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APPLICATION OF ROTHE’S METHOD
TO NONLINEAR EVOLUTION EQUATIONS

JOZEF KACUR
This paper deals with the initial boundary value problem for abstract
nonlinear evolution equations of the form
d u(?)
dt

A@) ult) = f(t), u(0) =wup, 0<t<T < o0,

where A(t) is for every ¢ € (0, T") a nonlinear operator. Using Rothe’s method,
the author proved in [1] the existence of a weak solution for some class of
nonlinear differential equations of the form (1). Using this method and fol-
lowing some technics used by J. Necas in [2] we can generalize and strengthen
the results of [1] (part II). Deriving a priori estimates we use some results
of P. P. Mosolov [3].

The method of Rothe consists in the following idea: Successively, for
j=1,2,...,n we solve (see the definition 4) the e juations

2 — %j-1

(1a) —,, T A(ty)z = f(ts),

where {t;} (j = 0,1, ..., n)is an equidistant partition of the interval <0, T,
h=Tn1 and ¢ = jh .z = up, where wp is from (1). Then, under certain
assumptions, Rothe’s function

(*) () =2zj-1 + (= t4-1) P71 (27 — 251) for o << 4,

J  1,2,...,n converges toward the solution of (1). This method, intro-
duced by . Rothe in [4], has been used by many authors — for this pur-
pose see references [1]—[8]. U

Assumptions

Let V be a real reflexive Banach space and 7V’ its dual space. The duality
between V and V' we denote by [.,.]. Let H be a real Hilbert space with
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scalar product (., .) and the norm ||.||. The norm in V, V' we denote by . y,
l.Ilv-. We assume that V N H is a dense set in both V and H with the corres-
ponding norms. A(t), t €<0,7T) is a system of operators satisfying

(2) A(ty: V-V’ is continuous for each te<0,T)
(3) [Af)uw — A(@)v,u —v] = 0 forall w,veV,te 0,T
(4) [A@) u, w] = |lully r(|Ju|ly) forall weV,ted0,T ,

where the function 7(s) is nondecreasing for s > so > 0, bounded in <0, so
and satisfying lim r(s) = oo.
§->0

(5) A(t) uw = grad P, u) for te<0,T>, uelV,

where @(t, u) is a functional defined on V, i.e., 4(t) are potential operators.
There exist derivatives A'(f) u, A"(t) u of A(¢)w in V' with respect to te
€(0,7) and

(6) 4" @)ully + [14"(#) wlly: < C1 + Car((ullv).
We shall assume that f(¢) is Lipschitz continuous from <0,7") into H, i.e.,
(7) 1) — fE) < LIt — '] forall ¢t €0, TY.

Remark 1. If V = W?* (Sobolev space) with p > 1, then r(s) = 'y s» 1 —
— Cs.

Remark 2. In Remark 4 we point out that the conditions (4) and (6)
can be substituted by (4’) and (6’), which are more general in some sense:

#) (Ilullv)~t [A(t) u, u] > 00 for |uly — o0

uniformly in ¢ € {0, T').

2

‘ 2
(6 1) | P(t, )

| ot

if) |JA'(¢) ullyr < oo forall te<0,T), uel
iii) |D(t, w)| < C1 + C2 [A(F) u, u].

+ (p(ta u) < Cl + 02 l@(t: u)l

2

otz

«eRemark 3. In (6) or (6') it suffices to consider the difference quotient of
the first and second order in the place of corresponding derivatives of A(t)
and D¢, u).

Definition 1. u(t) € C% (<0, T), H), iff (u(t),v) € CYL0,T>) for all veH.
u(t + h) — u(t)

If u(t) e C,, (<0, T, H), then - . is weakly convergent in H for
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d u(t) L.
h—> 0 and we denote by d—t this weak limat.

Definition 2. Under the solution of the problem (1) we understand a strongly
continuous function u(t): 0, T - H such that u(t) € CL ({0, Ty, H), u(t)e
eV H for t €0, Ty, u(0) = up and u(t) satisfies (1) for all t € (0, T).

Let X be a Banach space with the norm ||.|x.

