Juraj Bosák Cubic Moore Graphs

Matematický časopis, Vol. 20 (1970), No. 1, 72--80

Persistent URL: http://dml.cz/dmlcz/126958

# Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.



This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

## **CUBIC MOORE GRAPHS**

JURAJ BOSÁK, Bratislava

By a *tied graph of type* (d, k) we understand — in accordance with [1] a regular graph with a (finite or infinite) degree d and with a finite diameter k, not containing any circuit of length  $\leq 2k$ . Finite tied graphs (i. e., tied graphs of finite degree — so-called *Moore graphs*) were studied in [1], [2], [3]. In the present paper except in the last  $\S 4$  — we shall consider only tied graphs of type (3, k), that is *cubic Moore graphs*. Obviously, there is no Moore graph of type (3, 0) and there exists up to isomorphism exactly one Moore graph of type (3, 1) (tetrahedron). It is known [2] that there exists up to iso just one Moore graph of type (3, 2) (the Petersen graph) and morphism no Moore graph of type (3, 3). In this paper we prove the non-existence of Moore graphs of type (3, k), where  $3 \le k \le 8$ . (1) For  $k \ge 9$  the question of the existence of Moore graphs of type (3, k) remains open. In § 4 we give a survey of known results on the existence and the uniqueness of tied graphs of a given type.

#### § 1. BASIC PROPERTIES OF CUBIC MOORE GRAPHS

Let  $G_k$  be a Moore graph of type (3, k) where  $k \ge 3$ . Pick a vertex w of  $G_k$ As  $G_k$  is a cubic graph, w is adjacent to three vertices a, b and c of  $G_k$  (Fig. 1) The distance of vertices x and y in  $G_k$  will be denoted by r(x, y). Vertices xsuch that r(x, w) = k, will be called *w*-vertices of  $G_k$ , edges joining such ver tices -w-edges of  $G_k$ . As r(x, w) - k, the vertex x is adjacent to a vertex ysuch that r(y, w) = k. I. Considering the fact that  $G_k$  does not contain any circuit of length  $\leq 2k$ , the remaining two vertices, adjacent to x, are *w*-vertices Therefore the *w*-vertices and the *w*-edges form a quadratic subgraph of  $G_k$ , the circuits of which it consists are called *w*-circuits of  $G_k$ . Evidently,  $G_k$  con tains exactly  $3.2^{k-1} w$ -vertices and the same number of *w*-edges. Further,  $G_k$  has

<sup>(1)</sup> This result was presented at the Colloquium on Graph Theory in Manebach (G.D R.) in May 1967.

$$1 + \sum_{i=1}^{k-1} 3.2^i - 3.2^k - 2$$

vertices and

$$\frac{3}{2}(3.2^k-2) = 3(3.2^{k-1}-1)$$

edges. If we omit all w-edges from  $G_k$ , the graph T(w) obtained in this way will be also connected (from every vertex there is a path to w in T(w)). As T(w)has  $3.2^k - 2$  vertices and  $3(3.2^{k-1} - 1) - 3.2^k - 3$  edges, T(w) is a tree, namely a spanning tree of  $G_k$ . The symbol  $r_w(x, y)$  denotes the distance of vertices x and y in T(w) and the symbol x, :, y denotes the unique path connecting x and y in T(w). Obviously,  $r_w(x, y) \ge r(x, y)$  and  $r(w, x) - r_u(w, x)$ .



Suppose  $r(x, w) \ge 2$ . Evidently, there exists a unique vertex y such that r(x, w) = r(y, w) and  $r_w(x, y) = 2$ . This vertex will be denoted by  $y = \sigma x$  Obviously,  $\sigma^2 x = x$ .

Let  $i \in \{0, 1, 2, ..., k\}$  and  $r(w, x) \ge i$ . Then there is exactly one vertex y for which r(w, y) = i, r(w, y) + r(y, x) = r(w, x). It will be denoted by  $y = \beta_i x$ . Instead of  $\beta_3$  we shall write briefly  $\beta$ . Evidently, if  $k \ge 4$  and x is a w-vertex of  $G_k$ , then  $\beta \alpha x = \beta x$ .  $G_k$  is a tied graph, therefore it contains no multiple edges. Thus we may denote the edge joining vertices x and y by (x, y) and the path with vertices  $x_1, x_2, \ldots, x_n$  by  $[x_1, x_2, \ldots, x_n]$ .

