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Mat. Čas. 25, 1975, No. 1, 63—81 

APPLICATION OF ROTHES METHOD 
TO NONLINEAR EVOLUTION EQUATIONS 

JOZEF KACUR 

This paper deals with the initial boundary value problem for abstract 
nonlinear evolution equations of the form 

du(t) 
(1) • + A(t)u(t) =f(t), u(0) = u0, 0 < t ^T < oo, 

dt 

where A(t) is for every t e <0, T> a nonlinear operator. Using Rothe's method, 
the author proved in [1] the existence of a weak solution for some class of 
nonlinear differential equations of the form (1). Using this method and fol­
lowing some technics used by J . N e c a s in [2] we can generalize and strengthen 
the results of [1] (part I I ) . Deriving a priori estimates we use some results 
of P. P. M o s o l o v [3]. 

The method of Rothe consists in the following idea: Successively, for 
j = 1, 2, . . . , n we solve (see the definition 4) the e juations 

( la) s j - s j - i + A { t j ) z j = f ( t j ) 9 

h 

where {tj} (j = 0, 1, . . ., n) is an equidistant partition of the interval <0, T>, 
h = Tn-1 and tj = jh .ZQ = UO, where uo is from (1). Then, under certain 
assumptions, Rothe's function 

(*) Zn(t) = z,-! + (t - tj-x) h-1 (Zj - Z,_i) for tj-i^t^tj, 

j 1,2, ...,n converges toward the solution of (1). This method, intro­
duced by E. H o t he in [4], has been used by many authors — for this pur­
pose see references [1] — [8]. • 

Assumptions 

Let V be a real reflexive Banach space and V its dual space. The duality 
between V and V we denote by [ . , .] . Let H be a real Hilbert space with 
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scalar product (. , .) and the norm ||.||. The norm in V, V we denote by . y, 
\\.\\y • We assume that V n H is a dense set in both V and H with the corres­
ponding norms. -4(0, t e <0, T> is a system of operators satisfying 

(2) 4 ( 0 : V -> V is continuous for each t e <0, T> 

(3) [ 4 ( 0 ^ — A(t)v,u — v] ^ 0 for all u,veV,te 0,T 

(4) [4(0 w, %] ^ \\u\\v r(IMk) for all % e V,* e <0, T , 

where the function r(s) is nondecreasing for 5 ̂  so > 0, bounded in <0, so 
and satisfying lim r(s) = 00. 

(5) 4 ( 0 % = grad &(t, u) for £ e <0, T>, u e V, 

where 0(t, u) is a functional defined on V, i.e., 4 ( 0 are potential operators. 
There exist derivatives 4 ' ( 0 u, A"(t) u of A(t) u in V with respect to t e 

e(0,T) and 

(0) P'(0^lk' + IMH0 u\\y ̂  d + C2r(IMIr). 

We shall assume t h a t / ( 0 is Lipschitz continuous from <0, T} into II, i.e., 

(7) m-f{t>)\\^L\t-t'\ for all M ' e ^ T ) . 

R e m a r k 1. If V == IV* (Sobolev space) with p > 1, then r(s) = f 1 s? x — 

- C 2 . 
R e m a r k 2. In Remark 4 we point out that the conditions (4) and (0) 

can be substituted by (4') and (6'), which are more general in some sense: 

(4') ( H k ) - 1 [-4(0 u, u] -> 00 for \\u\\v -^ 00 

uniformly in t e <0, T}. 

(f/) i)U-Ф(ť,«) + 
ð2 

ФЏ, u) < Ci + Cz \0(t, u)\ 

ii) | |4 '(0 u\\y < 00 for all t e <0, I 7 ) , M G T 

iii) |<2>(f, w)l ^ d + C2 [-4(0 w, ^ ] . 

« R e m a r k 3. In (C>) or (6') it suffices to consider the difference quotient of 
the first and second order in the place of corresponding derivatives of 4 ( 0 
and 0(t, u). 

Definition 1. u(t) e C]v « 0 , T), H), iff (u(t),v) eCA«Q,Ty) for all veH. 
u(t + h) —• u(t) 

If u(t) e C]c « 0 , T}, H), then - is weakly convergent in H for 
h 
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d u(t) 
h -> 0 and we denote by this weak limit. 

dt 

Definition 2. Under the solution of the problem (I) we understand a strongly 
continuous function u(t) : <0, T) -> H such that u(t) e Gx

w « 0 , T), H), u(t) e 
eV nH forte <0, T), u(0) = u0 and u(t) satisfies (1) for all t e (0, T). 

Let X be a Banach space with the norm ||.||x. 