Definition 3. By L, (<0, T, X) we denote the set of all measurable functions
(see []) u(t):<0,T) > X with |ullz<or>x = sup ess lu@®lly < .
<0, 7>

The space V N H with the norm |.||ly~z = [l 4 [l.]ly is a reflexive Banach
space. \We denote the weak convergence by — and the strong convergence
by —>. u(t) is weakly continuous in V N H with respect to ¢ € <0, T'), iff u(t) —
— u(ty) for ¢ty holds for each f €<0,T), where e <0,T).

The positive constants will be denoted by C and the dependence of C o
the parameter ¢ will be denoted by C(e) . C and C(¢) will denote even different
constants in the same consideration.

Let us denote by z*(t) the step function
(**) () =2z for Hha<t<t, j=12,...n

and x’l(O) = Uy, where 2 € VNnH (j =12, ... n) are the solutions of the
equations (la) and uwpe VN H is from (1).

Theorem. Let us assume that (2)—(7) are fulfilled. If uo e V N H and A(0) up €
€ Il, then there exists a unique Solutwn u(t) of (1) with the following properties:
a) u(t) is Lipschitz continuous from <0, T into H
b) u(t) € Ls(<0, T>, V N H) and u(t) is weakly continuous tn V N H with
respect to te0,T>.
c) A(t) u(t) is weakly continuous in H with respect to t € (0, T).

u(t)
€ Lo(<0, T, H)

d) u(t) e CL(<0, T>, H) and

o<t<rT

e) max [27(t) — u(t)|]2 < C(uo, f)n?t
) max [z(t) — an(t)]] < Cluo, f) nL

g) 2n(t) = u(t), 2*(t) = u(t) n VNH for n— co and for each t €0, T
h) If ui (v = 1, 2) is a solution of the problem (1) corresponding to the right-
hand side f; and the initial condition wu;, then

T
0132?; lus(t) — w2(@)| < 2 | If1(t) — fa(®)]] db + |[sor — wog|.



First, in several assertions we obtain a priori estimates and deduce some
consequences. Then, we prove the theorem.
For simplicity we denote A(j) = A(%) and f(§) =f(t;) (G =1,2,...n).
Successively, for j =1,2,... n let us solve the equations
(21 — z-)h 7L 4 A(9)z = f(j)

where zop = up.

Definition 4. z; € V N H s a solution of (8), iff
i — Zj-1
(*k—] )+[A( )z, vl = (f(5), v

holds for allve V N H.
Due to (4), the operator A(¢) « + Au for 1 > 0 is coercive in the space

V N H and strictly monotone. Thus, there exists a unique solution z; e V N
N H of (8) which is also a point of minimum for the coercive, strictly convex

functional
9 D(ty, w) + (20)7L [ — zj<a|? — (f(5), w) = P, w, 2j-1)
on the reflexive space V N H.

Assertion 1. There exist C(uo, f) and ko > 0 such that

i) ' zk”zJ|IV7(”zf”»’) < Clwo, f) 1) izl < Cluo, f)

for each j=1,2,...7n and h < ho.
Proof. We have

(10) [A(J) 21, v] - A7z — 21, 0) = (f()), v

for all veVNH, j=1,2,...n Let 1< p < n Substituting v = hz;

and summing (10) through j=1,2,... p we obtain
» ? P

(11) Zk[A(j)zj:Zi]+ Z('_‘—l’”'l)_h Z (9) )
J 1 Jj 1 Jj 1l

The following identity
»

(12) 2.2 — 21, %) Z llzi — zjl? + lzpll* — llzo0 2
it

holds.

Using Young’s inequality
(13) ’ ab < 21 2% + (262)-1b2 (¢ + 0)

we estimate
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(14) I(FG)s 2] < IFDIH sl < 272 {2 4= 272 (| ()1
Due to (4), we deduce that there exists a C such that

[4(j)z,2] = — C foreachnand j=1,2,...n.

From this estimate, (7), (11), (12) and (14) we obtain

|mW<0+WML+immﬂw+2mwwsmmjr+iwm%

From this inequality for A < ho << 1 we successively deduce

2l < Cluo, f) (1 — &)1 (for p = 1),

h
llz2ll2 < C(uo, f) (1 — A)1 (1 + __)

1—n
and
h i—1
(15) lzil? < Cluo, f) (1 — R)1 (1 + ) h)
fort 1,2,...mn.
o \éi-1 '

There exists a C such that 1+ ) k) <C

for each b < hpand ¢ = 1, 2, ... n. Thus, from (15) we obtain Assertion 1 ii).

