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Abstract. It is proved that a Köthe sequence space is weakly orthogonal if and only if it
is order continuous. Criteria for weak property (β) in Orlicz sequence spaces in the case of
the Luxemburg norm as well as the Orlicz norm are given.
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1. Introduction

Let (X, ‖·‖) be a real Banach space and B(X) (S(X)) the closed unit ball (the

unit sphere) of X , respectively. For any subset A of X , by conv(A) (conv(A)) we
denote the convex hull (the closed convex hull) of A. Denote by � and � the sets of

natural and real numbers, respectively.

Rolewicz [18] introduced the notion of property (β), which can be formulated

equivalently as follows:

for every ε > 0 there exists δ ∈ (0, 1) such that for each element x ∈ B(X) and

each sequence (xn) in B(X) with sep(xn) � ε there is an index k for which

∥∥∥∥
x+ xk

2

∥∥∥∥ � 1− δ,

where sep(xn) = inf {‖xn − xm‖ : n �= m} (see [12]).

1 Supported by Chinese National Science Foundation Grant.
2 Supported by KBN Grant 2 P03A 031 10.
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We say that a Banach space X has the weak property (β) if there is a number

δ > 0 such that for any x ∈ S(X) and any weakly null sequence (xn) in B(X) there
exists k ∈ � such that ∥∥∥∥

x+ xk

2

∥∥∥∥ � 1− δ.

Let us say that a Banach space X has the weak Banach-Saks property whenever,

given (xn) in X such that xn → 0 weakly, there exists a subsequence (xnk
) of (xn)

such that
j∑

k=1

xnk

j
−→ 0

in norm.

A Banach space X is said to be weakly orthogonal if every weakly null sequence
(xn) in X satisfies

lim
n→∞

∣∣‖xn + x‖ − ‖xn − x‖
∣∣ = 0

for any x ∈ S(X).

Recall that the characteristic of convexity is the infimum of those ε ∈ (0, 2] that
δX(ε) > 0. Here δX(ε) denotes the modulus of convexity of X (see [2] and [14]).

Falset [3] showed that if X is weakly orthogonal and its characteristic of convexity
is strongly less than 2 (i.e. X is uniformly nonsquare), then X has the fixed point

property.

Kottman [10] defined for any Banach space X its packing constant Λ(X) by

Λ(X) = sup

{
r > 0: ∃(xn) ⊂ B(X) s.t. ‖xm − xn‖ � 2r for m �= n

and
∞⋃

n=1

BX(xn, r) ⊂ B(X)

}

under the convention sup {∅} = 0, where BX(xn, r) = {y ∈ X : ‖xn − y‖ � r} . He
also showed that

Λ(X) =
D(X)
2 +D(X)

,

where

D(X) = sup
(xn)⊂S(X)

inf
m �=n

‖xm − xn‖ .

Let l0 be the space of all real sequences. A Banach space (X, ‖·‖) is said to be a
Köthe sequence space (or a Banach sequence lattice) if X is a subspace of l0 that
contains an element x with x(i) �= 0 for all i ∈ � and it is an ideal, i.e. if x ∈ X ,
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y ∈ l0 and |y(i)| � |x(i)| for every i ∈ �, then y ∈ X and ‖y‖ � ‖x‖ (see [9] and
[14]).

Recall that an element x of a Köthe sequence spaceX is said to be order continuous

if for any sequence (xn) in X such that 0↙ xn � |x|, we have ‖xn‖ → 0.
It is easy to see that an element x of a Köthe sequence space X is order continuous

iff

τ(x) = lim
n→∞

∥∥∥∥
∞∑

i=n

x(i)ei

∥∥∥∥ = 0.

Denote by Xa the set of all order continuous elements of X . If X = Xa, we say that
X is order continuous (OC for short), (see [9] and [14]).

A Köthe sequence space X is said to be semi-order continuous (SOC for short)
if for any sequence (xn) and x in X we have ‖xn‖ ↗ ‖x‖ whenever 0 � xn ↗ x.

It is well known that every linear continuous functional f over a Köthe sequence
space X can be uniquely decomposed into the form f = g + ϕ, where g = (g(i))

belongs to the Köthe dual X ′ of X, it is identified with the linear functional defined
by

〈x, g〉 =
∞∑

i=1

g(i)x(i)

for every x ∈ X , and ϕ is a linear singular functional, i.e. ϕ vanishes on Xa (see [9]).

