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GEOMETRIC PROPERTIES OF A SEQUENCE OF STANDARD

MINIMAL IMMERSIONS BETWEEN SPHERES

Ida Cattaneo Gasparini, Roma

(Received September 30, 1996)

Introduction

In the theory of minimal isometric immersions of Riemannian manifolds, minimal
immersions into spheres have particular interest.

Takahashi in [T ]proved that if ϕ is an isometric immersion of a compact Rie-
mannian manifold (M, g) of dimension n into �m+1 , such that all the components

of ϕ are eigenfunctions of the Laplace-Beltrami operator ∆ on (M, g) corresponding
to the same eigenvalue λ, then ϕ(M) is contained in a sphere Sm(r) ⊂ �

m+1 with

radius r =
√

n/λ and is minimal in Sm(r). The manifolds M which admit such
immersions are the irreducible Riemannian homogeneous spaces, namely those in

which the isotropy group of a point acts irreducibly on the tangent space.

One then has, for these manifolds, an explicit method for building up minimal
immersions into spheres: any orthonormal basis of the eigenspace Vλk

of dimension

mk associated to the eigenvalue λk for each integer k � 1, such that the multiplicity
of λk is sufficiently high in order to provide the coordinate functions of the immersion,

gives rise to a minimal isometric immersion ϕn,k of M into a sphere Smk−1
1 ⊂ Vλk

and these immersions are called standard minimal immersions: s.m.i..

In this paper we shall consider the particular homogeneous spaces M = SO(n +
1)/SO(n).

Our point of view is to study the geometric properties of a single s.m.i. ϕn,k

by means of the sequence of the previous maps ϕn,r where n is fixed and r < k,

basing our study on the intrinsic properties of these maps, namely that they are full,
equivariant, and that [d-W]2 there is a universal isomorphism between the normal

bundle of degree r− 1 of a s.m.i. ϕn,r and the spherical harmonic of degree r on the
n− 1 unitary sphere.
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This universal pattern allows us to state that the sequence of s.m.i. ϕn,r defines

a sequence of osculating immersions of order r − 1 which we call generalized, and
that the normal bundles to the osculating spaces to the image of the immersions are
parallel (Theorem 3.3).

From [Sa], [Ts], we know that the standard, minimal immersions are helical geo-

desic immersions, namely immersions such that for each geodesic γ of the domain of
ϕn,k the curve ϕn,kγ has constant curvatures which do not depend on γ.

In Theorem 3.7 substituting the maps ϕn,2, ϕn,3, . . . , ϕn,k, with equivalent maps,
namely equal modulo an isometry of the ambient space, we prove that given any

geodesic γ in the sphere Sn
ck
, sphere of constant sectional curvature ck, the curve

ϕn,kγ ⊂ Smk−1
1 has exactly (k−1) curvatures which are expressed by the eigenvalues

of the Laplacian respectively on the spheres Sn
c2 , S

n
c3 , . . . , S

n
ck
. This geometric point

of view of considering, for the study of a s.m.i., all the previous immersions like a

sort of approximation has not been considered before and can be applied in the study
of those spaces which admit s.m.i., for instance in the case of generalized symmetric

spaces.

Naturally some modifications are necessary as, in these cases, the spectrum of the
Laplacian is generally unknown.

We think moreover that a possible application could be in the field of isoparametric
maps. As a matter of fact for r = 2 a s.m.i. is an isoparametric immersion since the

osculating space of order 1 of Sn
c2 is the tangent space to Sm2−1

1 . This is the case of
the Veronese surface. For r > 2 the map ϕn,r can be considered at the same time as

a particular and also as a generalized isoparametric map since it is the generalized
osculating space of order r − 1 of Scr which is isomorphic, not equal, to the tangent

space to Smr−1
1 .

It will be interesting to see which machinery used in the study of isoparametric

maps can be used in the case of a s.m.i. and which results remain valid.

In n. 1 we will summarize the basic notions on higher fundamental forms, in n. 2
the notion of standard, minimal immersions and spherical harmonics, and in n. 3 we

give the theorems on osculating immersions and helical immersions.

In this paper the differentiability of all geometric objects will be C∞.
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1. Fundamental forms of higher order

Let (M, g) be a Riemannian manifold, n and m respectively the dimensions of M
and M , f : M −→ M an isometric immersion and 〈, 〉 the inner product.
The pull back bundle f−1(T (M)) of the tangent bundle T (M) on M splits into

the orthogonal direct sum

(1.1) f−1(T (M)) = T (M)⊕N(M)

of Riemannian vector bundles, where N(M) is the normal bundle to the bundle
T (M) tangent to M .

