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1. Introduction

Let S be an infinite dimensional locally convex space with the finite open topology
τ0, let Ω be a pseudoconvex domain in the product space � × S and O be the sheaf

of germs of holomorphic functions over Ω. Let m be a positive integer and a(z, s) be
an m dimensional square matrix valued holomorphic function on Ω. We introduce

the sheaf homomorphism T : Om → Om by the differential operator

(1) T :=
d
dz

− a(z, s).

By the short exact sequence of sheaves

0 −→ KerT −→ Om T−→ Om −→ 0,

we have the long exact sequence of cohomology groups

. . . −→ H0(Ω,Om)
T−→ H0(Ω,Om) −→ H1(Ω,KerT ) −→ H1(Ω,Om) −→ . . . .

Since we have

(2) H1(Ω,Om) = 0
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by Dineen [6], we have the isomorphism

(3) H1(Ω,KerT) = H0(Ω,Om)/T (H0(Ω,Om)).

We seek a necessary condition and a sufficient condition that

(4) for any g ∈ H0(Ω,Om), there exist g ∈ H0(Ω,Om) with Tf = g.

By the isomorphism (3), the above condition (4) for global existence is equivalent

to the vanishing

(5) H1(Ω,KerT ) = 0

of the cohomology group of the first degree with coefficients in the sheaf KerT .
Let π : � × S → S be the canonical projection. For any (z, s) ∈ Ω, let Ω(z, s) be

the connected component of π−1(s) containing (z, s). We consider the set of cuts

(6) Ω̃ := {Ω(z, s) ; (z, s) ∈ Ω}

and induce in the set Ω̃ the strongest topology so that the canonical mapping

(7) ϕ : Ω→ Ω̃

is continuous. The topological space Ω̃ is a factor space of Ω and it is not necessarily

a Hausdorff space. Let ϕ̃ : Ω̃→ S be the canonical mapping with ϕ̃ ◦ ϕ = π.
For any finite dimensional � -linear subspaces L and M of S with L ⊂ M ,

any element of H0(π−1(L),Om) is holomorphically continued to an element of
H0(π−1(M),Om) by the theorem of Oka[15]-Cartan[1]-Sèrre[18] applied to the ana-
lytic subset π−1(L) of the Stein manifold π−1(M), and by induction, finally to an

element of H0(Ω,Om) holomorphic on the whole space Ω and the vanishing (5) is
valid for the analytic subset π−1(L), that is,

(8) H1(π−1(L),KerT ) = 0.

Especially, for any cut Ω(z, s), we have the vanishing

(9) H1(Ω(z, s),KerT ) = 0

of the cohomology group. Then, by Kajiwara [10], either

(10) Ω(z, s) is simply connected
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or

(11) Ω(z, s) is doubly connected and H0(Ω(z, s),KerT ) = 0.

Under the additional condition (A) besides (5), given at the beginning of Section

5, for the coefficient a(z, s), by the argument in Kajiwara-Mori [12], the space Ω̃ is
a Hausdorff space and, moreover, each cut Ω(z, s) is simultaneously either a simply

connected domain or a doubly connected domain with H0(Ω(z, s),KerT ) = 0.

In the former case, (Ω̃, ϕ̃) is a domain of holomorphy. In the latter case, each
inhomogeneous solution f of Tf = g is unique for any holomorphic g in any cut

Ω(z, s). Conversely, the above condition implies the validity of the condition (4).

Since the Levi problem has been affirmatively solved by Dineen [6] and Gruman
[8], the former condition is characterized by the local condition that each cut is

simply connected and (Ω̃, ϕ̃) is a pseudoconvex domain over S. In the latter case,
the above condition is also local.

Thus, we have characterized the global existence of holomorphic solutions of linear
differential equations Tf = g with the infinite dimensional parameter s ∈ S by the
conditions which are local concerning the parameter space S.

2. Connectivity

For the sake of brevity and clearness of explanations, in this section we discuss

exclusively the case without any parameter.

Let m be a positive integer and D be a domain in the complex plane � , let O

be the sheaf of germs of holomorphic functions over D and a(z) an m dimensional

square matrix valued holomorphic function on D. We define a sheaf homomorphism
T : Om → Om by the differential operator

(12) T :=
d
dz

− a(z).