From ii), (4) and (11) we easily obtain Assertion 1 i).

21 — 20

< C(u(),f)

Assertion 2. There exist C(ug, f) and hp > 0 such that t
li

for each & < hy.
Proof. From (10) for j = 1, v = 23 — 20 we obtan

(16) [A(1) 21, 21 — 20] — [A(1) 20, 21 — 20] 4 AL [for — 202 =
(1), 21 — 20) + ([4(0) 20, 21 — 2] — [A(1) 20, 21 — 2]) —
— [4(0) 20, 21 — 20].
Using Lagrange’s theorem we have
[1(0) 20, z1 — 20] — [A(1) 20, 21 — 20] = [A'(0 4 ¥1) 20,21 — z0) . I

for suitable 0 < ¥ < 1. Hence, due to (6) we have



(17) I4(0) 20, 21 — z0] — [A(1) 20, 1 — 20]| < b ll2x — 2o]lp(Cy +
+ Ca r(lzollv) < C1 hlzally + A Ca(uo).

Since A4(0) 20 = A(0) uo € H, the estimate

(18) ILA(0) z0, 21 — 20]| < [|4(0) 2ol [lx — 20l

holds. From (3), (16), (17) and (18) we deduce

21 — 20 |2

h

< 121 — 20 21 — 20
< [IF) l—k— + 114(0) uol| T + C1|lallv+ Ca(uo)
|

and hence applying (13) we obtain

21— 2 |2
|

b

(19) < C1(uo, f) + Cz|laally < Ca(uo, f) 4 Ca |laallv r(l|e1] v) -

From (10) for j = 1 and v = z; we have

21 — 20

h

[A(l) 21, 21] = - ( 21) + (f(l)’ 21).

Thus, due to (3), (13), (19) and Assertion 1 ii) we have

lfzall + 1Al <

lleally 7(llzallv) <

|

< 271 g2 Ca(uo, f) + 271 &2 Collzally r(eally) +
+ 27 el 4 [If )] Rall < Cs(uo, f, €) +

+ 272 &2 Oq |l r(l2allv) -
Let us put ¢ = V . Then, the estimate
2

(20) leally 7(|l2a]lv) < Ca(uo, f)

is valid and hence, due to (19), the proof of Assertion 2 follows.

%] — 2§11

Tistimating we use a variational method. The idea of such an

estimation is due to P. P. Mosolov [3]. Analogously as in [3] (Lemma 1 and
[.emma 6) we prove Assertions 3 and 4.
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Assertion 3. The inequality

(21) D(ti,zi) < D(ti,2) + bz — zi,2i — Zi-1) — (f(@), z — z:)
isvalid forallze V N H.

For completness we sketch the proof of this assertion. @(f, u) is convex in u,
since A(t) is a monotone (see (3) and (5)). From the minimality property
of z; for ¥(t;, z,2i1) (see (9)) we have (i, zi,zi-1) <¥P(ti, 72 + 82, 2i1)
forall0 <7, s <1 withr +s=1and ze V N H. Thus, from the identity

(ru-t+sv—w,ru-+sv—w) =rw—wu—w+
+ s —w, v — w) —rs(u —v,u —v),

where u,v,we H, 0 < r, s < 1 with r + s = 1 and the convexity of @(t, w)
we obtain

D(ti, z1) + (2B) 7 |loe — el — (f2), z1) <
< r Db, z0) + 8 Db, 2) + (2k) L rllze — zial? +
+ (2h) L sllz — za2 — (2h) L7 sz — 2|2 —
— r(f(3), z:) — s(f(2), 2)

and hence
D(t, 21) < Dt 2) — (2h)1 |log — 2| +
+ (2R) 7 o — 2l — (2R) L rlle — 2|2 + (f(E), 2 — 2)-
From this inequality and from the identity
— e — zeal® + Iz — 2|2 — rlee — 2P =

= 2(z — 21,2 — 2i1) + slg — 2l
we deduce

Db, 2;) < D(ti, 2) + b1z — 2,20 — 2i-1) +
+ (f0), 20 — 2) + s |k — 2P
Thus, by limiting process s — 0 we obtain (21).
Assertion 4. There exist C(up,f), C and ko > 0 such that
l !
h

j=12 .. " n
Proof. Consider (21) with ¢ =j, z =21 and with 1 =j — 1, z=2;.
Summing up these ine jualities we obtain

< C(uo, f) + C ma>\ 2ol 7(|lzollv) holds for each & < ho and
<p<j
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(22) o Dy, 25) — Dby, 2j1) + D(tj-1, 27-1) — P(bj-1, 2) +
4 hYzp — 24l < ANz — 251, 251 — Zj-2) +

+ (fG) —fG — 1),z — z-1).