A map Φ: � → [0,∞) is said to be an Orlicz function if Φ is vanishing only at 0,
even and convex. We say an Orlicz function Φ is an N -function if

lim
u→0
Φ(u)

u
= 0 and lim

u→∞
Φ(u)

u
=∞.

The Orlicz sequence space lΦ is defined by the formula

lΦ =

{
x ∈ l0 : IΦ(cx) =

∞∑

i=1

Φ(cx(i)) < ∞ for some c > 0

}
.

We endow this space with the Luxemburg norm

‖x‖ = inf
{
ε > 0: IΦ

(x

ε

)
� 1

}

or with an equivalent one

‖x‖0 = infk>0

1
k
(1 + IΦ(kx)) ,

called the Orlicz norm or the Amemiya norm.
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To simplify notation, we put lΦ = (lΦ, ‖·‖) and l0Φ =
(
l0Φ, ‖·‖0

)
. For every Orlicz

function Φ we define a function Ψ: � −→ [0,∞), complementary to Φ in the sense
of Young, by the formula

Ψ (v) = sup
u>0

{u |v| − Φ (u)} .

It is well known that Ψ is also an Orlicz function whenever Φ is an N -function.

We say an Orlicz function Φ satisfies the δ2-condition (Φ ∈ δ2 for short) if there
exist constants k � 2 and u0 > 0 such that

Φ (2u) � kΦ (u)

for every u ∈ � with |u| � u0.

For more details on Orlicz functions and Orlicz spaces we refer to [1], [11], [15],

[16] and [17].

2. Results

We begin with some general results.

Theorem 1. A Köthe sequence space X is weakly orthogonal if and only if it is

order continuous.

�����. Necessity. If X is not order continuous, then Xa is a closed proper
subspace of X. By Riesz’s Lemma, for any θ ∈ (0, 1) there is xθ ∈ S(X) such that

‖xθ − x‖ � θ for any x ∈ Xa. Take a sequence (ni) of natural numbers such that
ni ↑ ∞ and ∥∥∥∥

ni+1∑

j=ni+1

xθ(j)ej

∥∥∥∥ �
(
1− 1

i

)
θ,

where θ ∈ (23 , 1). Then, setting

xi =
ni+1∑

j=ni+1

xθ(j)ej

for i = 1, 2, . . ., we immediately get

(1)

(
1− 1

i

)
θ � ‖xi‖ � 1

for i = 1, 2, . . . Moreover,

(2) xi → 0 weakly as i →∞.

306



Really, it is easy to see that for any f = g + ϕ ∈ X∗ with g ∈ X ′ (the Köthe dual

of X) and ϕ ∈ (Xa)⊥, we have 〈xi, f〉 = 〈xi, g〉 . Since
∞∑

j=1
xθ(j)g(j) < ∞, we get

〈xi, g〉 =
ni+1∑

j=ni+1

xθ(j)g(j)→ 0 as i →∞.

Moreover, by (1) we have

‖xθ + xi‖ � 2 ‖xi‖ � 2
(
1− 1

i

)
θ

for i = 1, 2, . . . . However, ‖xθ − xi‖ � 1, so by

2

(
1− 1

i

)
θ >
4
3

(
1− 1

i

)
−→ 4

3

we have

lim
i→∞

|‖xθ + xi‖ − ‖xθ − xi‖| �
1
3
,

i.e. X is not weakly orthogonal.

