-countability of X cannot be dropped
from the hypotheses.

Main theorem

Theorem 1. Let (X,u) be a o-finite second-countable topological measure space(1)
and let (Y, v) be any o-finite measure space. If f: X X Y — R is v-measurable

(1) That is, the o-algebra of subsets of X on which u is defined includes the Borel sets.
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-measurable set B, and on E is continuous in x with respect to I for v-almost all

Proof. Without loss of generality we may suppose that u(X) < oo and
»(Y) < oo. Since the completion of u X » is the same as that of @ X #, by u
and » we may denote the already completed measures @ and 7, respectively.
On the other hand, sets of measure zero do not affect the conclusion of the
theorem, and hence we may assume that the section £v is y-measurable and
the section f : B¥ — R continuous for all y, and that K, is v-measurable and
fz : By — R v-measurable for all . Further we may suppose that 0 < f(x, y) < 1
on I, since every real-valued function can be written (preserving continuity
and measurability) as a difference of two non-negative ones and each non-
-negative function ¢ is equal to lim, n . ¢, , where for ¢, defined by g,(x, ) —
= n'1.inf{n, g(x, y)} we have in fact 0 < ¢, < 1. We must show that f is
@ > v -measurable on K.

Let G, G2, ... be a countable basis for the non-empty open sets in X.
Given any n, define points an1, @u2, ... € G, by induction as follows: let

kens = sup{v(Hz \ U Beyy); v € Gu},

and select x,s € (), with
- 1
'V(Zfl_fcns \ U Exnr) z ’;_; kng‘
F<l8 &

Denote by Fy the set | J E,,, and by H, the set G, x F,.

8=1
Assertion L (4 x ») [E N (G, x Y)\ Hyl = 0.

Proof of Assertion I. Observe first that ¢/, x Y and I, are ‘uﬁ % p-
-measurable, and therefore so is the set K, = E N (G, x Y)\ H,. Hence
in view of Fubini‘'s theorem it will be suficient to show that »[(K,),] = 0 for

Ev o}
all x e ,. Now for v €/, we have (K,); = H, \ U E,,,. Consequently, if
* sl
W[(Kp)sl —d > 0, then by, ~dforalle=1 2 . and

v(Y) = V(U Eflf'm) = }_: V(s \ U Bey) = ©,
s=1 s=1 r<s

a contradiction. Our assertion is proved.
From Assertion I it follows that the set

Z=[En(Gn x Y)\ Hyl
f=1



has 4 x y-measure zero, and it will be sufficient to prove that f|(E \ Z) is
w X v-measurable. Let

D-—-lr,n=-12 . s—-12 I
For each n define a function f,: £ \ Z — R as follows:
H@yelx2) Gy X ¥) then f (o, y) = 1;
if (x, y) € (B \ Z) N (Gy X Y) then fu(x, y) = sup{f(w, y);
weDnG,and (w, y) e B}.

Observe that if (v, y) e (E\ Z) 0 (Gy X Y) then (x,y) e Gy x Iy, 50 2 20,
and y € K,,, for some s; hence y € B, for some w e D N ¢, thatis, we D N ¢/,
and (w. y) € K for some w, so the supremum is over a non-empty set. Since f,
is obviously 4 x y-measurable, it will be enough to prove the following.

Assertion IL. On B \ Z we have f = inf,f,.

Proof of Assertion 1I. (a) To show that f(x, y) < inf,fu(x. y) on £ \ Z,
we must show that f(x, y) < fala, y) for all n. This is obvious if (x,y) € (£ \
\ Z) \ (Gn x Y), because then f(z, y) < 1 = fu(x, y). Hence we may suppose
that (v, y) e (B \ Z) N (Gy x Y); in particular x € ¢,. It will be enough to
show that f(x, y) — ¢ < fu(z, y) for every & > 0.

In view of the continuity of f¥, there is an open set ¢/ containing x such that
[z, y) > fle,y) — eforallz e G N BY. For some m we havex e G, <« G N G,.
Then (xv,y)e(E \Z) N (Gn X Y), and as observed earlier there exists
we DN Gy with (w, y) € . Then f(w, y) > f(x,y) — g and, sincewe DN ¢/,
Fulw, ) = fw, y) = f(z, y) — ¢ as required.

(b) Finally we show that f(x, y) = infyufu(x, y) on E \ Z; that is, given
e > 0 we have f(x, y) -+ ¢ = fu(z, y) for some m. As above, there is an open
set ¢ containing x such that f(z, ) < f(x, y) + ¢ for all z € ¢ N EY. For some
m we have x €@, < G. Then (v,y)e (B \ Z) 0 (Gpn < Y), and for every
weD NGy, with (w,y) e we certainly have we (¢ N EY and therofore
faw, y) < f(x, y) + e. Hence fu(x, y) < f(x, y) + ¢, as required.

A counter-example

Our proof that the second-countability hypothesis is essential in Theorem 1
will be based on two key notions: Sierpinski’s paradoxical decomposition of
K2 [8] and the density topology on R (see [3]).

Theorem 2. There exists a o-finite topological measure space (X, p), a o-finite

measure space (Y, v), and a function f: X X Y - R such that [ is v-measurable
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Proof. Let N be the least possible cardinality for a subset of (0, 1) having
positive outer Lebesgue measure, and choose a set § < (0, 1) of cardinality
N with m*(S) > 0. Let (S, ) be the measure space in which the ¢-algebra
consists of the intersections with S of the Lebesgue measurable subsets of
(0, 1), and in which g is outer Lebesgue measure on this g-algebra. We consider
(S x 8, u < p), the first factor being endowed with the topology induced on S
by the density topology on R.

Let < be a well ordering of S of type wy. Define M = {(, y); + < y} and
observe that (S x § \ M), has measure zero for all € § and M has measure
zero for all ¥ € 8. In particular MY is a closed set with respect to the density
topology on E. We can choose a set K = K(y) in B \ Mv which is closed in
the ordinary topology, such that K N S has positive y-measure. By the Remark
after Theorem 3 of [3] there is a function f# from (0, 1) to <0, 1> which is
continuous with respect to the density topology, such that f/(x) = 1 on MV
and f¥(x) = 0 on K(y).

Let f: 8§ X 88— <0, 1> be defined by f(z, y) = fv(x) for (x,y)eS x 8. For
each fixed x, f, differs from the characteristic function of M, on a set of measure
zero only, and so

[ fee, pyduty) = p(Ma) = w(S),
S
while
[ fa. p)iut) < p(S) — ulK@y) 0 8] < w(S),
8

an application of Fubini’s theorem yields the desired non-measurability of f.
Remarks

In view of our results, it is natural to ask whether if (X, u) is an arbitrary
o-finite topological measure space and f: X x X — R is continuous in y for
all # and continuous in x for all y, the function f is necessarily 4 x y-measurable.
One of us has shown [1] that the answer is negative, assuming the existence
of a non-measurable cardinal, but that the answer is positive in the special
case when X is R with the density topology and u is Lebesgue measure. The
latter result resolves a problem of Migik recently quoted by Lipinski [4].
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