Let us denote
Dj = D(ty, zg) + D(tj-1, 2j-1) — D1, 25) — Dlty, z7-1).
From (22) and (13) we obtain

2

2 — 21 2 — 2j—1
23 < — 1)+
(23) . . If5) — S5 — 1)1+
2j — 241 2 Zj-1 — %52 2 ¢j
21 = 21 ——"
+_ h + | h h
Due to (7) and (13) we have
|z] Zj — Zj-1{|-
1£5) f(J — 1) % A a Lk <
2j — Zj-1 2
<||———|| 27'Lh + 2LA
and hence from (23) we obtain
|z — 2z |2 2j-1 — Zj—2 |2 20;
24 — 1—Lh) < ||———— Lh—
(24) \ W ( ) 4 + .

let us aussme that hy << L-1. Thus, from (24) we obtain successively

J

2
—I—Lhz (1 —Lhyi2—

72

2

| (1 — LRy <

%j — Zj-1 21 — 20

(25)

J

20;
Sy
h

The inequality 1 > (1 — LA) > exp (—LT) holds and (1 — L h)iis decre-
asing in ¢. Thus, using
Abel’s summation formula we estimate
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< max
1<j<p

)
29;
h

— o,
20
h
12

and hence, owing to Assertion 2, from (25) we obtain

(26)

J
since Lh> (1 — Lh)yi2< Lh.(j—2) < LT.

The strength of the variational method used consists in the following estimate

. N
(27) zh

Indeed, the sum in (27) can be rewritten into the form

< C(uo, f) + Clizwlly 7([zpllv) -

V4

D;
(28) Z 3 = b Y D(tp, 2p) — D(tp-1, 2p)) —

T2

Dt ) — Bty 1) ) — 5 BB, 26t) —
i3
— D(ti—1,2i-1) ) — YD1, 2i1) — D(ti-2, 2i-1) ).

1
The formula @(¢f, u) = [ [d(t) Tu, u] d7 is true
0

and thus, using Lagrange’s formula and the assumption (6), the expression
in the last sum in (28) can be estimated by

1
|k—1 J'[A(t,) T2i-1 — 2 A(t5_1) 12i-1 + A(ti-2) t2i-1>
0

1
zim]dt|< |z |lv [ (1 + Car(z |2ia | v) dT <
0

< Crh|zially + Ceblzially ([ 2i-1]lv) <
< bk Cs |zially 7(||zi-1llv) + & Ca,

since 7(s) is nondecreasing for s > sp and bounded in <0, s0>. Analogously,
from (6) we deduce
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IR D(ty, 2p) — P(tp-1, 2p))| < C1 + Oz |lzplly 7(lIz5llv)
and
|h=Y(DP(t2, z1) — P(tr, 21))| < C1 + C2 [lally r([l2allv) < Clwo, f),

where the estimate (20) has been used. From these estimates, Assertion 1,
(28), (27) and (26) the proof follows.

Assertion 5. There exist C(uo, f) and ho > 0 such that

| & — %1

)

< Cluo, f), i) 2]l v < Cluo, f)

holds for each A < ko and j=1,2,... n.
Proof. Suppose that

max |izplly 7([l2pllv) = 2wl 7(llzpellv) -
1<p<n

Then, owing to Assertion 4 we obtain

Zpo Zpo-1 2
IS C(uo, f) + Clizpllv r(llzpllv)
where C(uo,f) and C are from Assertion 4. Using (13) and Assertion 1 we
estimate
2py — Zpe—1
(29) (_h—— ,zp.) < (2e2)7 [fzpil® +

Zpe — Zpo-1 2

1og22-1

< Cluo, fy ) +

i
+ 2712 C |lzpa|| v7(|[2p0ll¥) -

Let us choose ¢ > 0 so that ¢2C = 2-1. From (10) for j = po, v = 2z, and
with respect to (29) and Assertion 1 we obtain

