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M a t e m a t i c k ý časopis 19 (1969), N o . 2 

TERNARY HALFGROUPOIDS AND COORDINATIZATION 

VACLAV HAVEL, Brno 

I n Section 1 we find the form of geometric systems corresponding to general 
ternary halfgroupoids in a similar way as there correspond affine planes to planar 
ternary groupoids. In Section 2 we describe some relations between autotopies 
of ternary (half)groupoids and the ,,coordinate" automorphisms of cor
responding geometric systems. I n Section 3 we characterize one type of 
geometric systems which are closely related to Sandler's pseudo planes. 

1. TERNARY HALFGROUPOIDS AND POINT-LINE-SYSTEMS 
WITH PARALLELISM 

We introduce the following concepts: geometry over ternary halfgroupoid, 
presystem with generalized parallelism and system with generalized paral
lelism. We shall show that these three concepts express essentially the same 
object and so we obtain a (possibly) large generalization of the well-known 
Hall's coordination scheme. The definitions are as follows: 

Definition 1.1. A ternary halfgroupoid is a couple (8, T) where S is a set 
with card S ^ 2 and T is a mapping of some nonempty set Domain T C 
QS X S X 8 into S. For the case of Domain T = SxSx8we get a ternary 
groupoid. 

Definition 1.1a. Let T = (S, T) and T' = (#', T') be ternary halfgroupoids. 
An isotopy a : T -> T' is a quadruple (or, 02, 03, 04) such that 07 : S -> S' 
(i = 1, 2, 3, 4) is a bijection, {(aai, ba*, ca*) | (a, b, c) e Domain T} = Domain T' 
and Tf(aai, ba*, ca*) = (T(a, b, c))a* for all (a, b, c) e Domain T.( ] ) For T = T' 
we get an autotopy. For or = 02 = 03 = 04 we obtain an isomorphism which 
becomes an automorphism if T = T'. 

Definition 1.2. A g. p. presystem(2) is a quadruple (2P, ££, I, / ) where 

(*) Hence it follows that cr1 = (o^1, o^1, o^1, c^1) is also an isotopy. 
(2) This means: a presystem with generalized parallelism; similarly for a g. p. system. 
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(i) SP and ££ are nonempty sets of elements called the points and the lines 
respectively, (ii) I is a binary relation between SP, ££ such that for each 
p e SPQ e J2?) there exists a line I (a point p) with p 1 I and (iii) / a is de
composition^) of J§? with members LQ££ such that for each peSP and 
each L e J£ there is a t most one line I e L with p 1I. 

Definition 1.2a. Let P = (SP, J§?, I, / ) and P' = (&', &', I ' , / ' ) be 
g. p. presystems. An isomorphism Q \ P -> P' is a pair (Oi, 02) of bijections 
Q\\SP^SP', Q%\ oSf ->J§?' satisfying the following two properties: (i) 
p Ylopai Y'la* and (ii) la^, ma* belong to a common member of / ' if I, m 
belong to a common member of / . If P = P' then we get an automorphism. 

Definition 1.3. A g. p. system is a triple (SP, ££, //) where SP is a nonempty 
set of elements called the points, ££ is a nonempty set of certain nonempty 
subsets of SP called the lines and / = (Lt)t G Domain// is a family of nonempty 
subsets in J§? such that u Lt = J§? and that each member of / is a decom
position in SP. Yf La n Lp = 0 whenever a 4= /? we get a parallel system.^) 

Definition 1.3a. Let P = (^ , J27, / ) and P' = (^ ' , £', //') be g. p . systems 
An isomorphism between P, P' is a bijection £ : SP -> ^ ' having the following 
properties: (i) if le££' then ZG J? ' and if V e££' then there is a line Z G ££ 
with le = I' and (ii) Z-*, m-> belong to a common member of / ' if I, m belong 
to a common member of / . If P = P' we get an automorphism. 

C o n s t r u c t i o n 1.1. Let T = (S, r) be a ternary halfgroupoid. First 
we introduce some denotations: Domain^ r (Domains r) is the projection 
of Domain r which arises by leaving only the components with the indices 
i, j = 1 , 2 , 3 or i = 1, 2, 3, respectively. Rangew r is the set of all r(x, y,u) 
for all (x, y, u) e Domain r with a fixed u e Domains r. AT is the set of all 
(u,v)eS X S with u e D o m a i n r and v e RangeM T. NOW put SP = D o m a i n ^ r, 
J§? = AT and define I ^ SP X J§? by (x, y) I (u, v) o r(x, y,u) = v for all 
admissible (x, y, u) e Domain r and v e Ranges r. Further set Lu = {(u, v) e 
e AT I v e Rangew T} for every u e D o m a i n r and / = {Lu \ u e D o m a i n r} 
Then (SP, ££, I, //) is a g. p. presystem which is canonically determined by T 
and will be denoted by P(T). 