Definition 3. By La,((0, T), X) we denote the set of all measurable functions 
(see [0]) u(t):(0,T)->X with \\u\\L(<0sT>tX) = sup ess \\u(t)\\x < GO . 

t <o,T> 

The space V n H with the norm ||. | |FnH
 = ll-ll + ll-llr i s a reflexive Banach 

space. We denote the weak convergence by —* and the strong convergence 
by ->. u(t) is weakly continuous in V n H with respect to t e <0, T), iff u(t) —* 
-*u{t0) for t->t0 holds for each t0 e <0, T), where t e <0, T). 

The positive constants will be denoted by G and the dependence of C on 
the parameter s will be denoted by G(e) . C and C(s) will denote even different 
constants in the same consideration. 

Let us denote by xn(t) the step function 

(**) xn(t)=zj for tj-i<t^tj, j = 1,2, . . . n 

and x1l(0) = u0, where zj e V n H (j = 1,2, .. . n) are the solutions of the 
equations (la) and u0 e V n H is from (1). 

Theorem. Let us assume that (2) —(7) are fulfilled. Ifuoe V n II and A(0) uo e 
ell, then there exists a unique solution u(t) of (1) with the following properties: 

a) u(t) is Lipschitz continuous from <0, T) into H 
b) u(t) GZOO«0, T), F n / 7 ) and u(t) is weakly continuous in V n H with 

respect to t e <0, T). 
c) A(t) u(t) is weakly continuous in II with respect to t e (0, T). 

d u(t) 
d)u(t)eCl((0,T),H) and — eL^((0,T), II) 

d t 
e) max \\zn(t) — u(t)f ^ Cfaojjn-1 

f) max \\zn(t) - xn(t)\\ ^ C(uo,f)n-± 
0<t<T 

g) zn(t) —* u(t), xn(t) —>- u(t) in V n H for n-> oo and for each te(0,T) 
h) If Ui (i = 1, 2) ^s a solution of the problem (1) corresponding to the right-

hand side fi and the initial condition uoi, then 

T 

max \\Ul(t) - ^2(011 < 2 f ||/!(0 - / 2 ( 0 | | dt + \\u0i - U02II. 
0<t<T 6 
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First, in several assertions we obtain a priori estimates and deduce some 
consequences. Then, we prove the theorem. 

For simplicity we denote A(j) = A(tj) and f(j) = f(tj) (j = 1, 2, . . . n). 
Successively, for j = 1, 2, . . . n let LIS solve the equations 

(zi-zi-1)h-^ + A(j)zj=f(j) 
where zo = uo. 

Definition 4. Zj e V n H is a solution of (8), iff 

I Zj — Zj-i 

Һ 
-,v \+[A(j)zj,v] = (f(j),v) 

holds for all v e V n H. 
Due to (4), the operator A(t) u + Xu for X > 0 is coercive in the space 

V n H and strictly monotone. Thus, there exists a unique solution Zj e V n 
n H of (8) which is also a point of minimum for the coercive, strictly convex 
functional 

(0) 0{tU u) + (2A)-- ||M - 2,-iH- - (/(j), «) ^ «?(*„ «, z,_..) 

on the reflexive space V n H. 

Assertion 1. There exist C(uo,f) and ho > 0 such that 

i) i*INIrr(||-,||r)<o(«o,/) ii) INI ^ o(«o,/) 
1 1 

for each j = 1, 2, . . . n and h ̂  ho. 
P r o o f . We have 

(10) [A(j) zj, v] -J- A-i(Z/ - 2,_i, t;) = (f(j), v) 

for all v G V n H, j = 1, 2, . . . n. Let 1 < p ^ %. Substituting # = hz; 
and summing (10) through j = 1, 2, . . . p we obtain 

(11) fh[A(j)zj,zj]+ i(zj-z<-1,zj) = h f(f(j),Zj). 
j I j i j i 

The following identity 

(12) f 2fe. - ^-_i, Zj) = | ||z, - z,-i||2 -r | ! ^ |P - ||z0

 2 

j i 1 i 

holds. 
Using Young's inequality 

(13) • ab < 2-- £%2 + (2£2)-ift2 (fi + o) 

we estimate 

66 



(14) \(f(j), z,)\ ^ \\f(j)\\ M\ < 2-1 ||3/||
2 + 2-1 ||/(j)||a. 

Due to (4), we deduce that there exists a G such that 

[A(j) Zj, Zj] ^ — G for each n and j = 1, 2, . . . n. 