[A(_p()) Zpos an] < C(uo,f) + 271 ”zZ‘OHV r(”zlio”V) .
Hence, due to (4) we deduce
llzwe v 7(llzzllv) < Cluo, f)

from which Assertion ii) follows. From ii) and Assertion 4 we deduce Asser-
tion i) and the proof of Assertion 5 is complete.
Remark 4. Assertion 5 holds true if (4), (6) are substituted by (4'), (6").
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Indeed, we work with the expression [A(¢) u, «] instead of |jully 7(||u|lv). Asser-
tion 2 can be proved on the base of (6') ii). In estimating (20) in Assertion 4
we use Lagrange’s formula and the inequality

1D(t, w)] < C(L + |2, w)]),

which we obtain from (6’) i) with C independent of either ¢,t" or w. Then,
using (6’) i) and iii) we infer

2
< Clug, f) + C max [A(tp) 2p, 2p)

1<p<j

2 — Zj-1 ’

koo

from which we obtain Assertion 5.
Let us define the step function fr by

P =f() for . <t<t, j=12,...n

and
J(0) = £(0).

Similarly we define the operator 4#(t) by

An(t) = A(t;) = A(j) for Ha <t S' tj, 7=1,2,...n

and

An(0) = A(0).
Rothe’s function z7(t) (see (*)) is differentiable from the left and

d-zn(t) 25 — 21

for te(tj-, &),
1 . (-1, 4>

ji=12,...n,

where Tis the derivative from the left.
C

With respect to this notation relation (10) can be rewritten in the form
d—z(¢)
T

for all ve VN H and te0,T).

(30) ; v)+ [An(t) 27(t), v] = (f*(¢), v)

Before we carry out the limiting process in (30) we prove some assertions.
Assertion 6 There exists C(up, f) such that
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|dn () xn(t)| < C(uo,f) forallmand te<0,T).
Proof. Due to Assertion 5 from (30) we conclude
ILAn(8) zn(f), v]| < Cluo, f) |l
for all n, t € 0,7y and ve VN H. Since V N H is dense in H we have
An(t)y zr(t) e H and || 4A7(¢) 2»(t)]| < Cluo, f)-
Assertion 7. There exists C(ug,f) such that
LAn(t) an(8), v — o]l < Cluo, f) [lo — 2’|

holds for all v, ¥ e VN H and te{0,7).
Proof. From (30) we deduce

d-zn(t)
[w«mw)v—wr:—( ,v—v)+

dt
+ (0,0 —v)
On the base of Assertion 5 i) we have
d—zn(t)
_:lt < Cluo,f) forallmand te<0,T ,

from which we obtain the required result.

From the definition of z%(f), z(¢) (see (*) and (**)) and Assertion 5 i) we
immediately obtain

(31) len(t) — @@l < Cluo, f) n-L.
From (7) we deduce
(32) I/t —f@OIl < TLa.
Assertion 8. There exists u(t) : (0,T) — H such that z7(¢) - u(t), x7(t) -
- u(t) for n - o0 in H uniformly on <0, 7.
Proof.
d- ( d- 2m(t) d-zn(t)

(33) T [lam — 2| = 2 T T Zm(t) — 2(t) ) -

= 2(fn(t) — (), 2m0) — (1) —
— 2 [Am() am(t) — An(E) 1), 20 — (0]

Now, we estimate
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(34) [Am() am(t) — An(t) 2n(t), 2m(F) — 2»(t)] =
[Am(e) am(t) — An(t) zn(f), zm(t) — 2n(t) — a™(t) + «"(¢)] +
+ [Am(t) am(t) — An(t) an(t), am(t) — an(f)].
From (31) and Assertion 7 we conclude
(35) [Am(t) am(t) — An(E) an(t), zm(t) — am(t) — 2n(E) + 2"()]] <
< C(uo, f) (m™1 + n71).
From (3) we deduce
(36) [Am(t) am(t) — An(t) 2n(t), am(t) — an(t)] =
= [Am(t) am(t) — A™(t) 2n(t), 2(f) — a*(1)] +
+ [Am(t) an(t) — An(t) an(f), am(t) — an(f)] >
> [Am(t) an(t) — A»(t) 2n(t), am(t) — 2 (t)].
Using Lagrange’s theorem and (6) we have
[A@)v — A@E")v, 2] = (¢ — )[4 + =@t — t") v, 2]
for a suitable 0 € 7 < 1 and thus
(36a) [A@) v — A@") 2, 2| < |t — ] [lv(Cr + Ca r((olv)).
On the base of these estimates, Assertion 5 ii)
(len@®lly + llam () — an(@)lly < Cuo, f))
and the definitions of A=(f), zn(t) we conclude
(37)  |[Am(t) an(t) — An(E) an(t), am(t) — an(B)]] < (m7L + n7t) C(uo, f).