C o n s t r u c t i o n 1.2. Let a ternary halfgroupoid T = (S, r) be given. Put 
SP = Domaim,2 r, lUfV = {(x, y) e D o m a i n ^ r \ r(x, y, u) = v} for each (u, v) e 
e AT, ££ = {lu>v I (u, v)eAT}, Lu = {lu,v \ vGRangew r} for each wGDomain3 r, 

(3) A decomposition of (or on) a set S ^ 0 is a nonempty set of nonempty subsets in S 
which cover S. A decomposition in a set S ^ 0 is a nonempty set of nonempty 
subsets in S. 

(4) Here more generally as in A n d r e ' s paper [1], pp. 89—102. 
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/ = (I>)Domain3T. Then (SP', <£, I/) i s a g. p. system which is canonically 
determined by T. This g. p. system will be denoted by P(T). 

C o n s t r u c t i o n 1.3. Let a g. p. presystem P = (SP, &, I , / ) be given 
where SP c S x S for a sufficiently large set S. Then we can choose injections 
a : / -> S and f}L:L-+S (for each i e / / ) and define r by T(#, y,u) = VO 
0 (x, y) I / ^ V for all admissible (x,y)^SP, uea //, ve p(aT^luu). This T 
is well-defined on a certain subset of S X # x S so that a ternary halfgroupoid 
(#, T) is obtained. This is canonically determined by P, a and (j3x)Xe// and 
will be denoted by T(P, a, (/3x)Le//). 

R e m a r k . Clearly P(T(P, a, (PL)Le(j) is isomorphic to P. 

C o n s t r u c t i o n 1.4. Let a g. p. system P = (SP, ££, //) be given with 
SP c # X S where S is a sufficiently large set. Then we can choose injections 
a : Domain / - > S and pt:Li->S (for each t e D o m a i n / ) and define r by 
r(x,y)u) = vo(x,y)e^xuv for all admissible (x,y)e£P, uea/l,vef}x-lu(a-1u). 
We obtain similarly as in Construction 1.3 a ternary halfgroupoid (S, r) which 
is canonically d3termined by P, a, (A),GDomain// and will be denoted by 

T(P, a, (ft),eDomain//)' 

R e m a r k . Clearly P(T(P, a, ( /Ue Domain//)) = P> 
C o n s t r u c t i o n 1.5. Let P = (SP, J5f, I, / ) be a g. p. presystem. Pu t 

1 = {p e & | p 11} for each I e J2f\ Define J§? as the set {l\le &}. Further 
choose a bijection a : J -> // where J is a convenient index set. Now let / 
be the family (ou)ieJ where at = {I \ I e ai} for all t e J. Then (^ , J£?, / ) 
is a g. p. system canonically determined by P and a. This g. p. system will 
be denoted by P(P). 
R e m a r k . If P, P' are isomorphic g. p. presystems them also P(P), P(P)' are 
isomorphic. 

C o n s t r u c t i o n 1.6. Let T = (S, r) be a tsrnary halfgroupoid satisfying 
the middle cancellation law: if r(x, yi, u) = r(x, yz, u) for some (x, y\, u) 
(x, yz, u) e Domain r then y\ = yz. Define r by r ( x , u, v) = y o r(x, y,u) = v 
for all (x, y, u) e Domain r. Then r is well-defined on some uniquely determined 
subset of S X S X S and T* = (S, r ) is a ternary halfgroupoid satisfying the 
right cancellation law: if r*(x, u, v\) = r'(x, u, v^) for some (x, u, v\), (x, u, v?) e 
e Domain r then v± = V2. Conversely, if T = (S, r) is a ternary halfgroupoid 
satisfying the right cancellation law then we may define r by r(x, y, u) = 
= v o r(x, u,v) = y for all (x, u, v) e Domain r. Such r is well-defined on 
some subset of S X S X S and the obtained ternary halfgroupoid T = (S, r) 
satisfies the middle cancsllation law. 

R e m a r k . Let T = (S, r) be a ternary halfgroupoid satisfying the middle 
cancellation law. Define T* by r*(u, v, x) = y o r*(x, u, v) = y for all (x, u, v) e 
G Domain r . The obtained halfgroupoid T* = (S, r*) is said to be dual to T 
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(and also P(T*) or P(T*) can be said to be dual to P(T) or to P(T), respectively) 
Clearly (T*)* = T. 