From this estimate, (7), (11), (12) and (14) we obtain 

INI2 «s c + IKII2 + %h\\f(j)\\2 + |>INI2 < C(u0,f) + ! % # . 
3 1 J - l 7 1 

From this inequality for h < ho < 1 we successively deduce 

I N I 2 < C ( « o , / ) ( l - f t ) - i (for p= I ) , 

h \ 
INI2 < C(u0J) (1 - A)-i 1 + 

\ 1 — hj 

and 

(15) ||2j||
2 < C(«o,/) (1 - A)"1 ( l + Y ^ Y ) 

for i 1, 2, . . . re. 
/ A \«-i 

There exists a (7 such that 1 + ^ C 

for each h ^ Zt0 and i = I, 2, . . . n. Thus, from (15) we obtain Assertion 1 ii). 
From ii), (4) and (11) we easily obtain Assertion 1 i). 

2i — 2o 
— : l < C(u0J) 

h 
Assertion 2. There exist C(uo,f) and ho > 0 such that 

for each h ^ ho. 
Proof . From (10) for j = 1, v = z± — 20 we obta'n 

(In) [,1(1) 21, 2i - 20] - [A(l) 20 , 2i - 20] + A"1 ||2i - 20l|
2 = 

~ (/(I), 21 - 20) + ([.4(0) 20, 2i - 20] - [A(])Z0, ZX - Z0]) -

— [-4(0)20, 21 — 20]. 

Using Lagrange's theorem we have 

[J(0) 20, 21 - 20] - [A(\) 20, 2i - 20] = [A'{0 + 0*i) 20 , Zl - 20] . h 

for suitable 0 ^ # ^ 1. Hence, due to (0) we have 



(17) |[A(0) zo, zx - zo] - [„(1) zo, zi - z0]| < h ||zi - zolKci + 

+ c2 r(IMIr) < ci h\\zi\\v + h Ca(uo). 

Since _(0) zo =s A(0) it0 e II, the estimate 

(18) |[A(0) zo, -i - z0]| ^ P(O) 2o|| ||-i - z0|| 

holds. From (3), (10), (17) and (18) we deduce 

Zl — z 0 

h 
11/(1)11 

Zl — ZQ 

h 
+ 11-4(0) «o|| 

Zl — Zo 

A 
+ ol IMІF+ C - M 

and hence applying (13) we obtain 

Z\ — ZQ 

(19) 
Һ 

< ťЛ («0,/) + c2 ||Zl|k ^ o8(«0,/) + o2 Ы|гř( | |2l |г). 

From (10) for j = 1 and # = 21 we have 

Z\ — Zo 
[ _ ( l ) - i , - i ] = -

A 
,21 + ( / ( ! ) , zi). 

Thus, due to (3), (13), (19) and Assertion 1 ii) we have 

\Zl — ZQ\ 

\Mrr(MW)< 
Һ 

IMI + 11/(1)11 IMI < 

< 2-1 £2 Ca(«o,/) + 2-i e* c2\\Zl\\v r(||a(i||K) + 

+ 2-i e-8 ||«i||- + ||/(1)|| ||zi|| ^ C8(«o,/, «) + 

+ 2-i e- Ca ||«II|K r(llaillf-). 

1 
Let us put є Then, the estimate 

(20) 

yo 2 

kllr rflMIr) < o4Í«o,/) 

is valid and hence, due to (19), the proof of Assertion 2 follows. 
Zj — Zj-i 

Estimating we use a variational method. The idea of such an 

estimation is due to P . P . Mosolov [3]. Analogously as in [3] (Lemma 1 and 
Lemma 6) we prove Assertions 3 and 4. 
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Assertion 3. The inequality 

(21) 0(h, Zi) <: 0(h, z) + h~\z ~zt,Zi - zt-{) - (f(i), z — Zt) 

is valid for all z e V n H. 
For completness we sketch the proof of this assertion. 0(t, u) is convex in u, 

since A(t) is a monotone (see (3) and (5)). From the minimality property 
of zt for W(h, z, zt-{) (see (9)) we have W(U , zt, Zi-i) ^ Y(tt ,rzt +sz, zt-i) 
for all 0 < r, s <: 1 with r + s = 1 and zeV C\H. Thus, from the identity 

(r u + sv — w, r u + s v —- w) = r(u — w,u — w) + 

+ s(v — w, v — w) — r s(u — v, u — v), 

where u, v,w e H, 0 <: r, s <: I with r + s = 1 and the convexity of &(t, u) 
we obtain 

0(h , Zi) + (2ft)"l ||z< - Z*-l||2 - (/(f), 2l) < 

^ r *(«,, z*) + 8 <P(fc, z) + (2fc)-i r||z< - z*_i||2 + 

+ (2A)-i s||z - z*_i||2 - (2fc)-i r 5 ||z* - z||2 -

-r(f(i),Zi)~s(f(i)9z) 
and hence 

<£(**, zt) <: 0(h, z) - (2A)-i ||zi - Zi-i\\* + 

+ (2A)-i ||z - z^-iH2 - (2*)-i r||z, - z||2 + (f(i), zt-z). 