Hence, from (33)—(37) we conclude

O — 2@ < 210 — Ol [0 — 2O + Clua, f) (m + a7Y)
and hence
(38) [lzm(t) — 27(t)]* < 2 ﬂlf’” — )] k™) — 2n(t)]| dt +

+ TC(uo, f) (m=t + 1) < Cluo, f) (m= + n1)

since

™€) — 22Ol < Cluo, f)



and
Ifm@) — fr@)]| < Lim=2 4 »71) forall te0,T).

From this fact it follows that there exists u(t) € H for t € {0,T) such that
zn(t) - u(t) in H for n - oo uniformly with respect to ¢ € <0, T'>. Thus, from
(31) it follows a7(¢) — w(t) in H uniformly with respect to t € (0,7"> and the
proof of Assertion 8 is complete.

Assertion 9. Let u(t) be the function from Assertion 8. Then,
i) u(t) is Lipschitz continuous from {0, 7> into H
ii) u(¢) € V N H for each t € €0, T
iii) u(?) is weakly continuous in ¥V N H with respect tote 0, T
iv) u(t) € Ly,(<0, T>, V N H).

Proof.
i) Using triangle inequality and Assertion 5 i) we obtain easily
(39) llzn(t) — 2"(¢)]] < Cluo, f) |t —¥'|

and hence, owing to Assertion 8, we obtain i).
ii) Due to Assertion 1 ii) and Assertion 5 ii) we have

lz(@)ll + lle" @)l < Cluo, f)

and hence owing to the reflexivity of V n H there exists a subsequence
{™(¢)} and w,e V N H, so that 2™(t) = w; in V N H, where ¢ is a fixed
point from <0, T'>. Thus,

llelly + Tl < C(uo, f).

On the other hand x7(t) - u(¢) in H for »— oo and thus u(f) = w;. From
this fact it follows an(f) — u(t) in V N H for each te€<0,T) and

(40) lu@lly + [u@)ll < C(uo, f) for each te0,T).

Thus, Assertion ii) is proved.

iii) Suppose that ¢, -ty for n—> 0, t5, to€<0,T). From (40) it follows
that there exists a subsequence {w(fp )} from {u(tz)} and ve V N H such
that u(t,,) ~v in VN H for k— co. On the other hand from Assertion 9
i) it follows u(tn, ) — u(fo) in H for k — oo and thus u(f) = ». From this fact
it follows wu(fy) —~ u(fo) in V N H for n - oo and iii) is proved.

iv) Since u(t) € V N H for each t € <0, T") and (40) holds, it suffices to prove
that u(t) is measurable. For this purpose it suffices to prove (see [9] Theorem
of Pettis) that the set {u(t); for each f e (0, T} is separable in ¥V N H and
that u(¢) is weakly measurable, i.e., x*(u(f)) is a measurable function in ¢ e
€<0,T) for each x* e (V N H)" (dual space), where z*(x) is the value of
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x*e(V N H) at the point 2 e VN H. Since u(t) is weakly continuous in
V N H with respect to t e {0, 7T, it is weakly measurable. Let us consider
the countable set A = {u(r), for each rational number r € {0, T")}.

Let L(J) be the smallest closed linear subspace of V N H containing M.
Then, L(M) is a separable space. We prove that u(t) € L(M) for each te
e 0,T).

Let t €<0,7T> be a fixed point. There exist r,, n =1,2, ... (r, €0, T>
rational points) such that 7, -t for n — co. From iii) we have u(ry) — u(t)
in VN H for n — oco. Since u(ry) € L(MM) and L(M) is weakly closed, u(t) €
€ L(3) and the proof of iv) is complete.

