Matematický časopis

Juraj Bosák
Cubic Moore Graphs

Matematický časopis, Vol. 20 (1970), No. 1, 72--80
Persistent URL: http://dml.cz/dmlcz/126958

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

CUBIC MOORE GR APHS

.JURAJ BOSÁK, Bratislava

By a tied graph of type (d, k) we understand - in accordance with [1] a regular graph with a (finite or infinite) degree d and with a finite diameter k, not containing any circuit of length $\leqslant 2 k$. Finite tied graphs (i. e., tied graphs of finite degree - so-called Moore graphs) were studied in [1], [2], [3]. In the present paper except in the last $\S 4-$ we shall consider only tied graphs of type ($3, k$), that is cubic Moore graphs. Obviously, there is no Moore graph of type $(3,0)$ and there exists up to isomorphism exactly one Moore graph of type (3,1) (tetrahedron). It is known [2] that there exists up to iso morphism just one Moore graph of type (3,2) (the Petersen graph) and no Moore graph of type (3,3). In this paper we prove the non-existence of Moore graphs of type ($3, k$), where $3 \leqslant k \leqslant 8$. (1) For $k \geqslant 9$ the question of the existence of Moore graphs of type ($3, k$) remains open. In $\S 4$ we give a survey of known results on the existence and the uniqueness of tied graphs of a given type.

§ 1. BASIC PIROPER'TIES OF CUBIC MOORE GRAPHN

Let G_{k} be a Moore graph of type $(3, k)$ where $k \geqslant 3$. Pick a vertex w of G_{k} As G_{k} is a cubic graph, w is adjacent to three vertices a, b and c of G_{k} (Fig. 1) The distance of vertices x and y in G_{k} will be denoted by $r(x, y)$. Vertices x such that $r(x, w) \quad k$, will be called w-vertices of G_{k}, edges joining such ver tices - w-edges of G_{k}. As $r(x, w)-k$, the vertex x is adjacent to a vertex y such that $r(y, w) \quad k \quad 1$. Considering the fact that G_{k} does not contain any circuit of length $\leqslant 2 k$, the remaining two vertices, adjacent to x, are w-vertices Therefore the w-vertices and the w-edges form a quadratic subgraph of G_{h}, the circuits of which it consists are called w-circuits of G_{k}. Evidently, G_{k} con tains exactly $3.2^{k}{ }^{1} w$-vertices and the same number of w-edges. Further, G_{k} has
${ }^{(1)}$ This iesult was presented at the Colloquium on Graph Theory in Manebach (G.D R.) in May 1967.

$$
1+\sum_{i 1}^{k} 3.2^{k}-3.2^{k}-2
$$

vertices and

$$
\frac{3}{2}\left(3.2^{k}-2\right) \quad 3\left(3.2^{k} 1 \quad 1\right)
$$

edges. If we omit all w-edges from G_{k}, the graph $T(w)$ obtained in this way will be also connected (from every vertex there is a path to w in $T(w)$). As $T(w)$ has $3.2^{k} 2$ vertices and $3\left(3.2^{k} 1 \quad\right.$ l) $3.2^{k}{ }^{1}-3.2^{k}-3$ edges, $T(w)$ is a tree, namely a spanning tree of G_{k}. The symbol $r_{w}(x, y)$ denotes the distance of vertices x and y in $T(w)$ and the symbol $x,:, y$ denotes the unique path comnecting x and y in $T(w)$. Obviously, $r_{w}(x, y) \geqslant r(x, y)$ and $r(w, x) \quad r_{u}(w, x)$.

Fig. 1

Suppose $r(x, w) \geqslant 2$. Evidently, there exists a unique vertex y such that $r(x, w) \quad r(y, w)$ and $r_{w}(x, y)-2$. This vertex will be denoted by $y \quad \alpha x$ Obviously, $\alpha^{2} x \quad x$.