2. GEOMETRIC SIGNIFICANCE OF AUTOTOPISMS 
• 

Proposition 2.1. Let a be an autotopy of a given ternary halfgroupoid 
T = (S, r). Then the rule (x, y) -> (xai, ya*) for (x, y) e Domaini.2 r and 
(u, v) -> (ua*, va*) for (u, v) G AT defines an automorphism of P(T). 

Proof . From (x, y) I (u, v) it follows successively r(x, y, u) = v, r(xai, ya2, 
uaa) = va* and (xai, ya*) I (ua*9 v

a*). This may be also reversed (on the whole 
we have condition (i) from Definition 1.2a). From r(x, y, u) = vor(xaiya* uas) = 
= va* also condition (ii) from Definition 1.2a follows. 

C o n v e n t i o n . Let Si, S2 be nonempty sets. Denote by X the set of all 
x(b) = {(x, y) G Si X S2 | y = b}, b G S2 and by T the set of all y(a) = 
= {(x, y)<=Si X S2 | x = a}, aeSi. 

Proposition 2.2. Let there be given a g. p. presystem P = (SP, J£, I, / ) with 
& £= Si X S2for some at least two-element sets Si and S2. Let S%, S\ be arbitrary 
sets such that there is a bisection oc: // -> S3 and that there are injections (3L : L -> S* 
(for L e If) with | J fiLL = S and with (SLL n $MM = 0 whenever L, M are distinct 

Le/I 

members of //. Then each coordinate automorphism^) Q = (Oi, Q2) of P induces 
an autotopy ofT(P, a, (PL)Le/,). 

Proof . Since Q is a coordinate automorphism, (x, y)Qi = (xai, ya*) for (x, y) e 
e Si X S2 defines bijections cri : Si -> Si, a2 : S2 -> S2. By the above choice 
of (jtfJxe//. (u, v)Qi = (ua*, va<) for (u, v) e AT defines bijections as : S3 -> S3, 
a : #4 - • ^4 and (x, y) I (u, v) => (xai, ya*) I (ua*, va*) is equivalent to r(x, y, u) = 
= v => T(a^i, yai, uas) = va*. The properties of an automorphism of P guarantee 
tha t {(a^i, y°*9 u

as) \ (x, y, u) e Domain r} = Domain r. 

Supplement. If moreover X e // with ($xx(b) = b, b G S2 then o± \ Sz = 02 
and 0*3 = 0 for 0 = ocX. 

Proof . By the present assumptions r(x, y,0)=y holds for all (x, y) G SiX S2; 
and as Q is a coordinate automorphism, r(x, y, 0) = y implies r(xai, ya*, 0a*) = ya* 
where necessarily 0*3 = 0 and ya* = ya* for all y G S2. 

Proposition 2.3. Let P = (&,££, //), // = (Lt)tsS be a parallel system with 
2P = S X S for a certain set S, card S ^ 2 and let X = Lo for some element 
OGS and card (y(0) n I) = 1 for all I G0>. Then there is a T = T(P, id, (f}t)teS) 

(5) This may be compared with [2], pp. 39—42. 
(d) i. e. an automorphism of P preserving as X as Y 
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such that every coordinate automorphism q = (Oi, O2) of P induces an autotopy 
a = (ai, 0*2, f/3, 0*4) of T with 0as = 0 and 0-2 = 0-4. Conversely, each autotopy 
a = (0*1, c/2, 03, c/4) of T with 0as = 0 induces a coordinate automorphism of P. 

Proof. Choose /?,, 1 e S in such a way that /3J = v where {(0,v )} = I n y (0) 
for each I e Lt. Then r(a, &, 0) = T(0, b, a) = b for all a,b E S and T(#, ?/, WI) = 
= #i o T(#, 1/, ^2) = V2 for fixed (wi, ^i), (^2, V2) e S X S implies ^i = u2, 
vi = V2. Let o = (Di, £2) be a coordinate automorphism of P. Then by (x, y)&i = 
= (x°i, ya*) for (x, y) e S X S and ll]v = luc3iVat for (u, v) e S X S the bijec-
tions at : S -> S (i = 1, 2, 3, 4) with 0ff3 = 0 (this expresses the preserving 
of X) and with c/2 = G4 are well defined. (This follows already from r(a, b, 0) = b 
and from the preserving of X whereas T(0, b,a) = b guarantees the necessary 
consistence.) The rest of Proposition 2.3 follows from the reversing of the 
preceding investigations. 