**Lemma 1.** Let  $(x, y_1)$  and  $(x, y_2)$ , where  $y_1 \neq y_2$ , are w-edges of  $G_k$ . Then the following equality of sets holds:

$$\{\beta_1 x, \beta_1 y_1, \beta_1 y_2\} = \{a, b, c\}.$$

Proof. Evidently, each of the elements  $\beta_1 x$ ,  $\beta_1 y_1$ ,  $\beta_1 y_2$  belongs to the set  $\{a, b, c\}$ . If the assertion of Lemma 1 were false, two of elements  $\beta_1 x$ ,  $\beta_1 y_1$ ,  $\beta_1 y_2$  would coincide. If  $\beta_1 x \quad \beta_1 y_i$   $(i \in \{1, 2\})$ , there exists in  $G_k$  a circuit  $[x, :, y_i, x]$  of length  $\leq 2k$  1, which is in contradiction to the definition of a tied graph. If  $\beta_1 y_1 \quad \beta_1 y_2$ , there exists in  $G_k$  a circuit  $[y_1, :, y_2, x, y_1]$  of length  $\leq 2k$ , a contradiction again. The lemma follows.

Now we can assign to every *w*-vertex x of  $G_k$  a *w*-vertex y = qx adjacent to x so that

if 
$$\beta_1 x = a$$
, then  $\beta_1 y = b$ ,  
if  $\beta_1 x = b$ , then  $\beta_1 y = c$ ,  
if  $\beta_1 x = c$ , then  $\beta_1 y = a$ .

Lemma 1 guarantees the existence and uniqueness of qx.

### § 2. AUXILIARY RESULTS

Henceforth we shall use notation introduced in § 1.

**Lemma 2.** Let x be a w-vertex of  $G_k$ . We have:

- (a)  $\beta_1 \varphi^i x = \beta_1 \varphi^j x$  if and only if  $i = j \pmod{3}$ .
- (b) The elements  $\beta x$ ,  $\alpha \beta x$ ,  $\beta \varphi^3 x$ ,  $\alpha \beta \varphi^3 x$  are mutually different.
- (c)  $\beta q^{6}x = \alpha \beta x$ ,  $\beta q^{9}x = \alpha \beta q^{3}x$ ,  $\beta q^{12}x = \beta x$ .
- (d) The elements  $\beta x$ ,  $\beta \varphi x$ ,  $\beta \varphi^2 x$ ,  $\beta q^3 x$ , ...,  $\beta \varphi^{11} x$  are mutually different.

Proof. (a) follows from Lemma 1.

(b) From the definition of  $\alpha$  it follows that  $\beta x \neq \alpha \beta x$ , and  $\beta q^3 x \neq \alpha_l \beta q^3 x$ If  $\beta x = \beta q^3 x$ , then there exists a circuit  $[x, qx, q^2 x, q^3 x, :, x]$  in  $G_k$  of length < 2k - 3, which is in contradiction to the definition of a tied graph. If  $\beta q^3 x$ 

 $\alpha\beta x$ , we have a circuit  $[x, \varphi x, \varphi^2 x, q^3 x, :, x]$  of length 2k = 1, a contradic tion again. If  $\beta x = \alpha\beta\varphi^3 x$ , then  $\alpha\beta x = \alpha^2\beta\varphi^3 x = \beta\varphi^3 x$ , and we have the case treated above. If  $\alpha\beta x = \alpha\beta\varphi^3 x$ , then  $\alpha^2\beta x = \alpha^2\beta\varphi^3 x$ , i. e.  $\beta x = \beta\varphi^3 x$ , which is also impossible.