Let $i \in\{0,1,2, \ldots, k\}$ and $r(w, x) \geqslant i$. Then there is exactly one vertex y for which $r(w, y) \quad i, r(w, y)+r(y, x) \quad r(w, x)$. It will be denoted by $y \quad \beta, x$ Instead of β_{3} we shall write briefly β. Evidently, if $k \geqslant 4$ and x is a w-vertex of G_{k}, then $\beta \alpha x \quad \beta x . G_{k}$ is a tied graph, therefore it contains no multiple edges. Thus we may denote the edge joining vertices x and y by (x, y) and the path with vertices $x_{1}, x_{2}, \ldots, x_{n}$ by $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Lemma 1. Let $\left(x, y_{1}\right)$ and $\left(x, y_{2}\right)$, where $y_{1} \neq y_{2}$, are w-edges of G_{k}. Then thr following equality of sets holds:

$$
\left\{\beta_{1} x, \beta_{1} y_{1}, \beta_{1} y_{2}\right\} \quad\{a, b, c\}
$$

Proof. Evidently, each of the elements $\beta_{1} x, \beta_{1} y_{1}, \beta_{1} y_{2}$ belongs to the set $\{a, b, c\}$. If the assertion of Lemma 1 were false, two of elements $\beta_{1} x, \beta_{1} y_{1}$, $\beta_{1} y_{2}$ would coincide. If $\beta_{1} x \quad \beta_{1} y_{i}(i \in\{1,2\})$, there exists in G_{k} a circuit $\left\lfloor x,:, y_{i}, x\right\rfloor$ of length $\leqslant 2 k \quad$, which is in contradiction to the definition of a tied graph. If $\beta_{1} y_{1} \quad \beta_{1} y_{2}$, there exists in G_{k} a circuit $\left[y_{1},:, y_{2}, x, y_{1}\right]$ of length $\leqslant 2 k$, a contradiction again. The lemma follows.

Now we can assign to every w-vertex x of G_{k} a w-vertex !/ $q x$ adjacent to x so that

$$
\begin{aligned}
& \text { if } \beta_{1} x-a \text {, then } \beta_{1} y \quad b, \\
& \text { if } \beta_{1} x=b \text {, then } \beta_{1} y=c \text {, } \\
& \text { if } \beta_{1} x \quad c \text {, then } \beta_{1} y \quad a \text {. }
\end{aligned}
$$

Lemma 1 guarantces the existence and uniqueness of $q x$.

§ .. AUNILIARY RESULTs

Henceforth we shall use notation introduced in § 1 .
Lemma 2. Let x be a w-verter of G_{k}. We have:
(a) $\beta_{1} \varphi^{i} x \quad \beta_{1} \varphi^{j} x$ if and only if $i \quad j(\bmod 3)$.
(b) The elements $\beta x, \alpha \beta x, \beta \varphi^{3} x, \alpha \beta \phi^{3} x$ are mutually different.
(c) $\beta q^{6} x \quad \alpha, \beta x, \beta q^{9} x \quad \alpha, \beta q^{3} x, \beta q^{12} x \quad \beta x$.
(d) The elements $\beta x, \beta q x, \beta q^{2} x, \beta q^{3} x, \ldots, \beta q^{11} x$ are mutually diffferent.