From this inequality and from the identity 

- ||z4 - z,-!||2 + ||z - z,-i||2 - r||z, - z||2 = 

= 2(25 — Zi,Zt— Zt-i) + S\\Z — Zi | |2 

we deduce 

®(h, zt) <: 0(h , z) + h~!(z — Zi,Zi — zt-i) + 

+ (f(i), zt~z) + s \\z - z*||2. 

Thus, by limiting process s -> 0 we obtain (21). 

Assertion 4. There exist G(u0,f), C and h0 > 0 such tha t 

< C(u0,f) + 0 max ||z„||F r(||zp||F) holds for each h <: h0 and 
ZJ — zì-i 

h Kp<j 

j = 1,2, . .'. n. 
P r o o f . Consider (21) w.th i = j , z = Zj-i and with i = j — V z = Zj. 

Summing up these ine qualities we obtain 
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<22) . &(t) , Z)) - 0(tj , 2;-i) + 0(1}-! , Z)-l) - 0(tf-i, Zj) + 

+ h-^Zj — z,--i||2 < h-Hzj — z/-i, Z)-i — z;_2) + 

+ ( / ( j ) - / ( j - i ) , ^ - ^ - i ) -
Let us denote 

&j = &(tj, Zj) + 0(tj-!, Zj-!) - &(tj-!,Zj) - &(tj, Zj-!). 

From (22) and (13) we obtain 

(23) 
Z) — Z;-i 

< 

+ 2"1' 

Һ 

zi — zí-i 

Z) — Zj-i 

h 

h 
+ 2 i 

ll/(j)-УU-i)l + 

Zj-1 — Zj-2 

Due to (7) and (13) we have 

\\Z3 — ZJ~1 

Һ 11/0') -f(j- 1)11 < 

Ä 

Z;/ — 2 / - 1 

2 Ф; 

"" Һ 

Lh ^ 

< 
zз — zз-i 

h 
2-i.L h + 2- i£ h 

and hence from (23) we obtain 

(24) 
Z) — Zj-г 

h 
( i - I й X 

Z/_] — Z)-% 

h 

2 2Ф,-
+ LҺ-

h 

Let us aussme that ho < £ _ 1 . Thus, from (24) we obtain successively 

(25) 
Z) — Zj-г 

(1 -Lh)í-i < 
Z! — ZQ 

3 

+ LҺ } (1 - Lh) -
____-/ 

i 9 

V 2Ф; 

_ _ _ • 

í 2 
A 

(1 — Lhy-2. 

The inequality 1 ^ (1 — L h)1 ^ exp (—L T) holds and (1 — L hy is decre­
asing in i. Thus, using 
Abel's summation formula we estimate 
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2Фt 
( l - £ й ) < - 2 < max 

h I<J<P 

and hence, owing to Assertion 2, from (25) we obtain 

(2fi) 
ZJ — ZJ'-1 

Һ 
^ C(щ,/) + (? max 

I<P<J 

2Фt 

h 

p 

ł - 2 
Ä 

since Lh%(\ - Lh)*-* ^ Lh.(j- 2) < LT. 
i 2 

The strength of the variational method used consists in the following estimate 

(27) 

P 

<O(u0,f) + C\\zp\\vr(\\zp\\v). 
| Z _ A 

Indeed, the sum in (27) can be rewritten into the form 

(28) 
Фt 

Һ 
= h-ҢФ(tp, zp) — Ф(tp-i, zp)) 

h~ҢФ(k, zi) - Ф(h, -i) ) -%Һ-ҢФ(Һ, ZІ-I) 
i 3 

— 0(ti-l7 Zi-{) ) — h~1(0(ti-l9 Zi-{) — 0(ti-2, Zi-i) ). 

1 

The formula 0(t, u) = J [A(t) ru, u] dr is true 
o 

and thus, using Lagrange's formula and the assumption (6), the expression 
in the last sum in (28) can be estimated by 

I 
Ih-1 J \A(U) rzi-! — 2A(tt-i) TZ*_I + A(h-2) rzt-i, 

ś ,z*-i]dr|< A | | Z « - I | | F J ( C , I + C2r(r \zi-1\\v)dr 
0 

< Ci h || zt-i || v + C2h || zt-i || v r( || z . ^ || r) < 

< Ao8||«l-l||Fr(l!2.-1 | |F) + Ao4, 

since r(s) is nondecreasing for s ^ So and bounded in <0, so}. Analogously, 
from (6) we deduce 
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and 

\h-H$(tP, zt) - 4>(tp-uzp))\ < d + C2 \\zp\\r r(\\zp\\v) 

\h-H0(h, zi) - <P(*i, zi))| <d + C2 ||zi||r rfll-illr) < C(u0,f), 

where the estimate (20) has been used. Prom these estimates, Assertion 1, 
(28), (27) and (26) the proof follows. 

