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Matematický časopis 23 (1970), No. 3 

SCORZA—DRAGONTS THEOREM FOR UNBOUNDED 
SET VALUED FUNCTIONS AND ITS APPLICATIONS 

TO CONTROL PROBLEMS* 

PAVOL BRUNOVSK^, Bratislava 

1. INTRODUCTION 

Recently, several authors ([1])—([3]) extended Scorza—Dragoni's theorem 
([4]) in different directions, partly for the purpose of existence problems of 
optimal controls. I n this context, the extended versions of Scorza—Dragoni's 
theorem were used for the so-called Filippov's implicit function lemma, which 
plays an important role in the proofs of the existence of optimal controls in 
nonlinear systems. 

I n this note, we prove an analogue of Scorza—Dragoni's theorem (in 
a weaker form) for set-valued functions with unbounded values and we show 
that it can be used for existence theorems of optimal controls in a different 
direction. 

2. SCORZA-DRAGONI'S THEOREM FOR SET-VALUED FUNCTIONS 

2.1. Definitions 

By Rn we denote the n-vector space, by \. | the Euclidean norm, Q(X, X) = 
= inf \x' - x\, N(x, d) = {x'\ \x' — x\ < 5}, N(X, 6) = {X\Q(X, X) < d}, 

x'eX 
OL(X, Y) = max {sup Q(X, y), sup Q(Y, x)}, cl X, co X, ^(X), ^(X) the closure, 

yeY xsX 

convex hull, set of non-empty closed subsets, set of non-empty compact subsets of 
X respectively, where x, y e Rn, X, Y <=: Rnm por A <^ Rm x Rn and x e Rm, 
y e Rn denote Ax = {y\(x, y) eX, Ay = {x\(x, y) e X}. 

A mapping F : D -> ^(Rn), D c Rm w i H be called a set-valued function. 
F will be called: 

* This research was partly done under the support of NASA (NGR 24-005-063) during 
the author 's stay at the Center for Control Sciences of the University of Minnesota, 
Minneapolis, Minn., U.S.A. 
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—^-continuous [a-continuous], if for every xeD and. s > 0 there is a d > 0 
such tha t for every yeN(x,d)nD, F(y) <= N(F(x), e) [oc(F(x), F(y)) < e]. 

—/3-continuous, if for every xeD, F(x) = f] clF(N(x, d) n D) (or, equiva-
<5>0 

lently, if from xk->xeD, yk-> y, yk e F(xk) it follows y e F(x)). 
—a-continuous, if it is /5-continuous and, moreover, to any xeD, y eF(x), 

xjc -> x, xk e D there are yk e F(xk), yk -> y. 
— (Borel)-measurable, if for everyr closed Z <= Rn the set {x\F(x) <-= Z} is 

measurable (a Borel set). 

2.2. R e m a r k s . 

1. /3-continuity and a-continuity imply ^-continuity, a-continuity implies 
^continui ty. 

2. ^-continuity implies measurability. 
3. (^(Rn), a) is a separable metric space; if F has compact values, it is 

a-continuous if and only if F is a continuous mapping of D into the metric 
space (%(Rn), a). 

4. If all the values of F are contained in a compact subset of Rn, then 
a-continuity (^-continuity) is equivalent with a-continuity (/3-continuity). 

5. If D is measurable, F is measurable if and only if one of the following 
properties are satisfied: 

(i) For every Z closed {x\F(x) n Z 7^ 0} is measurable 
(ii) For every V open {x\F(x) n V 7-= 0} is measurable 

(iii) For every V open {x\F(x) <-= V} is measurable. A similar statement 

is true for Borel-measurability. For the proofs, see [10]. 

2.3. Lemma. Let D c= Rm and F : D -> ̂ (Rn) be measurable. Then, for every 
Y e(S(Rn) and every rj > 0 the set En = {x\oc(F(x), Y) < r]} is measurable. 