Proof. (a) follows from Lemma 1.
(b) From the definition of α it follows that $\beta x \neq \alpha \beta x$, and $\beta q^{3} x \neq \alpha_{1}{ }^{3} q^{3}, x$ If $\beta x \quad \beta \varphi^{3} x$, then there exists a circuit $\left[x, \varphi x, \varphi^{2} x, \varphi^{3} x,:, x\right]$ in G_{k} of length $<2 k-3$, which is in contradiction to the definition of a tied graph. If $\beta q^{3} \cdot x$
$\alpha \beta x$, we have a circuit $\left[x, \varphi x, \varphi^{2} x, \gamma^{3} x,:, x\right]$ of length $2 k \quad 1$, a contradic tion again. If $\beta x \quad \alpha \beta q^{3} x$, then $\alpha \beta x-\alpha^{2} \beta q^{3} x \quad \beta p^{3} x$, and we have the case treated above. If $\alpha \beta x \quad \alpha \beta q^{3} x$, then $\alpha^{2} \beta x \quad \alpha^{2} \beta q^{3} x$, i. e. $\beta x \quad \beta \varphi^{3} x$, which is also impossible.
(c) According to (b) the elements $\beta x, \alpha \beta x, \beta q^{3} x, \alpha \beta q^{3} x$ are mutually different But from Lemma 1 it follows that $\beta_{1} \beta x-\beta_{1} \beta \varphi^{3} x \quad \beta_{1} \alpha \beta x \quad \beta_{1} \alpha \cdot \beta p^{3} x \quad \beta_{1} \beta_{q} q_{x}$ Thercfore $\beta q^{6} x \in\left\{\beta x, \beta \varphi^{3} x, \alpha, \beta x, \alpha \beta q^{3} x\right\}$. If $\beta q^{6} x \quad \beta x$, then a circuit $\mid x, q x$, $\varphi^{2} x, \varphi^{3} x, \varphi^{4} x, q^{5} x, q^{6} x,:, x \mid$ of length $\leqslant 2 k$ would exist in G_{k}, which is a con tradiction. If $\beta q^{6} x \quad \beta q^{3} x$, for $y \quad q^{3} x$ we should have $\beta q^{3} y \quad \beta y$, which contradicts (b). If $\beta \varphi^{6} x \quad \alpha \beta \varphi^{3} x$, then analogously we have $\beta q^{3}!y \quad \alpha \beta y$, again in contradiction to (b). Therefore $\beta \varphi^{6} x-\alpha \beta x$. Using this relation we obtain $\beta q^{9} x \quad \beta \varphi^{6}\left(q^{3} x\right) \quad \beta \varphi^{6} y \quad \alpha \beta y \quad \alpha \beta q^{3} x$. Further, $\beta \varphi^{12} x \quad \beta q^{6}\left(\varphi^{6} x\right) \quad \alpha \beta\left(q^{6} \cdot x^{\prime}\right)-$ $\alpha^{2} / \beta x \quad \beta x$.
(d) Let $\beta q^{i} x \quad \beta q^{j} x, i, j \in\{0,1, \varrho, \ldots, 1 \mathrm{l}\}, i \quad j$. Evidently, $\beta_{1 q^{i}} x \quad \beta_{1 q}{ }^{j} x$; according to (a), we have $i \quad j(\bmod 3)$, i. e. we can write $j \quad i \quad 3 t, t \in\{1, \geq, 3\}$. Put y $\quad \phi^{i} x$. We have: β ! $\quad \beta \varphi^{i} x \quad \beta q^{j} x \quad \beta q^{i}{ }^{3 t} x \quad \beta q^{3 t} y$. But from (b) and (c) it follows that $\beta y \neq \beta \varphi^{3 t} y$, which is impossible.

Lemma 3. The length of every w-circuit of G_{k} is a multiple of 1 ㅇ.
Proof follows from (c) and (d) of Lemma \because.

Lemma 4. Let M be a set of w-vertices of $G_{k}, k \geqslant 5$. If M has more than 2^{h-5} loments and for every $y_{1}, y_{2} \in M$ we have $\beta y_{1} \quad \beta y_{2}$, then there exist $x_{1}, x_{2} \in M$, ${ }_{1} \quad x_{2}$ such that $r_{w}\left(x_{1}, x_{2}\right) \leqslant 4$.

Proof. Form the set $N \quad\left\{\beta_{k}{ }_{2} x\right\}_{x \in M}$. The set N evidently cannot have more than $2^{k}{ }^{5}$ elements; therefore for some $x_{1}, x_{2} \in M, x_{1} \neq x_{2}$ we have $i_{h} \quad 2 x_{1} \quad \beta_{h}{ }_{2} x_{2}$. i. e. $r_{w}\left(x_{1}, x_{2}\right) \leqslant 4$.

Lemma 5. Let x and y be w-vertices of G_{k}. If $\beta x \quad \beta y$, then $r_{\mu}(x, y) \leqslant 2 k \quad 6$ If $\beta, x \quad \alpha \beta y$, then $n r_{u}(x, y) \quad 2 k \quad 4$.

Proof. The path $[x,:, y\rceil$ has evidently the length $\leqslant 2 k \quad 6$ in the first dse and the length $2 k \quad 4$ in the second case.

Lemma 6. If $x \neq y$ are such w-vertices of G_{k} that $\beta x \quad \beta y$ and $\beta q x \quad \beta \varphi y$, the $r_{w}(x, y)>6$.

Proof. If the assertion of the lemma were not truc, then $r_{u}(x, y)<4$ B. Lemma 5 we have $r_{w}(\varphi x, \varphi y) \leqslant 2 k-6$. But then $\lfloor x, q x,:, q!, y,:, x\rfloor$ would be a circuit of length $\leqslant 2 k$, which is impossible.