(c) According to (b) the elements  $\beta x$ ,  $\alpha \beta x$ ,  $\beta q^3 x$ ,  $\alpha \beta q^3 x$  are mutually different But from Lemma 1 it follows that  $\beta_1\beta x - \beta_1\beta \varphi^3 x = \beta_1\alpha\beta x$  $\beta_1 \alpha \beta \varphi^3 x$  $\beta_1\beta q^{6}\lambda$ Therefore  $\beta q^6 x \in \{\beta x, \beta q^3 x, \alpha \beta x, \alpha \beta q^3 x\}$ . If  $\beta q^6 x = \beta x$ , then a circuit [x, q x, q] $\varphi^2 x, \varphi^3 x, \varphi^4 x, q^5 x, \varphi^6 x, :, x$  of length  $\leq 2k$  would exist in  $G_k$ , which is a con tradiction. If  $\beta q^6 x = \beta q^3 x$ , for  $y = q^3 x$  we should have  $\beta q^3 y$  $\beta y$ , which contradicts (b). If  $\beta \varphi^6 x = \alpha \beta \varphi^3 x$ , then analogously we have  $\beta \varphi^3 y$  $\alpha\beta y$ , again in contradiction to (b). Therefore  $\beta q^6 x = \alpha \beta x$ . Using this relation we obtain  $\alpha\beta y = \alpha\beta \varphi^3 x$ . Further,  $\beta \varphi^{12} x$  $\beta q^{6}(\varphi^{6}x)$  $\beta q^9 x$  $\beta \varphi^6(q^3x)$  $\beta \varphi^6 y$  $\alpha\beta(q^{6}x) =$  $\alpha^2 \beta x$  $\beta x$ .

(d) Let  $\beta q^{i}x \quad \beta q^{j}x, i, j \in \{0, 1, 2, ..., 11\}, i j$ . Evidently,  $\beta_{1}q^{i}x \quad \beta_{1}q^{j}x;$ according to (a), we have  $i j \pmod{3}$ , i. e. we can write  $j i 3t, t \in \{1, 2, 3\}$ . Put  $y \quad q^{i}x$ . We have:  $\beta y \quad \beta q^{i}x \quad \beta q^{j}x \quad \beta q^{i} \ ^{3t}x \quad \beta q^{3t}y$ . But from (b) and (c) it follows that  $\beta y \neq \beta q^{3t}y$ , which is impossible.

**Lemma 3.** The length of every w-circuit of  $G_k$  is a multiple of 12. Proof follows from (c) and (d) of Lemma 2. **Lemma 4.** Let M be a set of w-vertices of  $G_k$ ,  $k \ge 5$ . If M has more than  $2^{k-5}$ lements and for every  $y_1, y_2 \in M$  we have  $\beta y_1 = \beta y_2$ , then there exist  $x_1, x_2 \in M$ ,  $x_1 = x_2$  such that  $r_w(x_1, x_2) \le 4$ .

Proof. Form the set  $N = \{\beta_{k-2}x\}_{x \in M}$ . The set N evidently cannot have more than  $2^{k-5}$  elements; therefore for some  $x_1, x_2 \in M, x_1 \neq x_2$  we have  $\beta_{k-2}x_1 = \beta_{k-2}x_2$ . i. e.  $r_w(x_1, x_2) \leq 4$ .

**Lemma 5.** Let x and y be w-vertices of  $G_k$ . If  $\beta x = \beta y$ , then  $r_n(x, y) \leq 2k = 6$ If  $\beta x = \alpha \beta y$ , then  $r_n(x, y) = 2k = 4$ .

Proof. The path [x, :, y] has evidently the length  $\leq 2k = 6$  in the first ase and the length 2k = 4 in the second case.

**Lemma 6.** If  $x \neq y$  are such w-vertices of  $G_k$  that  $\beta x = \beta y$  and  $\beta q x = \beta \varphi y$ , there  $r_w(x, y) > 6$ .

Proof. If the assertion of the lemma were not true, then  $r_w(x, y) < 4$ By Lemma 5 we have  $r_w(\varphi x, \varphi y) \leq 2k - 6$ . But then [x, qx, :, qy, y, :, x] would be a circuit of length  $\leq 2k$ , which is impossible.

**Lemma 7.** Let x be a w-vertex of  $G_k$ ,  $k \ge 4$ . Then we have.

1) 
$$\beta \varphi^{-2} \alpha x = \alpha \beta \varphi x,$$

$$\beta \varphi^{-1} \alpha x \qquad \alpha \beta q^2 x$$

$$\begin{array}{ll} \textbf{(3)} & \beta\varphi\alpha x & \alpha\beta q^{-2}x, \\ \textbf{(4)} & \beta\varphi^2\alpha x & \alpha\beta\varphi^{-1}x. \end{array}$$