00 

Proof . Let D <=: \J Di, Di a D, D% c <g(R™). Clearly, it suffices to prove 
i=i 

tha t Ev n Di is measurable. 
Denote by Fi(x) the restriction of F to Di. Then Fi(x) is measurable on 

a compact set Di and we can use [8] to prove that to every e > 0 there is 
a closed set A , e c Di such that /u(Di — A,c) < £ and F is a-continuous on 
Dit e. We have for any x,y e Di 

oc(Fi(x), Y) + oc(Fi(x), Fi(y)) > oc(Ft(y), Y) 
oc(Ft(y), Y) + oc(Fi(x), Ft(y)) > oc(Ft(x)y Y), 

from which it follows 

\*(Fi(x), Y) - oc(Ft(y), Y)\ < ^F^F^y)) 
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and, consequently, a(Ft(x), Y) is continuous on A , e . Since e > 0 is arbitrary, 
oc(Fi(x), Y) is measurable on A - Thus, Ev n D% is measurable. 

2.4. Proposition. A set-valued function F : D -> ^(Rn) is measurable according 
to our definition if and only if it is measurable considered as a mapping into the 
metric space ^(Rn) . a). 

Proof . In one direction tmV proposition is a consequence of the fact that 
{E | E <-= Z} for Z closed is a closed subset of the metric space (^(R71), a); in the 
other direction it follows from Lemma 2.3, the separability of (^(Rn), a) 
and Remark 2.2.5, (hi). 

2.5. Theorem. Let D = A x B, i c Rm measurable and bounded, B c= 
c= &(Rn). Let F : D-> ^(Rv) be such that F(.,y) is measurable for every y e B 
and F(x,.) is oc-continuous for every x e A. Then, for every e > 0 there is a closed 
subset Ae c: A such that /LI(A — Ae) < s and F \ Ae X B is oc-continuous. 

Proof . For A closed, this theorem follows from [2, Corollary 2.3] and 
Proposition 2.4. If A is only measurable, there is a closed subset of A with 
the measure arbitrarily close to A; the application of the above argument 
to it completes the proof. 

This theorem would satisfy the needs of existence problems of optimal 
control for systems with compact control domains. The following theorem 
extends Scorza-Dragoni's theorem in a weaker form to set-valued functions 
with closed convex values. This extension will be shown useful for control 
problems with unbounded control domains in the following section. 

2.6. Theorem. Let D = A X B, where A c: Rm is measurable and bounded, 
B e ^(Rn). LetF : D -> &(Rv) be such that 

(1) F(.,x) is measurable for every x G B 
(ii) F(t,.) is (x-continuous on B for every t e A 

(hi) F(t,x) is convex for every (t,x) eA x B. 
Then, for every e > 0 there is a dosed subset A€ <= A such that F \ Ae X B is 
^-continuous and JU(A — Ae) < e. 

Proof . Denote Kj = {y e RP \ \y\ <j} and define Fj(t,x) = F(t,x) n Kj. 
Fj is a set-valued function with convex compact values, defined on Dj = 
= {(t, x) | F(t, x) n Kj y^ 0}. Obviously Z>;, .rare measurable. From the continuity 

00 

of F(t, .) there follows F(t, B) = cl ( J F(t, rj), where {rfi is a countable 
7 = 1 

dense subset of B. Consequently, we have for any closed Z c: £F(Rn) 

{i\F(t,B)^Z} = {t\cl\JF(t,rj)^Z} = fi {* \ F{t, r,) c Z}, 
j 7 = 1 

which implies that F(t, B) is measurable in t. Consequently, Tj = {t | F(t, B) n 
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n K, i- 0} is measurable. Since {t \ D) n Z ^ 0} = {t \ F(t, B)nKjnZ ^ 0}, 
it follows from this and Remark 2.2.5 that D* is a measurable set-valued 
function of t on Tj. Finally, from Remark 2.2.4 it follows that Fj is a-continuous 
in x and measurable in t over Dj. We shall extend Fj(t, x) to the set Tj x B so 
that it will be a-continuous in x, measurable in t with convex values from 
^(Rv). 

For (t, x) eTj x B, xe D\ denote cp(t, x) the point of F(t, x) which is closest 
to Kj. Since F(t, x) is convex, cp(t, x) is unique for every x e ^ D*. 

If # is a boundary point of D), Fj(t, x) is a one-point set. To prove this, 
suppose the contrary. Then, Fj(t, x) contains a segment, the center y of which 
is an interior point of Kj. There is a sequence of points xjc ->x,xjc^ -Dj, which 
means F(t, Xjc) n Kj = 0. Thus, there is no sequence of points yu eF(t, xjc) 
such that yjc -> x, which contradicts the ^continuity of F(t, .). 