Assertion 10.
Ar@t) an(t) — A() () in H for n-—> oo,

for all te<0,T>.
Proof. From Assertion 6 it follows that there exists a subsequence {"*(t)}

of {an(t)} and g:e H (t€<0,T) is a fixed point) such that

A™ () 2™() —~¢; in H (alsoin (V N H)).
From the inequality

LA™ () 2™ (8), 2™ ()] — [ge, w(®)]] <
< LA™ @) () — ge, w®)]] + [A™ (@) 2"(t), ™ () — u(®)]|

and owing to the assertions 7 and 8 we conclude that
(41) [A"(t) ™ (t), 2"“()] — [ge, w(B)].
From (3) we have
(42) [A(t) v — A™ () 2"*(t), v — a™(t)] = O

forallve VN H.
From (36a) it follows 4™(t) v - A(¢) v in (V N H)' for k — oo. Since a™(t) —
—u(t) in VN H for k- oo (see the proof of Assertion 9 ii)), we have

[A™() v, v — 2™ ()] = [A(2) v, v — u(?)]
and hence from (41) and (42) we conclude
[AB)v — gs,v —u()] = 0 forall veVNH.

We put v = u(t) + Aw, where we VN H, 1> 0. By the limiting process
A— 0 we obtain

[A@) u(t) — gs,w] =0 forall weVnNH
and hence A(f) u(t) = g:. From this fact follows Assertion 10.
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Assertion 11. A(f) u(t) is weakly continuous in H with respect tote 0,7 .
Proof. Consider [A(tx) u(lx),v], where ve VN H and ix >t €0, T

Owing to Assertion 10 and 5 i) by the limiting process in (30) we deduce
that there exists w, € H such that

(43) LA ) wlte), v] = — (w,,, ) + (f(t), )
for all ve V n H, where |w,| < C(ug, f). From (43) we deduce
14 (tx) u(tr)|| < C(uo,f) for each k.
and hence, there exist g, € H and a subsequence
A(ty,) u(t,)
such that
(44) At u(t,) — g, inHfor n—oco.

From (3) we have
[A,) v — A(t,) w(ty,), v — ult,)] = 0

for all ve V N H. Hence, from (44), (43) and the fact A(t,)v— A(to) v in

(VnH)Y for n -w (because of (36a)) we conclude that A(fo) u(te) = g,

by the same argument as in Assertion 10 equality A(f) u(t) = g, has been

proved. From this fact there follows the required result.
Proof of the theorem.

Integrating (30) over {0, t> we obtain

(45) f [An(s) an(s), v] ds 4+ (2n(t), ( (fn(s), v) ds + (uo, v)
From Assertion G and 10 we have

[An(t) xn(t), v] > [4A (@) u(t), v] for n—- o0
and each te€{0,T), where ve V N H is fixed.

The estimate

(46) [[Ar(t) 2n(t), v]| < C(uo, f) |v]] forall te<0,T)

holds because of Assertion 6. Hence from Assertion 8, (32) and Lebes jue’s
theorem by limiting process in (45) we conclude

t

i
(47) [ () uls), v]ds + (u(t), v) = | (f(s), v) ds + (uo, v)
0

0

from which we deduce that w(t) e CL (<0,T), H) because of Assertion 11
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and (7). Thus, differentiating (47) with respect to ¢ € <0,7"> we conclude that
u(t) is a solution of the problem (1), since %(0) = uo. Now, we prove the pro-
perties a)—h).

a)—c) are proved in Assertions 9, 10 and 11.

d) From (47) we deduce that

dut)
11 ,v)eC((O,T)) for each veVnNnH

d u(t
because of ¢) and (7). Thus, d—i) is weakly continuous in H with respect

d u(t
to te 0, T) and hence “ is weakly measurable. Analogously as in

d u(t
Assertion 9 iv) we prove that the set {*d—i) ;1€<0,T } is separable in H

du(t)

and hence is measurable. Due to Assertions 6 and 8 we estimate

dt

d u(t)
( 1 ,v) = — [A(t) u(t), v] + (), v) < C(uo, f) |l
forallte 0, Ty andve V N H.
du(t)

Hence,

< Cluo, f) forall ¢e<0,T)

and the proof of d) is complete.

e) Due to Assertion 8 by a limiting process in (38) we obtain the reguired
result.

f) This assertion is proved in (31).