**Proof.** First we prove (3). As  $\beta x = \beta \alpha x$ , consequently  $\beta_1 x = \beta_1 \alpha x$ , and also  $\beta_1 \varphi x = -\beta_1 q \alpha x$ . According to (d) of Lemma 2 the elements  $\beta(q \alpha x)$ ,  $\beta \varphi^3(q \alpha x) = \beta_q \theta(q \alpha x)$ ,  $\beta q^9(q \alpha x)$  are mutually different. By (a) of Lemma 2 we have  $\beta_1(q \alpha x)$ 

 $\beta_1 q^3(q \alpha x) = \beta_1 q^6(q \alpha x) = \beta_1 q^9(q \alpha x).$  Since  $\beta_1(q \alpha x) = \beta_1(q x)$ , the element  $\beta(q \alpha x)$  equals one of the elements  $\beta(q x)$ ,  $\beta q^3(q x) = \beta q^6 q^{-2}x$ ,  $\beta q^6(q x)$ ,  $\beta q^9(q x)$ 

 $\beta q^{12} \varphi^{-2} x$ , hence with respect to (c) of Lemma 2  $\beta(q \alpha x)$  is equal to some of the elements  $\beta \varphi x$ ,  $\alpha \beta \varphi^{-2} x$ ,  $\alpha \beta q x$ ,  $\beta q^{-2} x$ .

If  $\beta q \alpha x = \beta q x$ , then the circuit  $[qx, x, :, \alpha x, q \alpha x, :, q x]$  has the length  $\leq 2k$ 

2. because  $r_u(x, \alpha x) = 2$  and according to Lemma 5  $r_w(q \alpha x, q x) \leq 2k = 6$ . If  $\beta q \alpha x = \alpha \beta q x$ , the circuit  $[\varphi x, x, :, \alpha x, \varphi \alpha x, :, \varphi x]$  has the length 2k, for Lemma 5 yields  $r_w(q \alpha x, \varphi x) = 2k = 4$ . If  $\beta \varphi \alpha x = \beta \varphi^{-2} x$ , the circuit  $[\varphi^{-2} x, q^{-1}x, x, :, \alpha x, q \alpha x, :, \varphi^{-2}x]$  has the length  $\leq 2k = 1$ , because Lemma 5 implies  $r_v(q^{-2}x, q \alpha x) \leq 2k = 6$ . Therefore only the last possibility, i. e. (3), can be valid.

The proof of (2) is ,,dual" to that of (3) it is sufficient to replace  $q^2$ , q,  $q^{-1}$  and  $q^{-2}$  by  $q^{-2}$ ,  $q^{-1}$ , q and  $q^2$ , respectively.

If in (3) we replace x by  $\alpha x$ , we obtain

 $\beta q \alpha^2 x = \alpha \beta q^{-2} \alpha x$ ,

whence, as  $\alpha^2$  is an identical mapping, it follows that

$$\beta \varphi^{-2} \alpha x = \alpha^2 \beta \varphi^{-2} \alpha x = \alpha \beta \varphi \alpha^2 x = \alpha \beta \varphi x$$

that is, the relation (1).

The proof of (4) is ",dual" to that of (1).

**Lemma 8.** Let x be a w-vertex of  $G_k$ , where  $k \ge 4$ . Then we have:

$$\begin{array}{l} \beta q^{4} \alpha x = \beta \varphi x, \\ \beta q^{5} \alpha x = \beta \varphi^{2} x, \\ \beta \varphi^{6} \alpha x = \alpha \beta x, \\ \beta \varphi^{6} \alpha x = \beta \varphi^{-2} x, \\ \beta \varphi^{8} \alpha x = \beta \varphi^{-1} x, \\ \beta \varphi^{10} \alpha x = \alpha \beta \varphi x, \\ \beta \varphi^{11} \alpha x = \alpha \beta \varphi^{2} x, \\ \beta \varphi^{12} \alpha x = \beta x, \\ \beta \varphi^{13} \alpha x = \alpha \beta \varphi^{-2} x \end{array}$$

The proof follows from (c) of Lemma 2 and Lemma 7, for instance:

$$\begin{split} \beta \varphi^4 \alpha x &= \beta \varphi^6 (\varphi^{-2} \alpha x) - \alpha \beta (\varphi^{-2} \alpha x) = \alpha (\beta \varphi^{-2} \alpha x) \quad \alpha (\alpha \beta \varphi x) \quad \beta \varphi x ,\\ \beta \varphi^5 \alpha x \quad \beta \varphi^6 (\varphi^{-1} \alpha x) = \alpha \beta (\varphi^{-1} \alpha x) - \alpha (\beta \varphi^{-1} \alpha x) \quad \beta \varphi^2 x ,\\ \beta \varphi^6 (\alpha x) = \alpha \beta (\alpha x) - \alpha \beta x, \text{ etc.} \end{split}$$