Thus, we can extend the definition of cp to the set of boundary points of D) 
by defining <p(t, x) as the unique point o£Fj(t, x). 

Define 

(Fj(t, x) for % x) e Dj 
0j{ti X) \{q>{t, *)} for (t, x)eTj x B-Dj 

<$>j is a set-valued function Tj X B-+ %>(Rv). 

We prove that @j(t, .) is a-continuous for every t e Tj and 0j(., x) is mearus-
able for every XEB. Since Fj(t, .) is a-continuous on D), for the continuity 
of 0j(t, .) on Dj it suffices to prove that cp(t, .) is continuous on cl (B — D\) 
for every t eTj. To prove this, suppose xjc e cl (B —- D'), x- ->x . From 5-con-
tinuity of F(t, .) it follows that there is a sequence of points yk sF(t, xjc) such 
that yjc -> <p(t, x). This implies Q(KJ, cp(t, x)) > lim sup Q(KJ, cp(t, xjc)). On the 

fc-» 00 

other hand, if z is a limit of any convergent subsequence of cp(t, xjc), then 
zeF(t,x), which implies lim inf Q(KJ, cp(t, xjc)) > Q(KJ, <p(t, x)). Thus, Q(KJ, 

£-»oo 

^(t, x)) = lim Q(KJ, cp(t, xjc)); the continuity of <p(t, .) follows from the uniquenes 
£->oo 

of cp(t, x) for every x. 

For the proof of the measurability of <Pj(., x) suppose that Z is a given closed 
subset of RP. For a given x e B we have {£ | &j(t, x) n Z ^ 0} = {t \ F(t, x) 
n (Z n Ky) -^ 0} U {£ | ^(^, x) eZ}. The measurability of the first set follows 
from the measurability of F. The measurability of the second one will be 
proved if we prove tha t <p(., x) is measurable on its domain of definition 
Tj — Dj,x • To prove this note that there is a closed set V€ <= Tj — DjtX such 
that pi((Tj — DjtX) — Ve) < e .F(.,x) is measurable on Vc; thus, by [9, 
Lemma 1] there is a closed subset We

 c Ve such that F(.,x) is a-continuous 
on We, and fi(Ve — We) < s. From the a-continuity of F(., x) on We it follows 
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tha t cp(., x) is continuous on W£. Since a is arbitrary and ju((Tj — DjfX) — We) < 
< 2£, this proves the measurability of (p(., x). 

Now, we can apply Theorem 2.5 for the function $j \ Tj X B. Thus, for 
every e > 0 there is a closed set TUe such that JU(TJ — Tj,B) < 2~0'+1)E and 

oo 

0j\TJt£ x B is continuous. Denote A'e = A — \J (Tj — Tj,e). We have 
00 ? = 1 f 

fi(A — T'E)<^ fi(Tj — Tj,e) <le. There is a closed subsst Ae c Ae, such 
M 

that / / ( ^ — .4£) < | e and, consequently, /*(-4 — ^4e) < e. We shall prove tha t 
F \ Ae X B is ^-continuous. 

Let (fe, a*) e .4 e x B, (tk,xk) -> (J, a;), yk eF(tk, xk), yk->y. Then {yk} is bound­
ed and, therefore, there is a, j such that \yk\ <j, \y\ <j. Thus, tk, t eTj,e and 
from the a-continuity of &j on Tj}€ X B it follows y eF(t, x), which completes 
the proof. 

I t would be of some interest to prove Theorem 2.6 with the assumption (ii) 
replaced by some semicontinuity property. Namely, in the applications to 
control theory semicontinuity is frequently assumed rather than continuity. 

The following example shows that this is not possible. I t shows a real-valued 
function of two variables, semicontinuous in each variable which does not 
have semicontinuous restrictions as in Theorem 2.6. The modification of this 
example to set-valued functions is straightforward. 

2.7. E x a m p l e . Let A = B = [0, 1], / : A X B -» B be defined as follows 

1 on M 
f = i 

' 0 elsewhere, 
where M is a subset of the diagonal in A X B such tha t its projection M\ 
into A is non-measurable. Obviously, for every x e [0, 1], t e [0, 1], f(.,x) 
and/(£, .) are upper semicontinuous. 