By the Weierstrass theorem, the domain D is a domain of holomorphy and we

have

(13) H1(D,Om) = 0

by Oka [15]. Hence, by the isomorphism (3), the global existence

(14) H0(D,Om) = T (H0(D,Om))

689



of the non homogeneous differential equation (4) is equivalent to the vanishing

(15) H1(D,KerT) = 0

of cohomology with coefficients in the sheaf KerT of germs of holomorphic solutions

f of the homogeneous equation

(16) Tf = 0.

Theorem 1. The necessary and sufficient condition for (14) is that either D is
simply connected or D is a doubly connected domain with H0(D,KerT ) = 0.

�����. Assume that D were neither simply connected nor doubly connected.
There would exist subdomains Dr and D� of the domain D satisfying the following

conditions: (a) D = Dr ∪D�. (b) Each connected component of Dr ∩D� is simply
connected. (c) Dr ∩D� has at least three connected components ∆b, ∆m and so on.

We denote by ∆t �= ∅ the complement of the disjoint union ∆b ∪∆m with respect
to D.

We define an open covering

(17) U := {Dr, D�}

of the domain D. Let h(z) be a holomorphic solution of the homogeneous equation

(16) on the simply connected domain Dr. We define a homogeneous solution k(z)
of (16) on the open set Dr ∩ D� = ∆b ∪ ∆m ∪ ∆t by putting k := h on ∆b and

k := 0 on the open set ∆m ∪ ∆t and regard k ∈ H0(Dr ∩ D�,KerT ) as a cocycle
∈ Z1(U ,KerT ).

Since the canonical mapping

(18) H1(U ,KerT )→ H1(D,KerT )

is injective, by (3) the assumption (14) implies

(19) Z1(U ,KerT ) ∼= B1(U ,KerT ).

Hence there exist, respectively, holomorphic solutions hr and h� of the homoge-

neous equation (16) on the simply connected domains Dr and D� such that we have

(20) hr − h� = k
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on the intersection Dr ∩D� = ∆b ∪∆m ∪∆t. Especially, we have

(21) hr − h� = h

on ∆b, and

(22) hr − h� = 0

on ∆m ∪∆t.
Now, let zb and zm be, respectively, points of ∆b and ∆m. For each j ∈

{1, 2, . . . ,m}, let ej be the m-dimensional column vector whose j-th component
is 1 and whose k-th component is 0 except k = j. Let fj be the holomorphic solution
in the simply connected domain ∆b of the homogeneous equation (16) satisfying the

initial condition

(23) fj(zb) = ej

and its analytic continuation to the simply connected neighboring domain Dr. We

consider the m×m-matrix valued holomorphic function

(24) f(z) := (f1(z), f2(z), . . . , fm(z))

in the simply connected domain Dr.

Let b be anm-dimensional column vector. We define a holomorphic solution f(z)b,
defined by the rule of matrix multiplication, of the homogeneous equation (16) and

adopt it as a homogeneous solution h ∈ H0(∆b,KerT ) in (21), that is, h := fb.
Let γb and γm : [0, 1]→ D be closed simple smooth curves in D such that γb(0) =

γb(1) = zb ∈ ∆b, γb(12 ) = γm(0) = zm ∈ ∆m, γm(12 ) ∈ ∆t, γb(t) and γm(t) ∈ Dr

for t ∈ [0, 12 ], and γb(t) ∈ D�, γm(t) ∈ D� for t ∈ [12 , 1]. Let fj(γb(t)) be the
analytic continuation of the homogeneous solution fj of (16) along the closed curve
γb. Let cj,k be the j-th component of the m-dimensional column vector fk(γb(1)) for

j, k ∈ {1, 2, . . . ,m} and let c be the m×m matrix whose (j, k) entry is cj,k. In other
words, we put

(25) c :=

(
f1(γb(1)), f2(γb(1)), . . . , fm(γb(1))

)
.

Then we have

(26) f(γb(1)) = f(γb(0))c.
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Since f is the matrix (24) associated to the fundamental system of holomorphic

homogeneous solutions of (16), there exists an m-dimensional column vector a such
that we have

(27) hr(z) = f(z)a

in the simply connected domain Dr. Let hr(γb(t)) be the analytic continuation of

this hr along the closed curve γb. By (27) and (26), we have

(28) hr(γb(1)) = f(γb(1))a = f(γb(0))ca.