### § 3. MAIN RESULTS

**Lemma 9.** There is no Moore graph of type (3, 3). (2)

Proof. Let G<sub>3</sub> be a Moore graph of type (3, 3). Then for any w-vertex x of G<sub>3</sub> we have  $\beta x = x$ . (c) of Lemma 2 yields  $\alpha x = \alpha \beta x = \beta q^6 x = q^6 x, \alpha q x = \alpha \beta (q x)$  $\beta q^6(q x) = q^7 x$ . Therefore G<sub>3</sub> contains a hexagon  $[x, q x, :, q^7 x, q^6 x, :, x]$ 

 $p\varphi^{*}(\varphi x) = \varphi^{*}x$ . Therefore  $\Theta_{3}$  contains a nexagon  $[x, \varphi x, .., \varphi^{*}x, \varphi^{*}x, .., x]$  which contradicts the definition of a Moore graph.

**Lemma 10.** There is no Moore graph of type (3, 4).

Proof. Let  $G_4$  be a Moore graph of type (3, 4). Let x be a w-vertex in  $G_4$ Evidently  $G_4$  has just 24 w-vertices, so that, according to Lemma 6, in  $G_4$ there is either one single w-circuit with 24 vertices or two w-circuits, each with 12 vertices. In the first case  $G_4$  contains a hexagon  $[x, \varphi x, :, \varphi^{13}x, \varphi^{12}x, :, x]$ . and we have a contradiction. In the second case from (c) of Lemma 2 and Lemma 7 it follows that

<sup>(2)</sup> This result follows also from [2].

$$eta arphi^8 x = eta arphi^6(arphi^2 x) - lpha eta arphi^2 x = eta arphi^{-1} lpha x , \ eta arphi^7 x - eta arphi^6(arphi x) - lpha eta arphi x = eta arphi x = eta arphi x ,$$

therefore  $G_4$  contains a hexagon  $[\varphi^7 x, \varphi^8 x, :, \varphi^{-1} \alpha x, \varphi^{-2} \alpha x, :, \varphi^7 x]$ , thus we have arrived at a contradiction again.

**Lemma 11.** The length of any w-circuit in  $G_k$   $(k \ge 5)$  is at most  $3.2^{k-5}$ .

Proof. Let C be a w-circuit in  $G_k$  of the length 12s (see Lemma 3). Pick a vertex v of C. Denote  $\beta q^2 v = d$ ,  $\beta q^6 v = e$ . Let Z be the set of all vertices of C of the form  $q^{12n}v$ , where n = 0, 1, 2, ..., s = 1. Let  $z \in Z$ . From (c) of Lemma 2 it easily follows that  $\beta q^2 z = d$ ,  $\alpha \beta z = e$ .

Define the functions  $\delta_1$ ,  $\delta_2$ ,  $\delta_3$ ,  $\delta_4$  thus (x runs through the set of all w-vertices):

$$egin{aligned} &\delta_1(x)=arphi^5lpha x,\ &\delta_2(x)=arphilpha arphi arphi x,\ &\delta_3(x)=lpha arphi^2 x,\ &\delta_4(x)=arphi^{10}lpha arphi^5 lpha arphi^2 x \end{aligned}$$

Let us prove that  $\beta \delta_i(z) = d$ ,  $\beta \varphi \delta_i(z) = e$  for i = 1, 2, 3 and 4. By systematic using of (c) of Lemma 2 and of Lemmas 7 and 8 we obtain:

