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A MOTE ON THE COMPLETENESS OF 

OEOA VAVBOVA, Kosiee 

There is a connection between the completeness of Lq and the completeness 
of the metric space of all sets of finite measure (see [I]). I t has been shown in. 
\'1\ that the completeness of the measure space can. be formulated, and proved, 
by means of some properties of the families of sets of "small measure* \ We use 
a- sirnilar method in the present paper to prove a generalization of an. Lq-
- com] Hotel icss theorem. 

First we introduce a sequence {Gn}^M of sets of extended real valued me
asurable functions defined on. a set 8 and satisfying some axioms. An example 
of such a, sequence is the following, Let (S, ]>, fs) be a finite measurable algebra, 
G» -.v.-: {/- in eas urable, \s\f\*dfji < oo, Gn •---= {f,feGo, \ s\f\qdf* < 2~"}. 

The operations / ~f~ </, a/ etc. are defined as usually, only we put 
•*/. }• (•-• co) --.-- (- oo) -•{- (oo) -•= 0, 0 . oo --- 0. Hence we list the axioms: 

L If fe Gn, then j/j e Gni n -•-= 0, 1,2, 

IL If. f e Gfn. </ is a- measurable function such, t h a t |(/i ^ / o n /5\ then also 

g G 6\,. 

I 1.1, I.f/ e (/„,}.),, g e Gn-v\, t h e n / ~j r/ e &V, / ~f- g e G§ for/, g e 6-<>. 

I'W If fn 6 6'0, n — 1, 2, 3, ..*, fn/ /, fn¥\ - - /« e # w , then also / G 6Y> 
CV//* / U'M*) -S /« n(#) and Um/W(a-) - - /(it*) for every x e S). 

V. I f {ccn}'^ j is a sequence of real valued constant functions and litn y.H --•• 0, 

then to any n there is w such tha t the constant function f(x) ••••••• xm, 
x e /s\ belongs to Gn, 

VL "For every real nonzero constant 2 and positive integer n there exists 
an index w such t h a t / e f t m , implies 2 / e Gn ((A/) {#) -~ 2/(#) for every 
J.' C= S). 

VI L I.f /# - > / (I o. for every y e S Mm fn(x) -~f(x))f fn^Gkn for v* -•--.--:: 

:•••.-• 0. L 2, . . ., t h e n / e C 4 -
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V 1 1 I . If f GGQ, M =•- {x : \f(x)\ < 00} and g measurable , g , p f eOt, then 
g e Q%. 

Theorem. Lei g i> I , .4 -= { / e 6Y
0, \f\9 e 6/0}, r/w - {(/, (/) : | / -~ (/i'/ e / / , | 

(/*. ----- 0, 1,2, . . .) a n d ^ ^ { 0 \ J * 0 . -P^w- (-4, # ) r# a complete uniform psewin. 
melrizable space. Furthermore, there is a translation invariant pseudometric d 
on A such thai- d and 3^ generate the same uniformity on A, and A e M ,\fn\\

:, , 
in A, d(fns 0) --> 0 imply d(Xf7H 0) -> 0. 

Proof. Let q > 1. 
We prove the completeness of (A, iM). The base (j$ of J is countable. Hejnje 

A is complete if every Cauchy sequence is convergent (see [of). Let fv ".„ / 
denote the convergence in (A, $). I t m e a n s : / e /I and. to every k there exists 
No such that (fn,f) £ lh for % ^ No, A sequence {/V^i is Cauchy in. (A, .-A\ 
If for each it there exists N such that (fn!fm) e ^ for w, M !> N. 

•L t̂ l/»}a,.i be a Cauchy sequence in (A, M) and let ? >; 1 he given. By V* 
there is A > 0 such that 

I q 
(\) •- A.v~{ e (?i4i s where p =.-.• ••••• -'•'•-• , 

F ' f - •-
By V I t h e r e is m% such t h a t 

m (k) ^m c: tfm. 

Hi;nce ( /»}*.! is Cauchy, there exists k't such t h a t 

(•>) (fnjm) e ?/w , for all •/?, -m § ^ . 

From (2) and (3) i t follows t h a t 

?4) (%)-' l !/» •• /m|« e r?i,i for all w, -m r ArJ. 

The inequality 
aP 6-f 

«• , 6 <; -h •• («, 6 £ 0) 
P ? 

implies (a •= ^ & ,,, ;/„(#) fm(x)\9 x e 8): 

1 
<r>) i/» /i»j ^ (A?)'"1 i/A - /»!« H- "-• /* 'l (n, m £ k)). 

P 
B u t (1), (4), (5), H I and I I imply 

(*>) /» /?» e 6'* for all rt, m £ 1^. 

Let { î}'*i he a strictly increasing sequence of .Integers such that kf g //; 

(for example, fc£ ^ m a x {jfcj, . . ., Aj} -f 1). Then (6) implies fkitl • •/**• ~ 'V; 

(i £ J), since km > k{ ;> &'.. 
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• Ut H o w h _ I -r ' 7 w rjC 

vv Ao - |/*,!, hi = | / t .+ 1 _ y y f f = 1 ; 2> _._ T h e n 2h{/f 2 hi, 

f-i. '' ~~ H hi e #« > hence V h( e G0 according to IV. Finally define 
''""" l..n 7~f. ° /(«') =/.,(-) + 2 (/*+!(*) -/*.(«)), 

J** X ^^, |!) converges and 
* , • ( ) 

fix) = 0 
oo 

in tlie opposite case. Then / i s a measurable function, for which | / | ^ 2 ^ G ^ o > 

CO 

hence / e GQ according to II . Put M = {̂ : 2 hi(x) < co}. Ev ident ly/^ . %M ~> 

> / . #M . According to VII and to V I I I / ^ i > / Now it is not difficult to prove 
that \f\Q e Go and also/® J^f 

The base ^ gives on 4 a base of neighbourhoods of 0, which form a topology 
on A; the discrete product of these neighbourhoods forms a topology on A X 
X A. --= {(x9 y) : x e A, y e A}. Since the function f(x9 y) = x + y from. A X 4. 

into A is a continuous function (III) and the function g(oc9 x) = ax from 
if x -4 = {(a, x)9 a-real number, x e 4 } into 4 is a continuous function too, 
4 is a linear topological space. One can easily define on A a translation in
variant pseudometric d9 such tha t d generates the same uniformity on 4 as 3$9 

and the following holds true: for every sequence {/»}^L0 of elements of 4 , 
if cl(/w, 0) —> 0, then d(Xfn, 0) -> 0 for every real number 1 ([4,5]). 

In a case q = 1 the proof is simple. 
Let us remark that the space A. needs not be separated, 
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