Sufficiency. For any ε > 0, any x ∈ S(X) and any weakly null sequence (xn) in

X , there are i0 and n0 ∈ � such that

∥∥∥∥
∞∑

i=i0+1

x(i)ei

∥∥∥∥ <
ε

4
and

∥∥∥∥
i0∑

i=1

xn(i)ei

∥∥∥∥ <
ε

4

for n � n0. Put

xn =
i0∑

i=1

x(i)ei +
∞∑

i=i0+1

xn(i)ei and yn =
i0∑

i=1

x(i)ei −
∞∑

i=i0+1

xn(i)ei

for n = 1, 2, . . . Then ‖xn‖ = ‖yn‖ for every n ∈ � and

‖(x+ xn)− xn‖ =
∥∥∥∥

i0∑

i=1

xn(i)ei +
∞∑

i=i0+1

x(i)ei

∥∥∥∥

�
∥∥∥∥

i0∑

i=1

xn(i)ei

∥∥∥∥+
∥∥∥∥

∞∑

i=i0+1

x(i)ei

∥∥∥∥ � ε

4
+

ε

4
=

ε

2
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for n � n0. Moreover,

‖(x − xn)− yn‖ =
∥∥∥∥

∞∑

i=i0+1

x(i)ei −
i0∑

i=1

xn(i)ei

∥∥∥∥

�
∥∥∥∥

i0∑

i=1

xn(i)ei

∥∥∥∥+
∥∥∥∥

∞∑

i=i0+1

x(i)ei

∥∥∥∥ � ε

4
+

ε

4
=

ε

2

for n � n0. Hence, we have

|‖x+ xn‖ − ‖x− xn‖| = |‖x+ xn‖ − ‖xn‖+ ‖x− xn‖ − ‖yn‖|
� |‖x+ xn‖ − ‖xn‖|+ |‖x− xn‖ − ‖yn‖|
� ε

2
+

ε

2
= ε

for n � n0. This means that lim
n→∞

|‖x+ xn‖ − ‖x− xn‖| = 0. �

Corollary 1. Orlicz sequence spaces lΦ equipped with the Luxemburg norm or

with the Orlicz norm are weakly orthogonal if and only if Φ ∈ δ2.

�����. Since OC of lΦ and l0Φ is equivalent to Φ ∈ δ2, the corollary follows
immediately by Theorem 1. �

Theorem 2. Any Banach lattice that is SOC and has the weak property (β) is
OC.

�����. Assume to the contrary that X is not OC. Then X contains an almost
isometric order copy of l∞ (see [7]). Therefore, we only need to notice that l∞ has

not the weak property (β). Indeed, define

x = (1, . . . , 1, . . .) and xn = (0, . . . , 0, 1, 0, . . .).

Obviously,

‖x‖ = ‖xn‖ =
∥∥∥∥
1
2
(x+ xn)

∥∥∥∥ = 1

for any n ∈ �. So we only need to show that xn → 0 weakly. Since
k∑

n=1
xn � x for

every k ∈ �, we get for any positive x∗ ∈ (l∞)∗,
k∑

n=1

〈
xn, x∗

〉
=

〈 k∑

n=1

xn, x∗
〉

�
〈
x, x∗

〉
< ∞.

Consequently, 〈xn, x∗〉 → 0 as n → ∞. Since any x∗ ∈ (l∞)∗ is a difference of two
positive linear continuous functionals, we get that xn → 0 weakly. �
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Corollary 2. Each Köthe sequence space with the weak property (β) is weakly
orthogonal.

�����. This follows by the fact that the weak property (β) implies OC and by
Theorem 1. �

Proposition 1. If Φ ∈ δ2, then for each ε > 0, each x ∈ S(lΦ) and each weakly

null sequence (xn) in B(lΦ) there is n0 ∈ � such that

‖x+ xn‖ < D(lΦ) + ε for n � n0,

where

D(lΦ) = sup

{
cz > 0:

n∑

i=1

Φ

(
z(i)
cz

)
=
1
2
,

n∑

i=1

Φ(z(i)) = 1, n = 1, 2, . . .

}
.

�����. By Φ ∈ δ2, for any ε > 0 there is δ > 0 such that

|IΦ(x + y)− IΦ(x)| < ε,

whenever IΦ(x) � 1 and IΦ(y) � δ (see [8]).

It is clear that IΦ

(
x

D(lΦ)+ε

)
< 1
2 for any x ∈ S(lΦ) and any ε > 0. So, there is

ε1 > 0 such that

IΦ

(
x

D(lΦ) + ε

)
+ 2ε1 <

1
2
.

Next, there is δ1 > 0 such that

|IΦ(x + y)− IΦ(x)| < ε1

whenever IΦ(x) � 1 and IΦ(y) � δ1. By Φ ∈ δ2, there is i0 ∈ � such that

∞∑

i=i0+1

Φ

(
x(i)

D(lΦ) + ε

)
< δ1.