 $\beta \delta_1(z)$  $\beta \varphi^5 \alpha z$  $\beta \varphi^2 z = d$ ,  $\beta \delta_2(z)$  $\beta \varphi \alpha(\varphi \alpha z) = \alpha \beta \varphi^{-2}(\varphi \alpha z) = \alpha(\beta \varphi^{-1} \alpha z) = \alpha(\alpha \beta \varphi^2 z) =$  $\beta(\varphi\alpha\varphi\alpha z)$  $\beta \varphi^2 z = d$ ,  $\beta \delta_3(z)$  $\beta \alpha(\varphi^2 z) = \beta \varphi^2 z = d,$  $\beta \varphi^{10} \alpha(\varphi^4 \alpha \varphi^2 z) = \alpha \beta \varphi(\varphi^5 \alpha \varphi^2 z) - \alpha(\beta \varphi^6 \alpha(\varphi^2 z)) = \alpha(\alpha \beta(\varphi^2 z)) =$  $\beta \delta_4(z)$  $\beta \varphi^2 z - d$ ,  $\beta \varphi \delta_1(z) = \beta \varphi^6 \alpha z - \alpha \beta z = e,$  $\beta q^2 \alpha(\varphi \alpha z) - \alpha \beta \varphi^{-1}(\varphi \alpha z) = \alpha \beta(\alpha z) = \alpha \beta z = e,$  $\beta \varphi \delta_2(z)$  $\beta \varphi \delta_3(z) = \beta \varphi \alpha(\varphi^2 z) \qquad \alpha \beta \varphi^{-2}(\varphi^2 z) = \alpha \beta z - e,$  $eta \varphi^{11} lpha ( \varphi^5 lpha \varphi^2 z) = lpha eta \varphi^2 ( \varphi^5 lpha \varphi^2 z) \qquad lpha eta \varphi^7 lpha ( \varphi^2 z) = lpha eta \varphi^{-2} ( \varphi^2 z) -$  $\beta \varphi \delta_4(z)$  $\alpha\beta z - e$ .

Evidently, for every  $z \in Z$  and  $i \in \{1, 2, 3, 4\}$  the edge  $[\delta_i(z), \varphi \delta_i(z)]$  is a *w*-edge of  $G_k$ . We shall prove that all such edges are mutually different. Suppose that  $[\delta_{i_1}(z_1), \varphi \delta_{i_1}(z_1)] = [\delta_{i_2}(2), \varphi \delta_{i_2}(z_2)]$ , where  $i_1, i_2 \in \{1, 2, 3, 4\} : z_1, z_2 \in Z$ . There are two possibilities:

I.  $\delta_{i_1}(z_1) \quad \varphi \delta_{i_2}(z_2)$ . But then we have  $\beta \varphi^2 v = d = \beta \delta_{i_1}(z_1) \quad \beta \varphi \delta_{i_2}(z_2)$  $e \quad \beta \varphi^6 v$ , which contradicts (d) of Lemma 2.

II.  $\delta_{i_1}(z_1) = \delta_{i_2}(z_2)$ . We first prove that  $i_1 = i_2$ . By using (c) of Lemma 2, Lemma 7 and Lemma 8 we obtain for any *w*-vertex *x* 

 $\beta \varphi^{-1} \delta_1(x) = \beta \varphi^4 \alpha x = \beta \varphi x,$ 

 $\beta \varphi^{-1} \delta_2(x)$  $\beta \alpha q \alpha x = \beta q \alpha x - \alpha \beta (q^{-2}x)$  $\beta \varphi^6(\varphi^{-2}x)$  $\beta q^4 x$ ,  $\beta q^{10}x$ ,  $\beta \varphi^{-1} \delta_3(x)$  $\beta \varphi^{-1} \alpha \varphi^2 x$  $\alpha\beta q^4 x$  $\beta q^7 \alpha x$  $\beta q^{-2}x$  $\beta q^{10}x$ ,  $\beta q^2 \delta_1(x)$  $\beta q^2 \alpha q^2 x - \alpha \beta q x$  $\beta \varphi^7 x$ ,  $\beta \varphi^2 \delta_3(x)$  $\beta \varphi^{12} \alpha(\varphi^5 \alpha \varphi^2 x) = \beta \varphi^5 \alpha(\varphi^2 x)$  $\beta \varphi^2(\varphi^2 x)$  $\beta q^4 x$ .  $\beta \varphi^2 \delta_4(x)$ 

According to (d) of Lemma 2 the elements  $\beta \varphi x$ ,  $\beta \varphi^4 x$ ,  $\beta \varphi^7 x$ ,  $\beta \varphi^{10} x$  are mutually different. From the equality  $\delta_{i_1}(z_1) = \delta_{i_2}(z_2)$  it follows that  $\beta \varphi^{-1} \delta_{-1}(z_1)$ 