The relation (22) asserts that the holomorphic homogeneous solution h� given in
the simply connected domain D� is just the analytic continuation of the holomorphic

homogeneous solution hr given in the simply connected domain Dr along the closed
curve γb across the simply connected component ∆m of Dr ∩ D� to the simply

connected domain D�. Hence, by (27), (28) and the unicity of the initial value
problem, the relation (21) means

(29) f(z)a− f(z)ca = f(z)b

in the simply connected component ∆b of the intersection Dr ∩D�. Since the matrix
f(zb) is regular, we have

(30) a− ca = b,

which means that, for any m dimensional column vector b, there exists an m di-

mensional column vector a satisfying the above linear equation (30). So, the matrix
Identity− c is regular, that is,

(31) det(Identity− c) �= 0

and a is determined uniquely by

(32) a = (Identity− c)−1b.

Hence a �= 0 implies a− ac �= 0. So,

(33) no non trivial holomorphic homogeneous solution of (16)
is single valued along γb.
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Taking (22) into account, we repeat the same argument of analytic continuation

along the closed curve γm and arrive at the conclusion

(34) every holomorphic homogeneous solution of (16) is single valued along γm.

Since we can exchange the role of the subscripts b andm, the above two conclusions
(33) and (34) contradict each other.

Hence, the domain D is either simply or doubly connected.
In the latter case, (33) means that H0(D,KerT ) = 0. Moreover, let g be any

single valued m dimensional square matrix valued holomorphic function on the dou-
bly connected domain D. Let fr be a holomorphic solution of the inhomogeneous

equation Tfr = g on the simply connected domain Dr and let f� be the direct holo-
morphic continuation of fr to the simply connected domain D� across ∆m. The m

dimensional square matrix valued function h := −fr + f� is a holomorphic solution
in the simply connected domain ∆b of the homogeneous equation Th = 0. For this

h ∈ H0(Dr,KerT ), we take the homogeneous solution hr ∈ H0(Dr,KerT ) satisfying
(21) via the solution a given at (32) and revise the inhomogeneous solution fr on

Dr by fr + h. Then fr + h is the unique single valued holomorphic solution of the
inhomogeneous equation (4).

Thus we have proved that the domain D is either a simply connected domain or
a doubly connected domain with H0(D,KerT ) = 0. �

3. Cohomology vanishing and steinness of domains

Let (D,ψ) be a domain over � n , that is, letD be a Hausdorff space and ψ be a local
homeomorphism of D in �

n . Let L a hyperplane of � n , π : � n → L be the canonical

projection and let f be a holomorphic function on the analytic subset ψ−1(L) ⊂ D.
There exists a family U := {Uλ ; λ ∈ I} such that U covers ψ−1(L) and that, for

any λ ∈ Λ, the holomorphic function f on the analytic subset ψ−1(L) ⊂ D is locally
extended to a holomorphic function Fλ on the open set Uλ ⊂ D. We put

(35) U∞ := D − ψ−1(L), Λ := I ∪ {∞}, V := {Uµ ; µ ∈ Λ}.

Then V := {Uλ ; λ ∈ Λ} is an open covering of D. We may assume that

(36) L := {z = (z1, z2, . . . , zn) ∈ �
n ; z1 = 0}.

We define a 1-cocycle C := {kλ1λ2 ; λ1, λ2 ∈ Λ} ⊂ Z1(V ,O) by putting

(37) kλ1λ2 :=
Fλ2 − Fλ1
z1 ◦ ψ

(λ1, λ2 ∈ I), kλ1∞ :=
−Fλ1
z1 ◦ ψ

(λ1 ∈ I).
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Proposition 1. If the cocycle C ∈ Z1(U ,O) is a coboundary ∈ B1(U ,O), then

f is extended to a holomorphic function F on the ambient domain D.

�����. There exists a 0-cochain {gλ ; λ ∈ Λ} whose coboundary is the cocycle
C . We put

(38) F := −g∞z1 ◦ ψ

on the open set U∞ = D − ψ−1(L) and

(39) F := −gλz1 ◦ ψ + Fλ

on Uλ ⊂ D for λ ∈ I. Then F is a well defined holomorphic extension of f to D. �

Proposition 2. A Cousin-I domain (D,ψ) over � n is a domain of holomorphy if
and only if, for any hyperplane L in �

n , the open set (ψ−1(L), ψ
∣∣
ψ−1(L)

) is an open

set of holomorphy over L.