Since xn → 0 weakly, so xn → 0 coordinatewise, whence there is n0 ∈ � such that

i0∑

i=1

Φ

(
xn(i)

D(lΦ) + ε

)
< δ1 for n � n0.
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Hence

IΦ

(
x+ xn

D(lΦ) + ε

)
=

∞∑

i=1

Φ

(
x(i) + xn(i)
D(lΦ) + ε

)

=
i0∑

i=1

Φ

(
x(i) + xn(i)
D(lΦ) + ε

)
+

∞∑

i=i0+1

Φ

(
x(i) + xn(i)
D(lΦ) + ε

)

<

i0∑

i=1

Φ

(
x(i)

D(lΦ) + ε

)
+ 2ε1 +

∞∑

i=i0+1

Φ

(
xn(i)

D(lΦ) + ε

)
<
1
2
+
1
2
= 1

for n � n0. Thus, ‖x+ xn‖ <D(lΦ) + ε for n � n0. �

Remark 1. We do not know whether or not Proposition 1 can be formulated
with ε = 0. It is clear that if cx < D(lΦ), we can put ε = 0.

Define for any Orlicz function Φ

p(Φ) = sup

{
λ � 1: Φ

( u

21/λ

)
� 1
2
Φ(u), 0 < u � Φ−1(1)

}
.

Then Ψ ∈ δ2 if and only if p > 1 (see [5]).

Theorem 3. If Φ is an N -function, then lΦ has the weak property (β) if and only
if Φ ∈ δ2 and Ψ ∈ δ2.

�����. Sufficiency. Since Ψ ∈ δ2, we get p := p(Φ) > 1. Take λ ∈ (0, p). Then
for any x ∈ S(lΦ), we have

IΦ

( x

21/λ

)
=

∞∑

i=1

Φ

(
x(i)
21/λ

)
� 1
2

∞∑

i=1

Φ(x(i)) =
1
2
.

Hence, D(lΦ) � 2 1p < 2. In virtue of Proposition 1 with ε > 0 so small that
D(lΦ) + ε < 2, we get that lΦ has the weak property (β).

Necessity. By Corollaries 1 and 2, we only need to prove that Ψ ∈ δ2. If Ψ/∈ δ2,
there is a sequence un ↘ 0 such that

Φ
(un

2

)
� 1
2

(
1− 1
2n

)
Φ(un)

for n = 1, 2, . . . Passing to a subsequence of (un) if necessary, we may assume that

there is a sequence (Nn) of natural numbers such that

(
1− 1
2n

)
� NnΦ(un) � 1
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for n = 1, 2, . . . Put

x1,n = (
Nn︷ ︸︸ ︷

un, un, . . . , un, 0, 0, . . .),

x2,n = (

Nn︷ ︸︸ ︷
0, 0, . . . , 0,

Nn︷ ︸︸ ︷
un, un, . . . , un, 0, 0, . . .),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xm,n = (

(m−1)Nn︷ ︸︸ ︷
0, 0, . . . , 0,

Nn︷ ︸︸ ︷
un, un, . . . , un, 0, 0, . . .).

Then we can easily prove that

(
1− 1
2m

)
� ‖xm,n‖ � 1

for m = 1, 2, . . . Moreover, xm,n → 0 weakly as m →∞.

In fact, we can assume by Corollaries 1 and 2 that Φ ∈ δ2, whence it follows that

(l0Φ)
∗ = lΨ. Let y ∈ lΨ and λ0 > 0 be such that IΨ(λ0y) < ∞. Take any ε > 0. Since

IΦ(λxm,n) = IΦ(λx1,n) for every λ > 0 and m ∈ �, by (Φ(u) /u) → 0 as u → 0, a
positive number λ1 can be found such that

1
λ0λ1

IΦ(λ1xm,n) <
ε

2

for all m ∈ �. Let m0 ∈ � be such that

1
λ0λ1

IΨ

(
λ0

∑

i>(m−1)Nn

yiei

)
<

ε

2

for m � m0. Then by the Young inequality,

〈xm,n, y〉 � 1
λ0λ1

(
IΦ(λ1xm,n) + IΨ

(
λ0

∑

i>(m−1)Nn

yiei

))
< ε

for m � m0. This shows that xm,n → 0 weakly as m →∞ for n = 1, 2, . . .
We also have

IΦ

(
2n(x1,n + xm,n)
2n+1 − 2

)
= 2IΦ

(
2nx1,n
2n+1 − 2

)

� 2 2
n

2n − 1IΦ
(x1,n
2

)
=
2n+1

2n − 1NnΦ
(un

2

)

� 2n+1

2n − 1 ·
1
2

(
1− 1
2n

)
NnΦ(un) � 1−

1
2n

.
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Hence

‖x1,n + xm,n‖ � 2
(
1− 1
2n

)2
,

which means that lΦ has not the weak property (β). This shows the necessity of

Ψ ∈ δ2, which completes the proof. �

Theorem 4. If Φ is an N -function, then l0Φ has the weak property (β) if and only
if Φ ∈ δ2 and Ψ ∈ δ2.