 $\beta \varphi^{-1} \delta_{i_1}(z_2)$  and  $\beta \varphi^2 \delta_{i_1}(z_1) = \beta \varphi^2 \delta_{i_2}(z_2)$ . Bdt this is possible only if  $i_1 = i_2$  or if  $\{2, 4\}$ . First analyse the second possibility. Let, e. g.,  $i_1 - 2$ ,  $i_2$  $\{i_1, i_2\}$ - 4 i. e.,  $\delta_2(z_1) - \delta_4(z_2)$ . Put y  $\alpha \varphi \alpha z_1$ . We have:  $\beta y$  $\beta \alpha \varphi \alpha z_1$  $\beta q \alpha z_1$  $\alpha\beta\varphi^{-2}z_1$  $\beta \varphi^4 z_1 - \beta \varphi^4 v, \ \beta \varphi^3 y$  $\beta \varphi^2 (\varphi \alpha \varphi \alpha z_1)$  $\beta \varphi^2 \delta_2(z_1) = \beta \varphi^2 \delta_4(z_2)$  $\beta \varphi^4 z_2 = \beta q^4 v$ Thus we obtain that  $\beta y$  $\beta \varphi^3 y$ , which contradicts (d) of Lemma 2. Therefore only the possibility  $i_1$  $i_2$  remains. Put  $i = i_1 - i_2$  so that  $\delta_i(z_1)$  $\delta(z_2)$  $\alpha$  and  $\varphi$  are one-to-one functions. Consequently also every  $\delta_i$  is a one to one  $\delta_i(z_2)$  it follows that  $z_1$ function and from the equality  $\delta_i(z_1)$  $z_2$ .

Thus we proved that all edges of a form  $[\delta_i(z), \varphi \delta_i(z)]$ , where  $i \in \{1, 2, 3, 4\}$  $z \in \{v, \varphi^{12}v, \varphi^{24}v, \ldots, \varphi^{12(s-1)}v\}$  are mutually different. Hence we have  $4s \le 1$ ch edges, and always  $\beta \delta_i(z) = d$ ,  $\beta \varphi \delta_i(z) = e$ . According to Lemma 6 any two of the vertices  $\delta_i(z)$  have their distance  $r_w$  at least 6. But from Lemma 4 it follows that we can have at most  $2^{k-5}$  such vertices. Therefore  $4s \le 2^{k-5}$  i. e. the length of C is  $12s \le 3.2^{k-5}$ .

#### **Theorem.** There is no M ore graph of type (3, k), where $3 \le k \le 8$ .

Proof. Let  $G_k$  be a Moore graph of type (3, k),  $3 \le k \le 8$ . Lemmas 9 and 10 imply that  $k \ge 5$ . From Lemma 3 we know that the length of any w-circuit in  $G_k$  is a multiple of 12. According to Lemma 11 this is possible only if k = 7But  $G_k$  contains no circuits of length  $\le 14$ , especially no 12-gons. From Lemma 11 it follows that k = 8 and all w-circuits in  $G_k$  are 24-gons. Choose a w-circuit C, a vertex v of C and construct by the method from the proof of Lemma 11 (for s = 2) 8 w-edges of a form  $(\delta_i(z), \varphi \delta_i(z))$ , where  $\beta \delta_i(z) = d$  $\beta \varphi \delta_i(z) = e$ . Consider the 9<sup>th</sup> edge ( $\varphi = 1 \alpha \varphi^6 v, \alpha \varphi^6 v$ ). By Lemma 2, (c), Lemma 7 and Lemma 8 it is easy to prove that  $\beta \varphi = 1 \alpha \varphi^6 v = d$ ,  $\beta \alpha \varphi^6 v = e$ ,  $\beta \varphi = 2 \alpha q^4 v$ 

 $\beta \varphi v$ ,  $\beta \varphi \alpha \varphi^6 v = \beta \varphi^{10} v$ . From the proof of Lemma 11 it follows that if this edge equals one of the former 8 edges, we necessarily have i = 1, i. e.  $\varphi^{-1} \alpha q^6 v$ 