�����. Let x be an ideal boundary of the domain (D,ψ) over � n . There exists
a hyperplane L of � n such that x is also regarded as an ideal boundary of the open

set (ψ−1(L), ψ
∣∣
ψ−1
(L)) of holmorphy over L of a holomorphic function f on ψ−1(L).

As in the proof of the above proposition, we can prove the existence of a holomorphic

extension F of f to D. Since every ideal boundary of the domain (D,ψ) is an ideal
boundary of the envelope of holomorphy of the domain (D,ψ), (D,ψ) is a domain

of holomorphy. �

As a corollary, we have the following theorem:

Cartan-Behnke-Stein’s Theorem. Any Cousin-I domain over � 2 is a domain
of holomorphy.

4. The sum space
∑

�

For any positive integers p < q, we regard �
p as a � -linear subspace of � q by the

canonical inclusion

(40) �
p � (z1, z2, . . . , zp) �→ πp,q(z1, z2, . . . , zp) := (z1, z2, . . . , zp, 0, 0, . . . , 0) ∈ �

q .

Under the above inclusions, we consider the sum space

(41) S :=
∑

� :=
∞⋃

p=1

�
p .
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Let πp : � p → S be the canonical injection. In the sum space S we induce the

strongest topology between those so that each πp is continuous. We consider the
product space � × S and, for any positive integer p, let σp : � × �

p → � × S be the
canonical injection.

An open set Ω in the product space � × S is said to be pseudoconvex if, for any

positive integer p, the open set

(42) Ωp := σ−1p (Ω)

is a pseudoconvex open set in the finite dimensional space Cp+1. Similarly, a con-
tinuous function f on Ω is said to be holomorphic if, for any positive integer p, the

continuous function f ◦ σp is a holomorphic function in Ωp ⊂ �
p+1 .

Theorem 2. Under the assumption H1(Ω,KerT ) = 0, either all cuts Ω(z, s),
(z, s) ∈ Ω are simultaneously simply connected domains or all cuts Ω(z, s), (z, s) ∈ Ω
are simultaneously doubly connected domains with H0(Ω(z, s),KerT ) = 0.

�����. By Theorem 1, for any (z, s) ∈ Ω, the cut Ω(z, s) ⊂ � is either simply
connected or doubly connected. Assume that there exists a point (z0, s0) ∈ Ω such
that the cut Ω(z0, s0) is a doubly connected domain in the complex plane � . Let
γ0 be a closed curve which forms a homology base of the doubly connected cut

Ω(z0, s0). The curve γ0 is a compact set in the product space � × S. Since the
topology of the product space � × S is the strongest one so that each canonical

mapping σp : � × �
p → � × S is continuous, there exists a positive integer p0 such

that γ0 ⊂ � × �
p0 . Let (z, s) be any point of Ω and let γ be one of the closed curves

which forms a homology base of the cut Ω(z, s). There exists a positive integer p � p0
such that γ ⊂ � × �

p . By (8) applied to L = �
p ⊂ S for Ωp, we have

(43) H1(Ωp,KerT ) = 0.

By the finite dimensional results of Kajiwara-Mori [12], the cut Ω(z, s) is also a
doubly connected domain with H0(Ω(z, s),KerT ) = 0, which was to be proved. �
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5. Cohomology vanishing and separation of the topology

We continue to use the notation in Introduction and in the preceding section.

Moreover, we discuss in the present section the case that all cuts Ω(z, s), (z, s) ∈ Ω,
are simultaneously simply connected. We also present the following supplementary

assumption:
(A) There exist a holomorphic function b : S → � and a superdomain O of Ω such

that the coefficient a(z, s) is continued to a holomorphic function on O and that, for
any s ∈ S, (b(s), s) ∈ O, π−1(s) ∩O is a simply connected domain in � .

For each j ∈ {1, 2, . . . ,m}, let ej be the m-dimensional column vector whose j-th
component is 1 and whose k-th component is 0 except k = j. For any s ∈ S, let
hj(z, s) be the holomorphic solution in the simply connected domain π−1(s) ∩ O of
the homogeneous equation (16) satisfying the initial condition

(44) hj(b(s), s) = ej .