Proposition 2.4. Let P = (SP, J£?, //), // = (Lt)ieS be a parallel system such 
that (i) SP = S X S for a set S, card S ^ 2, (ii) X = LQ for some element 0 e S 
(iii) card (y(0) n I) = 1 for all I e SP, (iv) d = {(x, y) e S x S \x = y} e L1 

for some element 1 e S and (v) each point of y (1) is contained in a unique line 
through (0,0) and each line through (0,0) intersects y(\) in exactly one point. 
Then there is a T = T(P, a, (/3J. eS) such that every coordinate automorphism 
of P fixing (0,0) and (1,1) induces an automorphism of T fixing 0. Conversely, 
every automorphism of T preserving 0 induces a coordinate automorphism of P 
fixing (0,0) and (1,1). 

Proof . For each 1 e S let oci = u where {(1, u)} = I n y(\) for (0,0) ele Lt. 
Further let f}tm = v where {(0, v)} = m n y (0) for each m e Lt. By Proposi
tion 2.3, to any coordinate automorphism o of P preserving (0,0) there cor
responds the autotopy (0*1, c/2, c/3, 0-4) with 0CTi = 0 (i = 1, 2, 3, 4) and 
with 0*2 = 0-4. Condition (iv) is equivalent to r(a, b, 0) = 1 o a = b and 
by our choice of a and (PXes -̂  follows that r(\, a,b) = 0 o a = b. By the pro
perties of 0 it must follow that l^i = 1^ = 1 and r(\,a,a) = 0 => r(\, aaz, aa*) = 
= 0 => c/2 = Gs whereas r(a, a, 0) = 1 => r(aai, aa*, 0) = 1 — 01 = c/2. Revers
ing these considerations we get the rest of Proposition 2.4. 

R e m a r k . The particular case of Proposition 2.3—4 for P to be an affine 
plane is studied in [3]. 

3. ON A TYPE OF PARALLEL SYSTEMS 

Definition 3.1. A parallel system P = ( ^ , J ? , / ) is said to be natural (7) if 
(a) 3P = S X S for a set S, card S ^ 2 (b) Domain // = S, i. e., / = (Lt)t£S> 
(c) X = Lo for an element OeS, (d) card (x(a) n I) = card (y(a) n I) = 1 
for all a e S and I e &\X and (e) d = {(x, y) e S X S\x = y} e j£?. 
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Definition 3.2. A ternary groupoid T = (S, r) is said to be natural^) if (1) 
for u\, U2, v G S with u\ 4= U2 there exist x, y\, y2 G S; y\ + y2 such that 
T(#, ill, ^i) 4= T(#, 1/2, ^2), (2) the equation r(x, y, u) = v has a unique solution 
x eS (y GS) for any given y, u,v ES; y 4= O J ^ ^ V G S ) , (3) there is a distin
guished element 0 e 8 with r(a, b, 0) = r(0, b, a) = b for all a,b e S and (4) 
there is a distinguished element I e S with r(a, a, 1) = 0 for all a e S. 

Proposition 3.1. If T = (S, r) is a natural ternary groupoid then: (A) 0 4= 1, 
(B) from r(x, y, u\) = v\, r(x, y, U2) = V2 for fixed (u\, v\), (U2, V2) G S X S 
it follows u\ = U2,v\ = V2 and (C) T* is characterized by the following conditions: 
(\*)foru\,U2,veS;u\ 4= U2 there existsx G S such that v (x,u\,v) 4= rm(x, U2,v)9 

(2#) the equation r*(x,u,v) = y has a unique solution x e S (v e S) for any 
given u,v,y G S; U 4= 0 (x,y,u e S) (3-) there is a distinguished element 0 G S 
such that r'(a, 0, b) = T* (0, a, b) = b for all a,b e S and (4#) there is a distin
guished element 1 G S such that r*(a, 1,0) = a for all a G S. 

Proof . Part (A): If 0 = 1 then a = r(a, a, 0) by (3) and consequently 
a = 0 by (4). This is a contradiction to card S ^ 2. 
Part (B): If we choose x = 0 then the left side of the investigated implication 
gives v\ = V2 so that (1) is already equivalent to (b). 
Part (C): Only a transcription according to r(a, b, c) = d o r*(a, c, d) = b. 

Proposition 3.2. If T = (S, r) is a natural ternary groupoid then P(T) is 
a natural parallel system. Conversely, if P = (SP, ££, //) is a natural parallel 
system then there exists a T = P(P, <*,(&)tes) which is natural (with elements 0,1 
determined by X = L0 and d e L\). 