Assertion 5. There exist C(uo,f) and ho > 0 such that 

z3 — ZJ-1 
i) 

ћ 
s: C(«o,/), ii) I N | r < c(wo,/) 

holds for each h ^ h0 and j = 1,2, . . . n. 
P r o o f . Suppose that 

max | |~j, | | r r(\\zp\\v) = I M k r(\\zPo\\v). 
\<P<n 

Then, owing to Assertion 4 we obtain 

ZPo ZPo~l 

h 
< C(u0,f) + C\\zp,\\vr(\\zp.\\v), 

where G(u0,f) and C are from Assertion 4. Using (13) and Assertion 1 we 
estimate 

(29) 
^Po *Po 

ZPo~l 

> ^Po 

+ e2 2-i 
ZPo ZPo-l 

h 

< (2в2)-x IЫI2 + 

< C(u0,f,є) + 

+ 2 - ¥ C | M F T ( I M r ) . 

Let us choose e > 0 so that e2O = 2_1 . From (10) for j = ^ 0 ) v = z?/o and 
with respect to (29) and Assertion 1 we obtain 

[A(p0) zP„ zPa] < C(u0,f) + 2-i ||zPo||F r(\\zPMv). 

Hence, due to (4) we deduce 

WZPJ\V r(\\zPo\\v) < C(v0,f) 

from which Assertion ii) follows. From ii) and Assertion 4 we deduce Asser­
tion i) and the proof of Assertion 5 is complete. 

R e m a r k 4. Assertion 5 holds true if (4), (fi) are substituted by (4'), (0'). 
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Indeed, we work with the expression [A(t) u, u] instead of \\u\\v r(\\u\\v). Asser­
tion 2 can be proved on the base of (G') ii). In estimating (20) in Assertion 4 
we use Lagrange's formula and the inequality 

mt,u)\ ^ c(\ + m',u)\), 

which we obtain from (C) i) with C independent of either t, t' or u. Then, 
using (G') i) and iii) we infer 

Z) — Zj-i 

Һ 
< C(щ,f) + C max [A(tp) zp,zp] 

I<P<J 

from which we obtain Assertion 5. 
Let us define the step function fn by 

M)=f(j) for *j-i < « < * / , i = 1, 2, ...n 

and 

n 

/ » ( 0 ) = / ( 0 ) . 

Similarly we define the operator An(t) by 

A"(t) = A(tj) = A(j) for tj-l<t^tj9 j - 1 , 2 , 

and 

A»(0) = - 4 ( 0 ) . 

Rothe's function zn(t) (see (*)) is differentiate from the left and 

d~ zn(t) z; —- Zj-i 

d ř Һ 
for tє(t)-i,tjУ, 

j = 1, 2, . . . n, 

d-
where is the derivative from the left. 

d< 

(30) 

With respect to this notation relation (10) can be rewritten in the form 

(d~zn(t) 

d ť 
, v\+ [A»(t) Xn(t),v] = (/«(<), V) 

for all veV r\H and t e <0, T>. 

Before we carry out the limiting process in (30) we prove some assertions. 
Assertion 6 There exists C(uo,f) such t h a t 
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\\A»(t) xn(t)\\ ^ C(u0,f) for all n and t e <0, T). 

P r o o f . Due to Assertion 5 from (30) we conclude 

\[An(t)xn(t),v]\ ^ C(u0,f)\\v\\ 

for all n, t G <0,17) and v e V n H. Since V n H is dense in H we have 

A»(t) xn(t) e H and \\A»(t) xn(t)\\ ^ C(u0, f). 

Assertion 7. There exists C(uo,f) such that 

\[A»(t) xn(t), v - v']\ < C(uo,f) \\v - v'\\ 

holds for all v, v' e V n H and t e <0, T>. 
P r o o f . From (30) we deduce 

/ d-z»(t) \ 
[An(t) xn(t), v — v'] = — ,v — v' \ + 

+ (f(t),v-v'). 

On the base of Assertion 5 i) we have 

d~zn(t) 

d ř 
^ C(u0,f) for all n and t e <0, T , 

from which we obtain the required result. 
From the definition of zn(t), xn(t) (see (*) and (**)) and Assertion 5 i) we 

immediately obtain 

(31) \\zn(t) - xn(t)\\ < C(uo,f)n~\ 

From (7) we deduce 

(32) \\fn(t)-f(t)\\^TLn~\ 

Assertion8. There exists u(t) : <0, T> --> H such that zn(t) -> u(t), xn(t) -> 

-> w(0 for 7i -> oo in H uniformly on <0, T}. 