Then the m homogeneous solutions h1(z, s), h2(z, s), . . . , hm(z, s) form a funda-

mental system of homogeneous solutions in the simply connected domain π−1(s)∩O
and are holomorphic in the domain O as functions of variables z and s.

Let Ω̃ be the space of cuts, (z, s) running over Ω, and let ϕ̃ : Ω̃→ S be the mapping
defined canonically by

(45) Ω̃ � Ω(z, s) �→ s ∈ S.

The space Ω̃ of cuts is not necessarily a Hausdorff space and is not necessarily a

complex manifold. However, we can define holomorphic functions on an open subset
of D: A continuous function f in an open subset U of Ω̃ is said to be holomorphic

if, for any open subset V of U such that ϕ̃ maps V homeomorphically onto an open
subset W of S, the function f ◦ (ϕ̃

∣∣
V
)−1 is holomorphic in W . Let Õ be the sheaf of

germs of holomorphic functions over Ω̃.

Proposition 3. Under the assumption that H1(Ω,KerT ) = 0 and the assumption
(A), if all cuts Ω(z, s), (z, s) ∈ Ω are simply connected, then Ω̃ is a Hausdorff space.

�����. Let x1 and x2 be two different points of Ω̃. We may assume that
ϕ̃(x1) = ϕ̃(x2) which we denote by s0. There exist open neighborhoods U1 and

U2, respectively, of x1 and x2 in Ω̃ and an open neighborhood V of s0 in S such
that ϕ̃ maps U1 and U2 homeomorphically onto V . By definition of the sum space

S, there exists a positive integer p such that s0 ∈ �
p ⊂ S. For this integer p, we

consider the subspace Ω̃p := ϕ̃−1(� p ) of Ω̃. Since we have H1(Ωp,KerT ) = 0, by
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Lemma 9 of Kajiwara-Mori [12], the space Ω̃p is a Hausdorff space. Hence, there

exists an open neighborhood W1,p ⊂ U1 and W2,p ⊂ U2 in Ω̃p, respectively, of x1
and x2 such that ϕ̃ maps W1,p and W2,p homeomorphically on an open neighbor-
hood Pp of s0 in �

p and that W1,p ∩ W2,p = ∅. We consider the open neighbor-
hood P := {(z1, z2, . . . , zp, zp+1, zp+2, zp+3, . . .) ∈ S ; (z1, z2, . . . , zp) ∈ Pp} and open
neighborhoods W1 := U1 ∩ ϕ̃−1(P ) and W2 := U2 ∩ ϕ̃−1(P ), respectively, of x1 and
x2 in the space Ω̃. Then we have W1 ∩W2 = ∅, which was to be proved. �

6. Cohomology vanishing and pseudoconvexity

Proposition 4. Under the assumption H1(Ω,KerT ) = 0, for a point (z0, s0) ∈ Ω,
if a cut Ω(z0, s0) is simply connected, then every cut Ω(z, s) is simply connected.

Moreover, under the supplementary condition (A), (Ω̃, ϕ̃) is a pseudoconvex domain
over S.

�����. Since Ω̃ is a Hausdorff space by Proposition 3, the pair (Ω̃, ϕ̃) is a
domain over the locally convex space S with the finite open topology and we can

apply the theory of pseudoconvex domains by Noverraz [14].
Let p be a positive integer. We put Ω̃p := ϕ̃−1(� p ). Then (Ω̃p, ϕ̃

∣∣
Ω̃p
) is an open

set over � p . Let Ũ := {Ũλ ; λ ∈ Λ} be a Stein covering of Ω̃p and let F̃ := {f̃λµ ;
λ ∈ Λ} be a cocycle ∈ Z1(Ũ , Õ), represented by an m dimensional column vector.
We consider the Stein covering U := {Uλ ; λ ∈ Λ}, where Uλ := ϕ−1(Ũλ), λ ∈
Λ. We use homogeneous holomorphic solutions defined by (44) and put h(z, s) :=
(h1(z, s), h2(z, s), . . . , hm(z, s)). Then {h(z, s)f̃λµ(Ω(z, s)) ; λ ∈ Λ} is a 1-cocycle
∈ Z1(U ,KerT ). Since the canonical mapping

(46) Z1(U ,KerT )/B1(U ,KerT ) = H1(U ,KerT )→ H1(Ωp,KerT )

is injective and since its right hand side vanishes by (8), {h(z, s)f̃λµ(Ω(z, s);λ ∈ Λ} ∈
B1(U ,KerT ) and it is the coboundary of a 0 cochain {fλ ; λ ∈ Λ} ∈ Z0(U ,KerT ).