Lemma 7. Let x bc a w-vertex of $G_{k}, k \geqslant 4$. Then we have.

$$
\begin{array}{ll}
\beta \varphi^{2} \alpha x & \alpha \beta q x, \\
\beta \phi^{1} \alpha x & \alpha \beta \gamma^{2} x, \\
\beta \varphi \alpha x & \alpha \beta q{ }^{2} x, \\
\beta \phi^{2} \alpha x & \alpha \beta \gamma^{1} x . \tag{4}
\end{array}
$$

Proof. First we prove (3). As $\beta x \quad \beta \alpha x$, consequently $\beta_{1} x \quad \beta_{1} \alpha x$, and dso $\beta_{1} \varphi x \quad \beta_{1} q \alpha x$. According to (d) of Lemma 2 the elements $\beta(q \alpha x), \beta \varphi^{3}(q \alpha x)$ $\beta q^{\prime \prime}(q \alpha x), \beta q^{9}(p \alpha x)$ are mutually different. By (a) of Lemma 2 we have $\beta_{1}(q \propto x)$
$\beta_{1} q^{3}\left(q \alpha x^{x}\right) \quad \beta_{1} q^{6}(q \alpha x) \quad \beta_{1} \varphi^{9}(q \alpha x)$. Since $\beta_{1}(q \alpha x) \quad \beta_{1}(q x)$. the element $\beta(q \alpha x)$ equals one of the elements $\beta(q x), \beta q^{3}(q x) \quad \beta p^{6} q{ }^{2} x, \beta q^{6}(q x), \beta q^{9}(q x)$
$\beta q^{12} q^{2} x$, hence with respect to (c) of Lemma ${ }^{2} \quad \beta(q \alpha x)$ is equal to ,ome of the elements $\beta \varphi x, \alpha \beta \varphi{ }^{2} x, \alpha \beta q x, \beta q{ }^{2} x$.

If $\beta q \alpha, x \quad \beta q x$, then the circuit $\lfloor q x, x,:, \alpha x, q \alpha x,:, q x \mid$ has the length $\leqslant \varphi k$
2 . because $r_{\mu}\left(x, \alpha_{x} x\right) \quad 2$ and according to Lemma $\sigma_{r}(q \alpha x, q x) \leqslant 2 k \quad 6$. If fof $\alpha x \quad \alpha \beta q x$, the circuit $[\varphi x, x,:, \alpha x, \varphi \alpha x,:, \psi x]$ has the length $2 k$, for Lemma ; vields $r_{u}(q \alpha x, \varphi x) \quad 2 k \quad 4$. If $\beta q \alpha x \quad \beta \varphi^{2} x$, the circuit [$\varphi^{2} x$, ${ }_{q}{ }^{1}, x, x,:, \alpha x^{\prime}, q_{x} x,:, \phi^{2} x \mid$ has the length $\leqslant 2 k \quad$ I, because Lemma 5 implies , ($\left.\boldsymbol{q}^{2} x, q \alpha x\right)<2 k$ 6. Therefore only the last possibility, i. e. (3), can be valid.

The proof of (2) is ,,dual" to that of (3) it is sufficient to replace $q^{2}, \gamma, q{ }^{1}$ ind $q{ }^{2}$ by $q^{2}, q{ }^{1}, q$ and q^{2}, reepectively.

If in (3) we replace x by αx, we obtain

$$
\beta ; \alpha^{2} \cdot x \quad \alpha, \beta \eta \quad{ }^{2} \alpha x,
$$

whence, as α^{2} is an identical mapping, it follows that

$$
\beta \varphi^{2} \alpha x=\alpha^{2} \beta \varphi^{-2} \alpha x=\alpha \beta p \alpha^{2} x=\alpha \beta \varphi x,
$$

that is, the relation (1).
The proof of (4) is ,,dual" to that of (1).
Lemma 8. Let x be a w-vertex of G_{k}, where $k \geqslant 4$. Then we have:

$$
\begin{aligned}
& \beta q^{4} \alpha x=\beta \varphi x, \\
& \beta \varphi^{5} \alpha x=\beta \varphi^{2} x, \\
& \beta \varphi^{6} \alpha x=\alpha \beta x, \\
& \beta \varphi^{7} \alpha x=\beta \varphi^{2} x, \\
& \beta \varphi^{8} \alpha x=\beta \varphi^{1} x, \\
& \beta \varphi^{10} \alpha x=\alpha \beta \varphi x \\
& \beta \varphi^{11} \alpha x=\alpha \beta \varphi^{2} x, \\
& \beta \varphi^{12} \alpha x=\beta x \\
& \beta \varphi^{13} \alpha x=\alpha \beta \varphi{ }^{2} x .
\end{aligned}
$$