Assume that for every e > 0 there is a measurable subset Aee A such tha t 
ju(A — Ae) < s and f\AsxB is upper semicontinuous. Then from the 
definition of / , Ae n Mi is closed and, consequently, ((J Ayk) n M± = 

k 

= \J(Aijk n Mi) is measurable. Since Mi — ( J Ai/k c= A — ( J Ayk and 

p{A — U ^-/*) = °> Ml ~ U -̂ i/* i s measurable. Thus,If i = [|J Ai/knMi] u 

U [Mi — [ J Ayjc] is measurable, contrary to our assumption. 

3. APPLICACION TO CONTROL PROBLEMS 

A control problem (/<>,/, U) is given by an equation 

(1) x=f(t,x,u) 
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x = (x1, ..., xn), u = (u1, ..., um), f = (f1, ..., f n ) , a scalar cost function 
J°(t, x, u) and a control domain U(t, x). Here U : D — ^(Rm) is a set-valued 
function, D c: (Rn+i) is a closed domain, / and /o are defined on the set 

D = {(t, x, u) | (t, x)e D,ue U(t, x)}. 

(/, U) will be called control system. 
A pair of functions u(t) : p i , t2] -> Rm, x(t) : [h, t2] -> Rn will be called a 

control-trajectory pair (CT-pair), if u(t) is measurable, u(t) e U(t, x(t)) for 
te[h,t2], x(t) is absolutely continuous and satisfies x(t) = f(t, x(t), u(t)) for 
a.e. t E [h, t2] . u(t) is called control and x(t) the corresponding trajectory. 

Denote 
x = (x»,x)eRn+1, f=(f°,f) 

and 
t 

xo(t) = J* fo(s,x(s), u(s))ds 
h 

for a CT-pair <x(t), u(t)}. 
The control problem (/°, / , U) will be called lower closed, if it has the following 

property: 
Given a sequence (xk(t), ujc(t)} of CT-pairs on a common interval [h,t2] 

such that xjc(t) tend uniformly to an absolutely continuous function x(t) and 
x°.(t) tend pointwise to a function x°(t) of bounded variation, then there is 
a control u(t) such that 

1° (x(t), u(t)> is a CT-pair 
t 

2° | f°(s, x(s), u(s)) ds < y°(t), where y°(t) is the absolutely continuous part 
h 
ofx<>(t). 

This definition is a slight modification of the lower closure definition of [9]; 
it is more appropriate for the application to optimal control existence problems. 

For the motivation of this definition and its connection with optimal control 
existence problem see [5 — 7, 9], 

Denote 

Q(t, x) = {(I/O, y) | yo > fo(t, x, u), y = /(*, x, u)9 u E U(t, x)}. 

We show that Theorem 2.6 allows us to modify the continuity assumptions 
under which the lower closure of control problems is usually proved. This 
modification is close to the one of [1]; however, Theorem 2.6 allows us to 
separate more the assumptions on Q from those o n / and U. 

3.1. Theorem. Let D ^ T x B ^ ^ R 1 compact, B c= Rn closed, and suppose 
that 

9 i n 



(i) U is Bor el-measurable on D 
(ii) f(., ., u) is Bor el-measurable and f(t, x, .) is continuous over J). 

(iii) Q(t,x) is convex for every (t,x)eD, Q(t, .) is Si-continuous and Q(.,x) 
measurable over D 

(iv) for every compact K there is a constant y such that f°(t, x,u) > y for 
(t, x) e K, ue U(t, x) and a nonnegative function (p(£), | > 0 such that 
lim | _ 1 ^ ( | ) = oo and f°(t, x, u) > <p(\f(t, x, u)\) for \f(t, x, u)\ sufficiently 

large and (t, x) e K. 

Then, the control problem (/°, / , U) is lower closed. 
Proof . Let (uk(t), xk(t)} be a sequence of CT-pairs on p i , £2] c T, xk(t) -> x(t) 

uniformly, x°k(t) -> x°(t) pointwise, x(t) being absolutely continuous and x°(t) 
with bounded variation. 

By Theorem 2.6, for an arbitrary given rj > 0 there is a closed Tv c T such 
tha t JU(T — Tv) < r] and Q(., .) is ^-continuous on Tv X B. From this, (iv) 
and [6, § 2(i)] or [7, Prop. 3] it follows that Q has the property (Q) on Tn x B, 
i.e. for every teTv, 

(2) Q(t, x) = 0 cl co Q(N[(t, x), d)] n [Tv X B]). 
<5>0 

For 7] > 0 sufficiently small, Tv is a set of positive measure and therefore 
almost every its point is its density point, i.e. 