P r o o f . 

d- / d- zm(t) d- zn(t) 
(33) — - \\zm - zn\\* = 2 - — — — , zm(t) - zn(t) 

dt \ d t dt 

==2(f™(t)-fn(t),zm(t)-zn(t))-

— 2 [Am(t) xm(t) — An(t) xn(t), zm(t) — zn(t)] 

Now, we estimate 
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(34) [Am(t) xm(t) — An(t) xn(t), zm(t) — zn(t)] = 

[Am(t) xm(t) — An(t) xn(t), zm(t) — zn(t) — x™(£) + xn(t)] + 

+ [_4™(£) xm(t) — __»(*) xw(0, £™(l) — xn(t)]. 

From (31) and Assertion 7 we conclude 

(35) \[Am(t) xm(t) — _4»(f) _?»(*), zm(t) — xm(t) — z«(J) + xn(t)]\ ^ 

< O(wo,/)(m-i + w-i). 

From (3) we deduce 

(30) [Am(t) xm(t) — An(t) xn(t), xm(t) — x*(t)] .== 

= [_4™(£) a™($) — _4™(l) xw(0, xm(t) — xn(t)] + 

+ [Am(t) xn(t) — __»(*) xw(0, xm(t) — a^(l)] ^ 

^ [Am(t) xn(t) — _!»(*) xw(l), xm(t) — a*(j)]. 

Using Lagrange's theorem and (0) we have 

[__(*') t; - _1(0 v, z] = (t- t') [A'(t" + r(t' — t") v, z] 

for a suitable 0 ^ r ^ 1 and thus 

(36a) \[A(t') v - A(t") v, z]\ ^ \t - t'\ \\zMd + C2 r(\\v\\v)). 

On the base of these estimates, Assertion 5 ii) 

(\\xn(t)\\v + \\xm(t) - xn(t)\\v < ON,/)) 

and the definitions of An(t), xn(t) we conclude 

(37) \[Am(t) xn(t) - __»(*) xn(t), xm(t) — xn(t)]\ ^ (m-1 + w1) C(u0J). 

Hence, from (33) —(37) we conclude 

||2m(0 _ zn{t)\\2 ^ 2 | | /»(0 - / » ( 0 | | ||2»(0 - 2»(*)|| + o(«0,/) (»»"- + ft-"-) 
d l 

and hence 

(38) ||~«(0 - z»(0||2 ^ 2 J||/»(0 - /»(0|| ||2«(0 - -»(0H <» + 
0 

+ TC(u0J) (m-i + w-i) < O(^oJ) (m-i + n~i) 

since 

| | a « ( 0 - 3 - ( O I I < o ( « o , / ) 
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and 

\\fm(t) - f»(t)\\ ^ L(m~i + rc-i) for all t e <0, T}. 

From this fact it follows that there exists u(t) e H for t e <0, !T> such tha t 
z"(t) -> u(t) in H for n -> oo uniformly with respect to t e <0, T>. Thus, from 
(31) it follows xn(t) -> u(t) in H uniformly with respect to t e <0, T} and the 
proof of Assertion 8 is complete. 

Assertion 9. Let u(t) be the function from Assertion 8. Then, 
i) u(t) is Lipschitz continuous from <0, T} into H 
ii) u(t) e V n H for each t e <0, T> 

iii) w(£) is weakly continuous in V C\ H with respect to t e 0, T> 
iv)tt(*)e .L»«0,!r>, VnH). 

P r o o f . 

i) Using triangle inequality and Assertion 5 i) we obtain easily 

(39) l l « » ( 0 - 2 " ( n i l < C ( « o , / ) | « - r | 

and hence, owing to Assertion 8, we obtain i). 
ii) Due to Assertion 1 ii) and Assertion 5 ii) we have 

||.s»(*)||r + ||*»(*)l| < C(«o,/) 

and hence owing to the reflexivity of V n H there exists a subsequence 
{xnk(t)} and wteV n H, so that xnk(t) —- wt in VnH, where £ is a fixed 
point from <0, T>. Thus, 

INIr + INK C(UOJ). 

On the other hand xn(t) -+u(t) in H for n-> oo and thus w(£) = w^. From 
this fact it follows xn(t) —-- w(£) in V n H for each £ e <0, T} and 

(40) IKOUF + IWOII < C(u0J) for each t e <0, T>. 