The proof follows from (c) of Lemma 2 and Lemma 7, for instance:

$$
\begin{gathered}
\beta \varphi^{4} \alpha x=\beta \varphi^{6}\left(\varphi^{2} \alpha x\right)-\alpha \beta\left(\varphi^{2} \alpha x\right)=\alpha\left(\beta \varphi^{2} \alpha x\right) \quad \alpha(\alpha \beta \varphi x) \quad \beta \varphi x, \\
\beta \varphi^{5} \alpha x \quad \beta \varphi^{6}\left(\varphi^{1} \alpha x\right)=\alpha \beta\left(\varphi^{1} \alpha x\right)-\alpha\left(\beta \varphi^{1} \alpha x\right) \quad \beta \varphi^{2} x, \\
\beta \varphi^{6}(\alpha x)-\alpha \beta(\alpha x)-\alpha \beta x, \text { etc. }
\end{gathered}
$$

§ 3. MAIN RESULTS

Lemma 9. There is no Moore graph of type (3, 3). (${ }^{2}$)
Proof. Let G_{3} be a Moore graph of type (3,3). Then for any w-vertex x of G_{3} we have $\beta x \quad x$. (c) of Lemma 2 yields $\alpha x-\alpha \beta x \quad \beta \psi^{6} x \quad \varphi^{6} x, \alpha \varphi x \quad \alpha \beta(\varphi x)$
$\beta \varphi^{6}(\varphi x)-\varphi^{7} x$. Therefore G_{3} contains a hexagon $\left[x, q x,:, \varphi^{7} x, \varphi^{6} x,:, x \mid\right.$ which contradicts the definition of a Moore graph.

Lemma 10. There is no Moore graph of type (3, 4).
Proof. Let G_{4} be a Moore graph of type (3,4). Let x be a w-vertex in \boldsymbol{G}_{4} Evidently G_{4} has just $24 w$-vertices, so that, according to Lemma 6, in G_{1} there is either one single w-circuit with 24 vertices or two w-circuits, each with 12 vertices. In the first case G_{4} contains a hexagon $\left[x, \varphi x,:, \varphi^{13} x, \varphi^{12} x,:, x\right]$. and we have a contradiction. In the second case from (c) of Lemma 2 and Lemma 7 it follows that
${ }^{(2)}$ This result follows also from [2].

$$
\begin{aligned}
& \beta \varphi^{8} x=\beta \varphi^{6}\left(\varphi^{2} x\right)-\alpha \beta \varphi^{2} x=\beta \varphi^{-1} \alpha x, \\
& \beta \varphi^{7} x-\beta \varphi^{6}(\varphi x)-\alpha \beta \varphi x=\beta \varphi^{2} \alpha x,
\end{aligned}
$$

therefore G_{4} contains a hexagon $\left[\varphi^{7} x, \varphi^{8} x,:, \varphi^{1} \alpha x, \varphi^{-2} \alpha x,:, \varphi^{7} x\right]$, thus we have arrived at a contradiction again.

Lemma 11. The length of any w-circuit in $G_{k}(k \geqslant 5)$ is at most $3.2^{k}{ }^{5}$.
Proof. Let C be a w-circuit in G_{k} of the length $12 s$ (see Lemma 3). Pirk a vertex v of C. Denote $\beta q^{2} v \quad d, \beta \varphi^{6} v-e$. Let Z be the set of all vertices of C of the form $\varphi^{12 n} v$, where $n=0,1,2, \ldots, \mathrm{~s} \quad$. Let $z \in Z$. From (c) of Lemma 2 it easily follows that $\beta \varphi^{2} z-d, \alpha \beta z=e$.

Define the functions $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}$ thus (x runs through the set of all w-vertices):

$$
\begin{aligned}
& \delta_{1}(x)=\varphi^{5} \alpha x, \\
& \delta_{2}(x)=\varphi \alpha \varphi \alpha x, \\
& \delta_{3}(x)=\alpha \varphi^{2} x, \\
& \delta_{4}(x)=\varphi^{10} \alpha \varphi^{5} \alpha \varphi^{2} x .
\end{aligned}
$$