¢) From the proof of Assertion 9 ii) it follows z”(f) — u(t) in V n H for
n — oo and each ¢ € {0, T"). Analogously, with respect to the estimate ||z2(¢) |y +
+ 2@l < C(uo, f) for each n and t € <0, T) (because of Assertion 1 ii) and

Assertion 5 ii)), and (31) we prove z7(t) — u(t) in V N H for n— o0 and ¢ €
€0, T>. '

h) Owing to (3) we have

d
— () — u2(0)|? = 2

d uy(¢) B d us(t)
dt

dt a; o= uZ(t)) -

= 2(fit) — fa(t), ua(t) — ua(t)) —
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— 2[A () wa(t) — A(t) u2(t), wa(t) — ua(t)] <
< 2AE) — fe@)] [a(t) — wa(®)ll.
Integrating this inequality over (0,f> we deduce

[ua(t) — w2@)IF < [[ua(0) — w2(0)[ +

T
+ 2 max [us(s) — us(s)l| - [ [Ifi(s) — fals)]| ds.

<0, T>

From this inequality we obtain

,
If)la,TX flwa(t) — wa(®)|| < |lwor — ozl + 2 f Ifi(s) — fa(s)ll ds
<0, 7> 0

since ul(O) = U1 and uz(O) : Uo2 -

From Assertion h) the uniqueness for the solution of (1) follows. Thus,
the proof of Theorem is complete.

Remark 5. Let u(f) be a solution of the problem (1).

Let be £ €{0,T> a fixed point. Consider the problem

d uy(2)
dt
Since u(f)e VN H and A(f) u(ty) € H, from Theorem we conclude that
there exists a unique solution u;(¢) of (1’). But, w(¢) is also a solution of (1')
and thus u(f) = wa(t) for t € {f,T). On the base of this fact transition
operators U, () : U, (f) u(te) = u(t) ¢ > to
are defined and the identities

) A w() = f&) for €0, T, wilto) = ulto).

Ut+s8)=Ust+s)Uys)=Us(t +s)U, (@), U, (o) =1

(I is identity mapping and ¢, s > to) are valid.
If fi(t) = fa(t) = O, then from (48) we obtain

d 2
7 I — wOl < 0.

It means that U, (#) is a nonexpansive operator on its definition set D(U,) =
={uecHnNV; A(t) we H}

Remark 6. If A(¢) = A, the Theorem holds true without the assumption
(5). Indeed, in this case we deduce easily from (3) the estimate

) — %1

h

< O(uo,f)
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— see [1] (part I). The more general result in this case (4(f) = A4) is proved
by J. Necas in [2].

REFERENCES

[1] KACUR, J.: Method of Rothe and nonlinear parabolic equations of arbitrary order I,
I1., Czech. math. J., (to appear.)

[2] NECAS, J.: Application of Rothe’s method to abstract parabolic equations. Czech.
Math. J., (to appear.)

[3] MOCO.IOB, II. II.: Bapuamuonnsle MeTo/ bl B HecranuounapHex 3agagax. ([TapaGonu-
yeckuit cayyqaii.) Uss. AH CCCP, 34, 1970, 425—457.

[4] ROTHE, I.: Zweidimensionale parabolische Randwertaufgaben als Grenzfall ein-
dimensionaler Randwertaufgaben. Math. Ann., 102, 1930.

[5] OMEINTHUK, O. A., BEHTIHEJIb, T. ]I.: 3agaya Koum n mepsas kpaesas sajaua
I KBa3HWJIMHeIHOro ypaBHeHud mapaboumdeckoro tumna. JAH 97, 1954, 605—608.

[6] TAOBIKEHCKAS, O. A.: Pemrenie B 1eJgoM IepBoii KpaeBoil 3ajadyum I KBasu-
auneiiHeIX mapaboanyecknx ypasHenmii. JTAH CCCP, 107, 1956, 636—639.

[7] WJIBIH, A. M., KAJJAIIHUKOB, A. C., OJIENNHUK, O. A.: Jluueitnsie ypaBuenus
BTOpOro mnopsaka mapaboindeckoro tuna. YMH, 17, peim. 3, 1962, 3—146.

[8] REKTORYS, K.: On application of direct variational methods to the solution of
parabolic boundary value problems of arbitrary order in the space variables. Czech.
math. J., 21 (96), 1971, 318—339.

[9] YOSIDA, K.: Functional analysis, Springer, 1965.

Received November 14, 1973
Katedra matematickej analyzy

Prirodovedeckej fakulty UK
Mlynskd dolina
816 31 Bratislava

81



		webmaster@dml.cz
	2012-07-31T20:06:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