Since h(z, s) is a fundamental system of homogeneous solutions, there exists
{f̃λ(Ω(z, s)) ∈ C0(Ũ , Õm) ; λ ∈ Λ} whose coboundary is the above 1 cocycle of
Z1(Ũ , Õm). Thus we have proved

(47) H1(Ω̃p, Õ) = 0.

By (47), each (Ω̃p+1, ϕ̃
∣∣
Ω̃p+1
) is a Cousin-I domain over Cp+1. Hence, by induction

with respect to p and Proposition 2, (Ω̃p, ϕ̃
∣∣
Ω̃p
) is a pseudoconvex domain over � p

for any positive integer p, which was to be proved. �
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Theorem 3. Under the assumption that every cut Ω(z, s) is simply connected
and under the assumption (A), if (Ω̃, ϕ̃) is a pseudoconvex domain over S, then we
have H0(Ω,Om) = TH0(Ω,Om).

�����. Let g be an element of H0(Ω,Om). Since the topology τ0 is finite open,
it suffices to prove the following proposition (Q)p with respect to positive integers

p: (Q)p There exists a sequence {fq ; q = 1, 2, . . . , p} of holomorphic homogeneous
solutions fq of Tfq = g on Ωq = ϕ−1(� q ) such that fq+1 is a holomorphic extension

of the preceding fq for q = 1, 2, . . . , p− 1 to the higher dimensional Ωq+1.
We assume (Q)p. By the results of Kajiwara-Mori [12], for the finite dimensional

�
p+1 there exists a holomorphic inhomogeneous solution hp+1 of Thq+1 = g on Ωp+1.

Then hp+1
∣∣
Ωp
− hp ∈ H0(Ωp,KerT ). There exist k1, k2, . . . , km ∈ H0(Ω̃p, Õ) such

that

(48) hp − hp+1
∣∣
Ωp
=

m∑

ν=1

kν(Ω(z, s))hν(z, s).

By Oka[15]-Cartan[1]-Sèrre[18]’s theorem, each holomorphic function kν(Ω(z, s))

on the open subset Ω̃p of the Stein manifold Ω̃p+1 is extended to a holomorphic
functionKν(Ω(z, s)) on Ω̃p+1. We revise the inhomogeneous solution hp+1 and adopt

the inhomogeneous solution

(49) fp+1 = hp+1
∣∣
Ωp
+

m∑

ν=1

Kν(Ω(z, s))hν(z, s)

instead of hp+1. Then fp+1 is an inhomogeneous solution of Tfp+1 = g and it is

the desired extension of the inhomogeneous solution fp to Ωp+1, which was to be
proved. �

6. Main theorem

Main Theorem. Let m be a positive integer, S be the sum space (41), Ω be a
pseudoconvex domain in the product space � × S, let a(z, s) be an m-dimensional
square matrix valued holomorphic function on Ω and T the differential operator
defined by (1). If the condition (4) of global existence for the equation Tf = g

is fulfilled, then all cuts Ω(z, s) are either simultaneously simply connected do-
mains for all points (z, s) ∈ Ω or simultaneously doubly connected domains with
H0(Ω(z, s),KerT) = 0 for all points (z, s) ∈ Ω.
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Under the supplementary condition (A), if a cut is simply connected, the necessary

and sufficient condition for the global existence (4) is that the cut space Ω̃ defined
by (6) is a Hausdorff space and that (Ω̃, ϕ̃) is a pseudoconvex domain over S.

If a cut is doubly connected, the necessary and sufficient condition for the

global existence is that every cut Ω(z, s) is a doubly connected domain with

H0(Ω(z, s),KerT ) = 0 and that the cut space Ω̃ defined by (6) is a Hausdorff
space.

�����. We have already discussed the case that every cut is simply connected.
We can treat similarly the case that every cut is doubly connected, making use of

arguments in Kajiwara-Mori [12] and Kajiwara-Shon [13] given in the finite dimen-
sional case. The key of the proof is based on (32) and (33). �
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