 $\delta_1(z)$ . As C is a 24-gon, either z - v or  $z = q^{12}v$ . In the first case in  $G_k$  there exists a path  $[v, \varphi v, \varphi^2 v, \varphi^3 v, \varphi^4 v, \varphi^5 v, \varphi^6 v, :, \alpha \varphi^6 v = \varphi^6 \alpha v, \varphi^5 \alpha v, \varphi^4 \alpha v, \varphi^3 \alpha v, \varphi^2 \alpha v, \varphi \alpha v, \alpha v, :, v];$  in the second case there is in  $G_k$  a path  $[\varphi^6 v, \varphi^7 v, \varphi^8 v, \varphi^9 v, q^{10}v, \varphi^{11}v, \varphi^{12}v, :, \alpha q^{12}v, \varphi \alpha \varphi^{12}v, \varphi^2 \alpha \varphi^{12}v, \varphi^3 \alpha \varphi^{12}v, \varphi^4 \alpha \varphi^{12}v, \varphi^5 \alpha q^{12}v, \varphi^6 \alpha \varphi^{12}v$ 

 $\alpha \varphi^6 v$ , :,  $\varphi^6 v$ ]. Both these paths contain a circuit of length  $\leq 16$ , which is in  $G^8$  impossible. Therefore in  $G^8$  there exist 9 edges of type  $(\delta, \varepsilon)$ , where  $\beta \delta = d$ 

 $\beta \epsilon = \epsilon, \epsilon = q \delta$ . According to Lemma 4 at least two of the vertices of type  $\delta$  say  $\delta'$  and  $\delta''$  have the distance  $r_w(\delta', \delta'') \leq 4$ . But this contradicts Lemma 6. The theorem follows.

#### § 4. A SURVEY OF TIED GRAPHS

Results of [1], [2] and our Theorem make it possible to summarize the known results on the existence and uniqueness of tied graphs of type (d, k) into Table 1.

| Table 1                      |            |              |                    |       |         |                |             |       |                   |     |
|------------------------------|------------|--------------|--------------------|-------|---------|----------------|-------------|-------|-------------------|-----|
| tied graphs of type $(d, k)$ |            |              | k 0                |       | k       | - 1            | diam<br>k 2 |       | 4 < k < 8         | k 9 |
|                              | đ          | 0            | $K_1$              | $R_0$ |         |                | 1           | 1     |                   |     |
|                              | đ          | 1            |                    |       | $K_{z}$ |                |             | 1     |                   |     |
| degree                       | d          | 2            | $C_1$              | $R_1$ | $C_3$   | $K_3$          | $C_5$       | $C_7$ | C <sub>2k</sub> 1 | C,  |
|                              | d          | 3            |                    | 1     |         | .              | P           | 1     |                   | ,   |
|                              | <i>d</i> > | > 4, even    | $R_{\frac{1}{2}d}$ |       | K       | a 1            |             | 1     | ?                 | ,   |
|                              | d          | 5, odd, 7,57 | ,                  |       | K       | d 1            |             | 1     | ?                 |     |
|                              | d          | 7            |                    |       | ŀ       | К <sub>8</sub> | HS          | 1     | ?                 | ,   |
|                              | đ          | 57           | 1                  |       | 1       | K 58           | 9           |       | 9                 | ,   |
|                              | d          | $\aleph_0$   | -                  | $R_d$ | 1       | A d            | E           | E     | E                 | 1   |

Here the symbol ? means that neither the existence nor the uniqueness of a tied graph of type (d, k) has been proved. The symbol / means that there is no tied graph of the corresponding type, the symbol E denotes that so far only the existence (but not the uniqueness) for a given type has been proved. In the remaining cases there exists (up to isomorphism) exactly one tied graph as indicated in the table, where  $K_n$  is the complete graph with n vertices,  $C_n$  is the circuit with n vertices,  $R_n$  is the graph consisting of one vertex  $\cdot$  nd n loops, P is the Petersen graph and HS denotes the Moore graph of type (7, 2) with 50 vertices constructed by H off man and Singleton in [2] The ,.non trivial" part of the table is strongly framed

### REFERENCES

- Bosák J., Kotzig A., Znám Š., Strongly geodetic graphs, J. Combin. Theory 5 (1968), 170 176.
- [2] Hoffman A. J., Singleton R. R., On Moore graphs with diameters 2 and 3, IBM J. Res. and Developm. 4 (1960), 497 504.
- [3] Singleton R., There is no irregular Moore graph, Amer. Math. Monthly 75 (1968), 42-43.
  Received July 4, 1968

Matematický ústav Slovenskej akadémie vied Bratislava