�����. Necessity. By Corollaries 1 and 2, we have Φ ∈ δ2. So it is enough
to prove the necessity of Ψ ∈ δ2. Assume to the contrary that Ψ /∈ δ2. Since every

non-reflexive Banach sequence lattice has the packing constant equal to 12 (see [6]),
we have D(l0Φ) = 2, where D(l0Φ) is the constant that defines Λ(l

0
Φ). It is known that

D(l0Φ) = sup

{
inf

{
cx,k > 0: IΦ

(
kx

cx,k

)
=

k − 1
2

, k > 1

}
: x ∈ S(l0Φ)

}

(see [19] and [20]). For any ε > 0 there is x0 ∈ S(l0Φ) such that

inf

{
cx0,k > 0: IΦ

(
kx0
cx0,k

)
=

k − 1
2

, k > 1

}
> D(l0Φ)− ε.

So, for any k > 1 we have

cx0,k > D(l0Φ)− ε if IΦ

(
kx0
cx0,k

)
=

k − 1
2

.

Take a sequence (�i) of subsets of � such that Card(�i ) = ∞ (i = 1, 2, . . .),

�k ∩ �m = ∅ for k �= m, inf Ni → ∞ as i → ∞ and
∞⋃

i=1
�i = �. Let �i =

{
ji
1, j

i
2, . . . , j

i
k, . . .

}
. Define

xi =
∞∑

k=1

x0(k)eji
k

for i = 1, 2, . . . Then it is obvious that ‖xi‖0 = ‖x0‖0 = 1 for i = 1, 2, . . . Moreover,
xi → 0 weakly as i →∞.

Really, for any fixed y ∈ lΨ and ε > 0, a positive number λ0 can be found such
that IΨ(λ0y) < ∞. By the condition (Φ(u) /u ) → 0 as u → 0, there is λ1 > 0 such
that

1
λ0λ1

IΦ(λ1x0) <
ε

2
.

312



Since inf (suppxi) � inf ji
k →∞ as i →∞ and IΦ(λxi) = IΦ(λx0) for all i ∈ � and

λ > 0, there is i0 such that

1
λ0λ1

IΨ (λ0y χsupp xi) <
ε

2

for each i � i0. Hence

〈xi, y〉 =
∞∑

k=1

xi(k)y(k)

� 1
λ0λ1

(
IΦ(λ1xi) +

1
λ0λ1

IΨ (λ0y χsuppxi)

)
<

ε

2
+

ε

2
= ε,

i.e. xi → 0 weakly as i →∞.

Take any ε ∈ (0, 1). Since Φ is an N -function, for each i ∈ � there is ki > 1 such

that (see [4])

∥∥∥∥
x0 + xi

D(l0Φ)− ε

∥∥∥∥
0

=
1
ki

(
1 + IΦ

(
ki(x0 + xi)
D(l0Φ)− ε

))

=
1
ki

(
1 + 2IΦ

(
kix0

D(l0Φ)− ε

))
� 1

ki

(
1 + 2IΦ

(
kix0
cx0,ki

))
= 1.

This means that

‖x0 + xi‖0 � D(l0Φ)− ε = 2− ε

for i = 1, 2, . . ., whence it follows that l0Φ has not the weak property (β), completing

the proof of necessity of Ψ∈ δ2 for the weak property (β).
Sufficiency. For any x ∈ S(l0Φ) there is kx > 1 such that

‖x‖0 =
1
kx
(1 + IΦ(kxx)) .