Thus, Assertion ii) is proved. 
iii) Suppose tha t tn-+t0 for n ->oo , i n , £0 e <0, T}. From (40) it follows 

that there exists a subsequence {u(tnk)} from {u(tn)} and v e V C\ H such 
tha t w(£»J - ^ in V n H for k -> oo. On the other hand from Assertion 0 
i) it follows u(tn>c) -> u(to) in H for h -> oo and thus w(£o) = v. From this fact 
i t follows u(tn) --* ̂ (^o) in V n H for n -> oo and iii) is proved. 

iv) Since tt(f) G V n H for each t e <0, T> and (40) holds, it suffices to prove 
that u(t) is measurable. For this purpose it suffices to prove (see [9] Theorem 
of Pettis) that the set {u(t); for each t e <0, T}} is separable in VnH and 
that u(t) is weakly measurable, i.e., x*(u(t)) is a measurable function in t e 
G <0, T} for each a ; * G ( V n H ) ' (dual space), where x*(x) is the value of 
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x* e (V n H)' at the point xeVf\H. Since u(t) is weakly continuous in 
V n H with respect to t e <0, T}, it is weakly measurable. Let us consider 
the countable set M = {u(r), for each rational number r e <0, T}}. 

Let Iy(iJL) be the smallest closed linear subspace of V n H containing M. 
Then, TJ(M) is a separable space. We prove tha t u(t) e L(M) for each t e 
e Q,T). 

Let t e <0, T} be a fixed point. There exist rn, n = 1, 2, . . . (rn e <0, T> 
rational points) such that rn->t for n -> oo. From iii) we have w(rw) --- w(£) 
in V n H for n -> oo. Since ^(rw) e Z(M) and L(M) is weakly closed, u(t) e 
e L(M) and the proof of iv) is complete. 
Assertion 10. 

An(t) xn(t) —* A(t) u(t) in H for n -> oo, 

for all £e<0,T>. 
P roo f . From Assertion 0 it follows that there exists a subsequence {xnic(t)} 

of {:rw(0} a*id gt^H (te(Q,T)> is a fixed point) such that 

Ank(t) xHk(t) — # in H (also in {VnH)'). 

From the inequality 

\[Ank(t)xnk(t),xnk(t)]-[gt,u(t)]\ ^ 

^ \[Ank(t) xnk(t) - gt,u{t)]\ + \[A"k(t) xnk(t), xnk(t) - u(t)]\ 

and owing to the assertions 7 and 8 we conclude that 

(41) [A»k(t)xnk(t),xnk(t)]->[gt,u(t)]. 

From (3) we have 

(42) [Ank(t) v — AUk(t) xnk(t), v — xnk(t)] > 0 

for all v G V n H. 
From (36a) it follows A)lk(t) v -> A(t) v in (V n H)' for k -> oo. Since xUk(t) —-

—̂  u(t) in VnH for k-> co (see the proof of Assertion 9 ii)), we have 

[Ailk(t) v, v — xUk(t)] -> [A(t) v,v — u(t)] 

and hence from (41) and (42) we conclude 

[A(t) v — gt, v — u(t)] ^ 0 for all v e V n H. 

We put v = w(£) -f- Xw, where w e V n H, X > 0. By the limiting process 
A -> 0 we obtain 

[A(t) u(t) — gt,w] = 0 for all weVnH 

and hence A(t) u(t) ^gt. From this fact follows Assertion 10. 
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Assertion 11. A(t) u(t) is weakly continuous in H with respect to t e 0, T . 
P r o o f . Consider [-4(^) u(tk), v], where v eV C\H and tk ->t0e <0, T 

Owing to Assertion 10 and 5 i) by the limiting process in (30) we deduce 
that there exists wtlc £ H such that 

(43) [A(tk) u(tk), v\ = - K , v) + (/(**), v) 

for all ve V C\H, where | |wj | s$ C(uo,f). From (43) we deduce 

\\Mh) »(f*)|| < C(«o,/) for each fc. 

and hence, there exist gto e II and a subsequence 

--(**.) «(W 
such that 

(44) ^4(^B) u (^ J —* &0 in H for 71 -> 00 . 

From (3) we have 

[A(tkn) v - A(tkn) u(tkn),v - u(tkn)] > 0 

for all v G V n H. Hence, from (44), (43) and the fact -4 (^ B ) f -> -4(lo) 0 in 
(V n II)' for w ->oo (because of (36a)) we conclude tha t A(to) u(to) = ,7% 
by the same argument as in Assertion 10 equality A(t) u(t) = gt has been 
proved. From this fact there follows the required result. 

P r o o f of t h e t h e o r e m . 
Integrating (30) over <0, l> we obtain 

t t 

(45) j [An(s) xn(s), v] ds + (zn(t), v) = J (fn(s), v) ds + (u0, v) 
0 0 

From Assertion 0 and 10 we have 

[An(t) xn(t), v] -> [A(t) u(t), v] for n -> 00 

and each t e <0, T>, where v e V n H is fixed. 