Proof. If T is a natural ternary groupoid, then for P(T), card S ^ 2 => (a), 
Domains r = S => (b), (3) => (c), (2) => (d) and (2) & (3) => (e). Conversely, 
if P is a natural parallel system then put a = id and define f}tl = v where 
{(0, v)} = y(0) n I for each leLt. Then i a n Lp = 0 for a 4= fi => (1), (d) => (2). 
(c) together with the required form of (PXes => (3) and (e) & (d) => (4). 

Proposition 3.3. Let T = (S, r) be a natural ternary groupoid. Define + , . 
T T 

by a + b = r'(a, 1, b), a . b = r*(a, b, 0). Then (S, + ) is a loop and (S\{0}, .) 
T T T T 

is a groupoid having the right unity and admitting the division from left; further 
a. 0 = 0 . a = 0 holds for all a e S. 

T T 

Proof. In fact, (S, + ) is a loop because of (2#) and (3*). Further a . 0 = 
T T 

= 0 . a = 0 holds by (3*) for 6 = 0. Finally, the required properties of 
T 

(£ \{0}, . ) follow by (4-) and (2-) for v = 0 and u 4= 0. 

(7) only a working term 
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Proposition 3.4. Let T = (S, r) be a ternary grupoid satisfying (3#) — (4*). 
Let the „linearity property" be fulfilled: (5#) r*(a,b, c) = a .b + c for all 

T T 

a,b, ce S. 

Then T is natural if and only if (S, + ) is a loop, (S\{0},.) is a grupoid 
X X 

with right unity and admitting the left division and RUl : x -> x . u±, RU2: x -> x . u% 
X T 

are distinct for u\ 4= u%. 
Proof . If T is natural then all three above condition may be readily verified. 

Conversely, from these conditions (2*) follows at once whereas (1*) is guaranteed 
by x . u\ + v = x . u% + v => x . u\ = x . u%. 

X X X X 

Proposition 3.5. Let (S, + ) be a loop with card S ^ 2. Then each naiural 

ternary groupoid T = (/S, r) with + = + and satisfying the linearity property 
X 

may be constructed as follows: Choose an injection f: S -> Ss such that SfW = {0}, 
that each f(a) : S -> S, a e S\{0} is a bisection and that f (I) : S -> S is the identity 
mapping. Define .by x . y = xf(y) for all x,y e S. The required ternary groupoid 
T = (S, r) is determined by . = . . 

T 

Proof . The properties (2*) to (4#) can be easily verified so that it suffices 
to investigate condition (1*). Since / is an injection, for u\ 4= u^ there is an 
element xe S with #/(«J) =f= rc/(«2) o x . u\ #= x . u<i and this is equivalent to 
x . u\ + v #= x . U2 + v so that (1#) must hold. Each natural ternary groupoid 
T with the linearity property satisfies all desired conditions by Proposition 3.4. 

Proposition 3.6. Let T = (S, r) be a natural parallel system. Then the linearity 
property is equivalent to the Desargues closure-condition in P(T) of Fig. 1 and 

(а,т*(а,и.г)) 

Ь,a+u) 

Fig. 1. 

(Qa+(b+e)) 
(a+Ь.(aţЬ) + c) 

(0,b) (b,b) 

Fig. 2. 

(aţb.a + b) 
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+ is associative exactly if the Reidemeister closure-condition in P(T) of Fig. 2 
T 

is fulfilled. The proof can be derived from Fig. 1—2. 

Proposition 3.7. Let T = (S, r) be a natural ternary groupoid. Then it satisfies 
the linearity condition and its additive grupoid (S, + ) is a group exactly if there 

X 

is a group of coordinate translations^) of P = P(T) acting transitively on y(0). 
Proof . First let T satisfy the linearity condition and let -f- be associative. 

T 

Then the mappings given by (x, y) -> (x, y -\- c), c £ S form the desired group 
T 

of coordinate translations. Conversely, if there is a group of coordinate trans
lations acting transitively upon y(0) then both closure-conditions of Fig. 1—2 
are valid in P so that T satisfies the linearity condition and the derived 
operation + is associative. 

T 

R e m a r k . If a natural parallel system satisfies the further condition that 
each couple of points p e y(0), q <£ y(0) is contained in precisely one line then 
we get a pseudo plane in the sense of Sandler.(9) By Proposition 3.5 natural 
parallel systems may easily be constructed different from pseudo planes. 
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