Let us prove that $\beta \delta_{i}(z)=d, \beta \varphi \delta_{i}(z)=e$ for $i=1,2,3$ and 4 . By systematic using of (c) of Lemma 2 and of Lemmas 7 and 8 we obtain:

```
    \(\beta \delta_{1}(z) \quad \beta \varphi^{5} \alpha z \quad \beta \varphi^{2} z-d\),
\(\beta \delta_{2}(z) \quad \beta(\varphi \alpha \varphi \alpha z) \quad \beta \varphi \alpha(\varphi \alpha z)=\alpha \beta \varphi^{2}(p \alpha z)=\alpha\left(\beta \varphi^{-1} \alpha z\right)=\alpha\left(\alpha \beta \varphi^{2} z\right)=\)
    \(\beta q^{2} z=d\),
\(\beta \delta_{3}(z) \quad \beta \alpha\left(\varphi^{2} z\right)=\beta \varphi^{2} z=d\),
\(\beta \delta_{4}(z) \quad \beta \varphi^{10} \alpha\left(\varphi^{4} \alpha \varphi^{2} z\right)=\alpha \beta \varphi\left(\varphi^{5} \alpha \varphi^{2} z\right)-\alpha\left(\beta \varphi^{6} \alpha\left(\varphi^{2} z\right)\right)=\alpha\left(\alpha \beta\left(\varphi^{2} z\right)\right)=\)
    \(\beta \varphi^{2} z-d\),
\(\beta \varphi \delta_{1}(z)=\beta \varphi^{6} \alpha z-\alpha \beta z=e\),
\(\beta \varphi \delta_{2}(z) \quad \beta q^{2} \alpha(p \alpha z)-\alpha \beta p^{-1}(\varphi \alpha z)=\alpha \beta(\alpha z)=\alpha \beta z=e\),
\(\beta \varphi \delta_{3}(z)-\beta \varphi \alpha\left(\varphi^{2} z\right) \quad \alpha \beta \varphi^{-2}\left(\varphi^{2} z\right)=\alpha, \beta z-e\),
\(\beta \varphi \delta_{4}(z) \quad \beta \varphi^{11} \alpha\left(\varphi^{5} \alpha \varphi^{2} z\right)=\alpha \beta \varphi^{2}\left(\varphi^{5} \alpha \varphi^{2} z\right) \quad \alpha \beta \varphi^{7} \alpha\left(\varphi^{2} z\right)=\alpha \beta \varphi^{-2}\left(\varphi^{2} z\right)-\)
    \(\alpha \beta z-e\).
```

Evidently, for every $z \in Z$ and $i \in\{1,2,3,4\}$ the edge $\left[\delta_{i}(z), \varphi \delta_{i}(z)\right]$ is a w-edge of G_{k}. We shall prove that all such edges are mutually different. Suppose that $\left[\delta_{i_{1}}\left(z_{1}\right), \varphi \delta_{i_{1}}\left(z_{1}\right)\right] \quad\left[\delta_{i_{2}}(2), \varphi \delta_{i_{2}}\left(z_{2}\right)\right]$, where $i_{1}, i_{2} \in\{1,2,3,4\}: z_{1}, z_{2} \in Z$. 'There are two possibilities:
I. $\delta_{i_{1}}\left(z_{1}\right) \quad \varphi \delta_{i_{2}}\left(z_{2}\right)$. But then we have $\beta \varphi^{2} v=d=\beta \delta_{i_{1}}\left(z_{1}\right) \quad \beta \varphi \delta_{i_{2}}\left(z_{2}\right)$ $e \quad \beta \varphi^{6} v$, which contradicts (d) of Lemma 2.
II. $\delta_{i_{1}}\left(z_{1}\right) \quad \delta_{i_{2}}\left(z_{2}\right)$. We first prove that $i_{1}=i_{2}$. By using (c) of Lemma 2, Lemma 7 and Lemma 8 we obtain for any w-vertex x
$\beta \varphi^{1} \delta_{1}(x) \quad \beta \varphi^{4} \alpha x \quad \beta \varphi x$,

$$
\begin{array}{rllll}
\beta \varphi^{1} \delta_{2}(x) & \beta \alpha q \alpha x=\beta q \alpha x-\alpha \beta\left(\varphi^{2} x\right) & \beta \varphi^{6}\left(\varphi^{2} x\right) & \beta q^{4} x, \\
\beta \varphi^{1} \delta_{3}(x) & \beta \varphi^{1} \alpha \varphi^{2} x \quad \alpha \beta q^{4} x \quad \beta q^{10} x, & & \\
\beta q^{2} \delta_{1}(x) & \beta q^{7} \alpha x \quad \beta \varphi{ }^{2} x \quad \beta q^{10} x, & & \\
\beta \varphi^{2} \delta_{3}(x) & \beta \varphi^{2} \alpha \varphi^{2} x-\alpha \beta q x \quad \beta q^{7} x, & & \\
\beta \varphi^{2} \delta_{4}(x) & \beta \varphi^{12} \alpha\left(\varphi^{5} \alpha \varphi^{2} x\right) & \beta \varphi^{5} \alpha \cdot\left(\varphi^{2} x\right) & \beta \varphi^{2}\left(\varphi^{2} x\right) & \beta q^{4} x .
\end{array}
$$