(3) lim h-±iJL(I(t, h) nT*) = 0 
h-+Q 

for a.e. teTv, where I(t, h) = [t, t + h] and T* = T - T v . 
Denote T° the set of points t e Tv for which x(t) exists and (3) is valid. 

We have /u(Tv — T°v) = 0. Further, denote / (* , xk(t), uk(t)) = ipk(t). 
Let t e T%, oc = 2 | x°(t)\. For h > 0 sufficiently small and h > k'(h) suffi­

ciently large we have 

\%°{t + h) - x°(t)\ < I \x<>(t) h=\*h, 

l«*l* + *) - x \ l + A)I < \ oti, \x°k(t) - aPlt)\ <iah, 

which implies 
\x\'t + h) — x(l(t)\ < ah. 

For every e < \ there is a d > 0 such tha t for every 0 < h < 5 a n ( j 
& > h(h) > &'(A) sufficiently large we have 

(4) 
1 1 

— [щt + h)~ x{t)] [xkЏ + h)~ xk(t)] 
h Һ 

<є 
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t+h 

(5) J V°(s) ds < \x°it + h)- .-"(Ol < «•!> 
t 

(6) |afc(s) — x(t)\ <s for 5 G [t, t + ft] 

(7) f,(T*nI(t,h))<e.h. 

Since the values of #&(£) and #(£) are all contained in some compact set, from 
(iv) it follows that ip°k(s) > y > — 00 for s ET and tha t there is a /? > 0 such 
tha t 

(8) |yjt(s)| < sf°k(s) 

for 5 G T and |yfc(*)| > i3. 
We have 

t+h 

(9) A-i[a*(* + h) - &(*)] = ft"1 J #*(*) ds = p(Tv n J(l, ft))-V 

J yA(«) ds - //(T* n Ju, ft)) [^(r, n I(t, ft)) .ft]-i. 

J $*(*) ds + ft-i J $*(s) ds. 
TnnJ(t,h) T*nnl(t,h) 

From (6) follows 

(10) ^ ( T , n J(t, ft))-i J $*(s) ds e cl co Q(N[(t, x(t)), e] n [Tn X B]). 
Tr, n I(t, h) 

From (5), (7), (8) and e < \ follows 

(11) \/JI(T* n /(*, ft)) {ji(Tv n /(*, ft))ft]-i J %(*) ds| < 
r„n/(a) 

T„n/((,A)n{(l|v*(0|>/S) 

+ J \fk(s) I ds] < 2«fc--rjSA +(x+ \y\)h] < 2eW + <* + \v\1 
TnnI(t,h)n{t\\Vitf)\£ft 

(12) p{T* n I(t, h)) [fi(Tv n I(t, h))h]~i j y>°k(s)ds>2sy. 
Tnnl(t,h) 

From (5), (7), (8) further follows 

(13) |ft-i J xpk(s) ds\ < h~ieh(P + a + |y|) = fi(j8 + a + |y|) 
T;n/(t,A) 

(14) ft-i J ^ ( s ) d s > y £ 
T;n/(^,/O 

From (9)-(14) follows 

h-i[x(t + ft) - 5(0] <= -AT[cl co 0(N[(^, x(t)), e] n [T, X .B]),^e] = 
where * == 3(/J + a + |y|) 
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By (2), for h -> 0 we get 

(15) £(t) = lim A-i[«(t + A) — £(*)] <= 

<= f l W co Q(N[(t, x), e] n [Tv X .B]), xe] = Q(t, x). 
e > 0 

Thus, for teTl the set P(J) = {u\f(t, x, u) = x(t), p(t, x, u) < x°(t)} is 

non-empty; since rj > 0 is arbitrary, this is true for a.e. t e T. 

Now it remains to prove that there is a measurable function u(t) such that 

u(t)eP(t) for a.e. teT, since then by (15), (u(t),x(t)y form a CT-pair and 

* t 
\p(s, x(s), u(s)) ds < J* &(s) ds = y»(t). 

-1 t0 

The existence of such a u(t) can be proved almost exactly as in [9], the only 

difference being that for the application of the procedure of [5, pp. 386—385] 

one has to remove another t-set of arbitrarily small measure so that on the 

remaining set Q(., .) is ^-continuous. 
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