The estimate 

(4G) \[An(t)xn{t),v]\^C(uo,f)\\v\\ for all * e <0, T} 

holds because of Assertion 0. Hence from Assertion 8, (32) and Lebes jue'b 
theorem by limiting process in (45) we conclude 

(47) J [A(s) u(s), v] ds + (u(t), v) = J (f(s), v) ds + (u0, v) 
0 0 

from which we deduce that u(t) E G\ « 0 , T}, H) because of Assertion 11 
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and (7). Thus, differentiating (47) with respect to t e <0, T} we conclude t h a t 
u(t) is a solution of the problem (1), since ^(0) = UQ. NOW, we prove the pro­
perties a)—h) . 

a) —c) are proved in Assertions 9, 10 and 11. 
d) From (47) we deduce that 

(du(t) \ 
—,v G O « 0 , T » for each veVnH 

du(t) 
because of c) and (7). Thus, is weakly continuous in H with respect 

d t 

d u(t) 
to t G <0, T} and hence is weakly measurable. Analogously as in 

d t 

\du(t) ) 
Assertion 9 iv) we prove that the set j ; t e <0, Ty \ is separable in H 

du(t) 
and hence is measurable. Due to Assertions G and 8 we estimate 

dt 

i d u(t) \ 

~d7",v = " [ A ( t ) u(t)'v] + ( / w ' v ) ^ C(UoJ) M 

for all t G <0, T} and v e V n H. 

du(t) 
Hence, 

d ř 
^ G(щ,f) for all í є < 0 , T> 

and the proof of d) is complete. 
e) Due to Assertion 8 by a limiting process in (38) we obtain the reguired 

result. 
f) This assertion is proved in (31). 
g) From the proof of Assertion 9 ii) it follows xn(t) —* u(t) in V n H for 

n -> oo and each t e <0, T}. Analogously, with respect to the estimate \\zn(t) \v + 
+ 11̂ (011 ^ G(uo,f) for each n and t e <0, T} (because of Assertion 1 ii) and 
Assertion 5 ii)), and (31) we prove zn(t) —^ u(t) in V n H for n -> oo and t G 
e <0, T>. 

h) Owing to (3) we have 

d (dui(t) du2(t) \ 
— \\m(t) - u2(tW = 2 - — — - , ui(t) - u2(t) = 

dt \ dt d t J 
= 2(fi(t)-f2(t),u1(t)-u2(t))-
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- 2[A(t) ui(t) - A(t) u2(t), ux(t) - u2(t)] ^ 

< 2 | l / i ( 0 - / a ( 0 l l l l « i ( 0 - « 2 ( ' ) L 

Integrating this inequality over <0, ty we deduce 

\\ui(t) - ^2(0||2 ^ \\ui(0) - u2(0W + 

T 

+ 2 max \\ui(s) - u2(s)\\ . f ||/i(s) - / 2 ( * ) | | ds. 
<0, T> 6 

From this inequality we obtain 

T 

max \\ui(t) - u2(t)\\ <: \\uoi - uo2|| + 2 J \\fi(s) - f2(s)\\ ds 
<0, T> 0 

since ^i(O) = uoi and u2(0) = ^02. 

From Assertion h) the uniqueness for the solution of (1) follows. Thus, 
the proof of Theorem is complete. 

R e m a r k 5. Let u(t) be a solution of the problem (1). 
Let be £0 e <0, Ty a fixed point. Consider the problem 

d ui(t) 
(V) + A(t) m(t) = f(t) for t e <0, Ty, m(to) = u(t0). 

d t 

Since u(to) e V n H and A(to) u(to) e H, from Theorem we conclude that 
there exists a unique solution ui(t) of (V). But, u(t) is also a solution of (V) 
and thus u(t) = ui(t) for te(to,Ty. On the base of this fact transition 
operators Uio(t) : Uto(t) u(to) = u(t) t >t0 

are defined and the identities 

Uh(t + s)^Us(t + s) Ut0(s) ^Ut(t + s) Uto (*), Uto (t0) ^ I 

(I is identity mapping and t, s > to) are valid. 
If/i(t) = / 2 ( 0 = 0, then from (48) we obtain 

d 
\\ui(t) - u2(t)\\* <: 0. 

d t 

I t means that Uto(t) is a nonexpansive operator on its definition set D(Uto) = 
= {ueH n V; A(t0)ueH} 

R e m a r k 0. If A(t) = A, the Theorem holds true without the assumption 
(5). Indeed, in this case we deduce easily from (3) the estimate 

Zj — Zj-i 

: < C(u0J) 
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— see [1] (part I). The more general result in this case (A(t) == A) is proved 
by J . Necas in [2]. 
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