According to (d) of Lemma 2 the elements $\beta \varphi x, \beta \varphi^{4} x, \beta \varphi^{7} x, \beta p^{10} x$ are mutuall! different. From the equality $\delta_{i_{1}}\left(z_{1}\right) \quad \delta_{i_{2}}\left(z_{2}\right)$ it follows that $\beta \varphi{ }^{1} \delta_{r_{1}}\left(\tilde{\sim}_{1}\right)$
$\beta \varphi^{1} \delta_{i_{2}}\left(z_{2}\right)$ and $\beta q^{2} \delta_{i_{1}}\left(z_{1}\right) \quad \beta \varphi^{2} \delta_{i_{2}}\left(z_{2}\right)$. Bdt this is possible only if $i_{1} \quad i_{2}$ o1 if $\left\{i_{1}, i_{2}\right\} \quad\{2,4\}$. First analyse the second possibility. Let, e. g., $i_{1}-2, i_{2} 4$ i. e., $\delta_{2}\left(z_{1}\right)-\delta_{4}\left(z_{2}\right)$. Puty $\quad \alpha q \alpha z_{1}$. Wehave: $\beta y \quad \beta \alpha \varphi \alpha z_{1} \quad \beta q \alpha z_{1} \quad \alpha \beta \varphi{ }^{2} \tilde{z}_{1}$
$\beta \varphi^{4} z_{1}-\beta \varphi^{4} v, \beta \varphi^{3} y \quad \beta \varphi^{2}\left(\varphi \alpha \varphi \alpha z_{1}\right) \quad \beta \varphi^{2} \delta_{2}\left(z_{1}\right)-\beta \varphi^{2} \delta_{4}\left(z_{2}\right) \quad \beta \varphi^{4} z_{2}-\beta \varphi^{4} v$ Thus we obtain that $\beta y \quad \beta \varphi^{3} y$, which contradicts (d) of Lemma 2. Thereforc only the possibility $i_{1} i_{2}$ remains. Put $i \quad i_{1}-i_{2}$ so that $\delta_{i}\left(\tilde{z}_{1}\right) \quad \delta\left(\tau_{2}\right.$ α and φ are one-to-one functions. Consequently also every δ_{i} is a one to ond function and from the equality $\delta_{i}\left(z_{1}\right) \quad \delta_{i}\left(z_{2}\right)$ it follows that $z_{1} \quad z_{2}$.

Thus we proved that all edges of a form $\left[\delta_{i}(z), \varphi \delta_{i}(z)\right]$, where $i \in\{1,2,3,4\}$ $\approx \in\left\{v, \varphi^{12} v, \varphi^{24} v, \ldots, \varphi^{12(s)^{1)}} v\right\}$ are mutually different. Hence we have $4 s \hookrightarrow 1 c h$ edges, and always $\beta \delta_{i}(z) \quad d, \beta \varphi \delta_{i}(z) \quad e$. According to Lemma 6 any two of the vertices $\delta_{i}(z)$ have their distance r_{w} at least 6 . But from Lemma 4 it follows that we can have at most $2^{k}{ }^{5}$ such vertices. Therefore $4 s \leqslant 2^{k} 5$ i. e. the length of C is $12 s \leqslant 3.2^{k 5}$.