Since Ψ ∈ δ2, the number M = sup{kx : x ∈ S(l0Φ)} is finite (see [1]). Put
m = inf{kx : x ∈ S(l0Φ)}. Then m > 1. Indeed, if this is not true, there are a
sequence (xn) in S(l0Φ) and a sequence (kn) of positive reals such that kn → 1 as
n → ∞ and 1

kn
(1 + IΦ(knxn)) = ‖xn‖0 = 1, whence 1 + IΦ(knxn) → 1 and conse-

quently lim
n→∞

IΦ(knxn) = 0. In virtue of Φ ∈ δ2, this means that lim
n→∞

‖knxn‖0 = 0,
i.e. lim

n→∞
‖xn‖0 = 0 because kn → 1, a contradiction.

Using again the fact Ψ ∈ δ2, we can conclude (see [4]) that there is θ ∈ (0, 1) such
that

(3) Φ(λu) � (1− θ)λΦ(u) whenever λ ∈
[
0,
M
M+ 1

]
and |u| �MΦ−1(1).
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Since Φ ∈ δ2, for any ε ∈
(
0, θ(m−1)

2M2

)
and k > 0 there is δ > 0 such that ε < θ(m−1−δ)

2M2

and |IΦ(x+ y)− IΦ(x)| < ε whenever IΦ(x) � k and IΦ(y) � δ (see [8]).

Next, we will show that for such x, y and δ > 0 we have

(4) IΦ(x+ ty) < IΦ(x) + tε

for any t ∈ [0, 1].

Indeed,

IΦ(x+ ty) = IΦ(t(x + y) + (1 − t)x) � tIΦ(x + y) + (1− t)IΦ(x)

� t(IΦ(x) + ε) + (1− t)IΦ(x) = IΦ(x) + tε.

For any x0 ∈ S(l0Φ) and any weakly null sequence (xn) in S(l0Φ), there is a sequence

(kn) with kn > 1 for n = 0, 1, 2, . . . such that

(5) ‖xn‖0 =
1
kn
(1 + IΦ(knxn))

for n = 0, 1, 2, . . . Take i0 ∈ � such that

(6)
∞∑

i=i0+1

Φ(k0x0(i)) < δ.

Since xn(i)→ 0 (i = 1, 2, . . .) as n →∞, there is n0 ∈ � such that

i0∑

i=1

Φ(knxn(i)) < δ
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for n � n0. Therefore, since k0/(k0 + kn) � M/(M + 1) and |x0(i)| � Φ−1(1) for
each i ∈ �, in virtue of (3), (4), (5) and (6) we get

‖x0 + xn‖0 � k0 + kn

k0kn

(
1 + IΦ

(
k0kn

k0 + kn
(x0 + xn)

))

=
k0 + kn

k0kn

(
1 +

i0∑

i=1

Φ

(
k0kn

k0 + kn
(x0(i) + xn(i))

)

+
∞∑

i=i0+1

Φ

(
k0kn

k0 + kn
(x0(i) + xn(i))

))

� k0 + kn

k0kn

(
1 +

i0∑

i=1

Φ

(
k0kn

k0 + kn
x0(i)

)
+

k0
k0 + kn

ε

+
∞∑

i=i0+1

Φ

(
k0kn

k0 + kn
xn(i))

)
+

kn

k0 + kn
ε

)

� k0 + kn

k0kn

(
1 +

kn

k0 + kn

i0∑

i=1

Φ

(
k0x0(i)

)

+
k0

k0 + kn
(1− θ)

∞∑

i=i0+1

Φ

(
knxn(i))

)
+ ε

)

� 1
k0

(
1 +

i0∑

i=1

Φ (k0x0(i))

)
+
1
kn

(
1 +

∞∑

i=i0+1

Φ

(
knxn(i))

))

− θ

M

∞∑

i=i0+1

Φ (knxn(i))) + 2Mε

� 1 + 1− θ(m − 1− δ)/M+ 2Mε =: σ < 2

for n � n0. Since σ depends neither on x0 nor on the sequence (xn), the proof of the
theorem is complete. �

Remark 2. Theorem 3 (resp. Theorem 4) states that lΦ (resp. l0Φ) has the
weak property (β) iff it is reflexive. On the other hand, by the fact that l1 has the

Schur property, we can conclude that l1 has the weak property (β). Therefore the
assumption that Φ is an N -function is essential in these theorems. Another example

of a non-reflexive Köthe sequence space with the weak property (β) is the space c0.

Since the property (β) implies reflexivity (see [18]), these examples show that the

weak property (β) does not imply the property (β).
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