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Matematický časopis 19 (1969), No. 2 

ON REGULARITY OF A MEASURE ON A <r-ALGEBRA 

ZDENA RIECANOVA, Bratislava 

In the paper we show t h a t the question of regularity of a measure on a 
cr-algebra can be reduced to the question of regularity on a a-ring. 

If X is a nonempty set of elements and C is a nonempty family of substes 
of X, then by S(C) we denote the cr-ring and by A(C) the a-algebra generated 
by C. The family [S(C)]i = {B <= X :E C\ B e S(C) for all E e S(C)} is a cr-al
gebra of subsets of X.(x) 

Definition.(2) Let Xbea nonempty set of elements, C, U, S be nonempty families 
of subsets of X such that S is a a-ring, C <-= S, U <= S. Then a measure jbt defined 
on S will be called to be (C, U)-regular on a a-ring So ^ S if and only if 

ju(E) = sup {[i(C) :E => CeC} = inf {[t(U) :E <-= U e U} 

for each E e So. 

Theorem 1. Let X be a nonempty set of elements, C and U be nonempty families 
of subsets of X, A be a a-algebra of subsets of X such that C <= A cz [S(C)];t, 
ix be a a-finite measure on A. Let U and C satisfy the following conditions: 

a. U is a finitely additive subfamily of A. 
b. U -CeU for each U eU, CeC. 

Then jbt is a (C, U)-regular measure on A if and only if the following two condi
tions are simultaneously satisfied: 

1. [JL is a (C, U)-regular measure on S(C). 
2. There are sets Y e S(C) and U e U such that ju(X — Y) = 0, X — Y cz JJ, 

p(U) < oo.(») 
First we prove two lemmas. We assume in both lemmas that C is a nonempty 

family of subsets of X and A is a r/-algebra of subsets of X such that C c: A. 

(*) We use the terminology according to [1]. 
(2) See also [2], p. 187 and [3]. 

00 

(3) We can suppose that Y = \J Cn, Cne C. 
n=l 

135 



Lemma 1. Let fx bz a measure on A. If E e A, ju(E) < cc and LI(E) = 
- sup {LI(C) :E => C eC}, then there exists Y e S(C), Y c E, ju(E — Y) = 0. 
Proof . By an assumption there are sets Cne C (n = 1, 2, ...) such that 

Cn <= E, ju(E) < Li(Cn) + — ^ JU( (J Ck) + —. 
n k=1 n 

Hence 

(jCn^E, p(E) ^ lim LI(\J Gk) + — 
n=l ^°° [ *=1 n 

and therefore 

= P(\JCЯ) 

0^fi(E-\J Cn) = fi(E) - ft(\JCn) = 0. 
w = l w = l 

Lemma 2. Let jn be a a-finite measure on A. Let 

p(E) = sup {ju(C) :E => CeC}, 

for each E e A. Then there is a set Ye S(C) such that ju(X —- Y) = 0. 
Proof . As LI is (T-finite there is a sequence {-4W}̂ =1 of sets of A, ju(An) < co 

00 

(w = 1, 2, ...) such that X = \J An. By Lemma 1 there are sets Yn e S(C) 
n=l oo 

(n = 1, 2, ...) such that /<(.4. - Y») = 0. P u t Y = U Y« • Then Y e S(C) and 
»-i 

/.(X - Y) = ^[((j -4,) - (U Yn)] = /.[(j (A{ - Yi)] = | p(At - Yi) = 0. 
t-1 n=l i-1 i=l 

P r o o f of T h e o r e m 1. A. If ju is a (C, U)-regular measure on A, then the 
condition 1 is evident and the condition 2 follows from Lemma 2 and the 
regularity of the set X — Y with respect to //. 

B. Let the conditions 1 and 2 hold and E e A. Then E n Y e S(C) and 

/*(.») = p(E n 7) = sup {/*(C) :EnY^CeC}^ 

^ sup {/*(C) : E => C G C} ^ ^(j?). 

If //(#) = oo, then p(E) = inf {/*(£/) : E c [7 e U}. Let /*(#) < oo. Choose 
an 6° > 0. By assumptions we have U e U, C e C, U -=> E — 7 , ju(U) < oo, 

C c U n 7, /4(U n 7) - O] < - . 

Hence we have U — C e U, U ~ C ^ E — Y, p(U — C) ^ /.(£/ — Y) + 

+ ,.[(17 n Y) - oj = /t[(U n Y) - o] < - . 
z 

Since E n Ye S(C), we have V e U, V => F/ n 7 , /4V — (En 7)] < —. 
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P u t O = V u (U - C). Then 

OeU, 0 => FJ, /*(O) - //(#) - ^(O - ^ ) ^ p[{V - # ) u (U - 0)] ^ 
^ H(V - E) + [*(U - G) <e. 

Hence the Theorem is proved. 

Corollary. Let X, C and U satisfy the assumptions of Theorem 1, /ube a a-finite 
measure on S(C). Let px be the extension of [x on \S(C)\x defined in [2], example 1, 
p. 53. Then fjii is a-finite and (C, U)-regular on [S(C)\x if and only if the 
following conditions are satisfied: 

1. /ux is a (C, U)-regular measure on S(C). 
2. There are sets Y e S(C) and U e U such that /JLA(X — 7) = 0, X — T <= U, 

jux(U) < oo. 
E x a m p l e 1. If in Theorem 1 X is a locally compact Hausdorff topological 

space and C is the family of all compact subsets of X, then we can p u t : 
1. A = -4(C). 2. A = -4(D), where D are all closed subsets of X (we get weakly 
Borel sets). 3. A = [S(C)];i (we get locally Borel sets). In these cases U is the 
family of all open sets belonging to A. 

E x a m p l e 2. If in Theorem 1 X is a locally compact Hausdorff topological 
space and C is the family of all compact G# subsets of X, then we can choose: 
1.-4 = -4(C). 2. A = -4(D0), where Do are all closed GQ subsets of X (weakly 
Baire sets). 3. A = -4(Z), where Z is the family of all sets of the form/_ 1({0}), 
w h e r e / i s a real — valued function continuous on X. 4. A = [S(CQ)]A (locally 
Baire sets). In the cases 1—4, U is the family of all open sets belonging to A. 
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