Theorem. There is no M sore graph of type $(3, k)$, where $3 \leqslant k \leqslant 9$.
Proof. Let G_{k} be a Moore graph of type ($3, k$), $3 \leqslant k \leqslant 8$. Lemmas 9 and 10 imply that $k \geqslant 5$. From Lemma 3 we know that the length of any w-circuit in G_{k} is a multiple of 12 . According to Lemma 11 this is possible only if $k \quad 7$ But G_{k} contains no circuits of length $\leqslant 14$, especially no 12 -gons. From Lemma 11 it follows that $k-8$ and all w-circuits in G_{k} are 24 -gons. Choone a w-circuit C, a vertex v of C and construct by the method from the proof of Lemma 11 (for $s \quad$ 2) $8 w$-edges of a form $\left(\delta_{i}(z), \varphi \delta_{i}(z)\right.$), where $\beta \delta_{i}(z) \quad d$ $\beta \varphi \delta_{i}(z) \quad e$. Consider the $9^{\text {th }}$ edge ($\varphi^{1} \alpha \varphi^{6} v, \alpha \varphi^{6} v$). By Lemma ${ }^{2}$, (c), Lemma 7 and Lemma 8 it is easy to prove that $\beta \varphi^{1} \alpha q^{6} v-d, \beta \alpha \varphi^{6} v \quad e, \beta^{3}{ }^{2} \alpha q^{4} v$
$\beta \varphi v, \beta \varphi \alpha \varphi^{6} v \quad \beta \varphi^{10} v$. From the proof of Lemma 11 it follows that if this edge equals one of the former 8 edges, we necessarily have $i \quad$, i. e. $\varphi{ }^{1}{ }_{\alpha q}{ }^{6}{ }_{c}$, $\delta_{1}(z)$. As C is a 24 -gon, either $z-v$ or $z \quad q^{12} v$. In the first case in G_{k} there exists a path $\left[v, \varphi v, \varphi^{2} v, \varphi^{3} v, \varphi^{4} v, \varphi^{5} v, \varphi^{6} v,:, \alpha \varphi^{6} v \quad \varphi^{6} \alpha v, \varphi^{5} \alpha v, \varphi^{4} \alpha v, \varphi^{3} \alpha v\right.$, $\left.\varphi^{2} \alpha v, \varphi \alpha v, \alpha v,:, v\right]$; in the second case there is in G_{k} a path $\left[\psi^{6} v, \varphi^{7} v, \varphi^{8} v, \varphi^{9} r^{r}\right.$, $q^{10} v, \varphi^{11} v, \varphi^{12} v,:, \alpha q^{12} v, \varphi \alpha \cdot \varphi^{12} v, \varphi^{2} \alpha \varphi^{12} v, \varphi^{3} \alpha \varphi^{12} v, \varphi^{4} \alpha \varphi^{12} v, \varphi^{5} \alpha q^{12} v, q^{6} \alpha \varphi^{12} v$ $\left.\alpha \varphi^{6} v,:, \varphi^{6} v\right]$. Both these paths contain a circuit of length $\leqslant 16$, which is in G^{8} impossible. Therefore in G^{8} there exist 9 edges of type (δ, ε), where $\beta \delta \quad d$
$\beta \varepsilon \quad \epsilon, \varepsilon \quad \gamma \delta$. According to Lemma 4 at least two of the vertices of type δ say δ^{\prime} and $\delta^{\prime \prime}$ have the distance $r_{w}\left(\delta^{\prime}, \delta^{\prime \prime}\right) \leqslant 4$. But this contradicts Lemma 6 . The theorem follows.

§ 4. A SURVEY OF TIED GRAP'Hs

Results of [1], [2] and our Theorem make it possible to summarize the known results on the existence and uniqueness of tied graphs of type (d, l) moto Table 1.

Table 1

Here the symbol ? means that neither the existence nor the uniqueness of a tied graph of type (d, k) has been proved. The symbol / means that there is no tied graph of the corresponding type, the symbol E denotes that so far only the existence (but not the uniqueness) for a given type has been proved. In the remaining cases there exists (up to isomorphism) exactly one tied graph as indicated in the table, where K_{n} is the complete graph with n veitices, C_{n} is the circuit with n vertices, R_{n} is the graph consisting of one vortex - nd n loops, P is the Petersen graph and $H S$ denotes the Moore gr. ty pe $(7,2)$ with 50 vertices constructed by Hoffman and Singleton in $|2|$ The ,.non trivial" part of the table is strongly framed

REFERENCES

[1] Bosák J., Kotzig A., Znám Š., Strongly geodetic graphs, J. Combin. Theory 5 (1968), $170 \quad 176$.
[2] Hoffman A. J., Singleton R. R., On Moore graphs with diameters 2 and 3, IBM J. Res. and Developm. 4 (1960), 497504.
[3] Singleton R., There is no irregular Moore graph, Amer. Math. Monthly 75 (1968), 42-43.
Received July 4, 1968
Matematický ístav
Slovenskej akadémie vied
Bratislava

