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Matematický časopis 19 (1969), No. 2 

ON THE NUMBER OF FORESTS^) 

FRANK HARARY, ED PALMER, Ann Arbor (U.S.A.) 

I n [4], Ore posed the following unsolved problem: ,,For n given vertices 
determine the total number of circuit free graphs with m edges." One of us [2] 
had already found a formula for the generating function which enumerates 
such graphs. I n this note we present a more explicit form of the result. For 
definitions we refer to [3, 4]. 

A circuit free graph is simply a forest, i. e. a graph in which each (connected) 
component is a tree. Let the counting polynomial for forests with p points be 

(i) /p(*) = 2 / M * , 
(7=0 

where fpq is the number of forests with p points and q lines. Then the generating 
function for forests is 

(2) f(x,y) = 2v*fp(x)-
p=l 

To derive formulas for fP(x) and/(a;, y), use is made of the counting series 
for trees: 

(3) t(y)=ftpyp, 

where tp is the number of trees with p points. Various expressions for tp and 
t(y) have been found by Cayley [1], Polya [6] and Otter [5], Here are the 
first ten terms: 

(4) t(y) = y + y2 + y3 + 2y* + 3y* + 6y« 
+ llyi + 23y8 + 47y9 + I06y10 + ... . 

The formula in [2] for f(x, y) is obtained by the appropriate application 
of Polya's theorem [6] and the following well known combinatorial identity 
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for any function g(x, y): 

00 00 

(5) 1 + y Z(Sn, g{x, y)) = exp y — g(x", yn). 

n=l n=l 

Thus we have the number of forests in terms of the number of trees in the 
form: 

00 00 

(6) 1 + f(x, */) = exp \ \ — (a*-iy*)n. 

n=l fc=l 

Using logarithms it is easily seen that this can also be expressed as 

(?) -+/(*,y) = n(i-**-Y)" f c. 
k=l 

"which resembles the form of C a y ley's solution [1] for the number of rooted 

trees. 

Now we give a formula for fP(x) expressed in terms of the numbers fa. 

Theorem. The counting polynomial for forests with p points is 

and the sum is over all partitions (j) of p. 

Proof . Using the familiar identity for combinations with repetition (see [7]), 

we find that the number of forests consisting of exactly jk trees, each of which 

has exactly k points, is the binomial coefficient: 

f + П 
Since each of these trees has k — 1 lines, we have 

(9) f-IUГҐ1) 
(?) k-1 

where the sum is over those partitions (j) = (ji,jz, "->jp) ofp such that 

(10) q = J (* - l)i* 
k=l 

ì i i 



The formula (8) for fp(%) may now be obtained by summing over all partition 

of-p. 

For example, using (4) and (8) one easily finds: 

fQ(x) = 1 + x + 2x* + 4x3 + 6z4 + 6z5. 

On multiplying equation (8) by yv and summing over ail positive integers p, 

one can obtain (6) or (7) by straightforward manipulation. 

We conclude by pointing out that the corresponding problem for directed 

graphs is unsolved. That is, a formula for the number of acyclic digraphs 

(containing no directed cycles) with a given number of points and lines has 

not been found. This problem appears to be more difficult. 
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