We denote by ( )T and by ( )N the tangential and orthogonal projection associated
to the splitting (1.1).

Remark 1.1. In a small neighborhood U of any point p ∈ M , f is a topological
embedding, thus locally we can identify a vector field Y on M with its image f · Y
defined on f(M) ⊂ M .

Denote by ∇ the Levi Civita connection on M and by ∇ the induced connection
on M via the projection on T (M).
The second fundamental form

o
s of f at p is defined by

(1.2)
o
s(Xp, Yp) = (∇Xp

Y )
N

where Xp, Yp ∈ Tp(M) and Y is a generic extension of Yp.

Definition 1.2. The first normal space N1p is the linear space spanned by the
second fundamental form at p and the second osculating space (O2)pis given by

(1.3) (O2)p = TpM ⊕N1p .

To simplify the notations, we omit sometimes indicating the points in which the

fundamental forms, the normal and osculating spaces are calculated.

The higher fundamental forms are then defined inductively.

Definition 1.3. The third fundamental form
1
s at p is

(1.4)
1
s(X, Y, Z) = (∇X

o
s(Y, Z))

o2
⊥

.

The second normal space N2p is the linear span of
1
s and the third osculating space

(O3)p is

(1.5) (O3)p = TpM ⊕N1p ⊕N2p .
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If k is any positive integer, proceeding inductively, one can define the fundamental

forms
r−2
s at p, the normal spaces of order r − 1 and the osculating space Or of

order r:

(1.6) (Or)p = Tp(M)⊕N1p . . .⊕N r−1
p .

We define (O1)p = Tp(M) = No
p .

We can see that that the kth-osculating space of f at p is the subspace of

f−1(T (M)) spanned by those vectors obtained by taking covariant derivative up to
the (k − 1)th order.
(For further informations on higher fundamental forms see [Sp]).
As dim(Tp(M)⊕N1p . . .⊕Nk

p ) � dim Tp(M) this process must end.

Remark 1.4. If the manifold M has constant curvature, the fundamental forms
are symmetric. The generic fundamental form of order k at p define then a map

(1.7)
k−2
s : Sk(Tp(M)) −→ Nk−1

p

where Sk(Tp(M)) is the symmetric product of k copies of Tp(M).

Definition 1.5. Let q be the first integer � 1 such that dimN q
p �= 0, but

dimN q+1
p = 0. We call q the normal degree of the immersion in p.

In general the dimension of the normal and of the associated osculating spaces is
not constant.

We call normally regular domain an open set M ′ ⊂ M such that in any point
p ∈ M ′ the dimension of all the normal spaces N r (1 � r � q) is maximal.

Definition 1.6. If f : M −→ M is an isometric immersion of a homogeneous
Riemannian manifold M = G/K in a manifold M , we say that f is equivariant,

if there exists a continuous homomorphism � from G into the group I(M) of the
isometries of M such that

(1.8) f(g · p) = �(g)f(p) ∀p ∈ M, g ∈ G

If the map is equivariant we have

(1.9) �(g)Nh
p = Nh

g·p ∀p ∈ M, h � q

In this case the dimensions of the normal spaces are constants and we obtain a
decomposition of the tangent bundle f−1(T (M)) in the Whitney sum

(1.10) f−1(T (M)) = T (M)⊕N1 . . .⊕N q ⊕N

Definition 1.7. The mean curvature H of an isometric immersion f : M −→ M

is the trace of the second fundamental form.
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If (e1, e2, . . . en) is a local orthonormal frame field, then

(1.11) H = 1/n

n∑

i=1

(∇eiei)
N1

= 1/n

n∑

i=1

o
s(ei, ei).

Definition 1.8. The Weingarten operator Ak of order k is defined by

(∇Xξk)
Nk−1

= −Ak(X, ξk)

for ξk ∈ ΓNk, section of Nk.

In the sequel the following generalized Frenet formula [Sp] will be used:

(1.12) ∇Xξk = −Ak(X, ξk) + (∇Xξk)
Nk

+
k
s(X, ξk).

2. Standard immersions and spherical harmonics

Let M = G/K be a compact homogeneous Riemannian manifold with metric g,

and assume that the linear isotropy group acts irreducibly on the tangent space.

If λ �= 0 is a real number, we shall denote by Vλ the set of functions solution of

the Laplace-Beltrami equations:

(2.1) ∆f + λf = 0.

Since M is compact, each Vλ is a finite dimensional vector space.

Considering that G is a transitive group of isometries ofM , to each element g ∈ G

we can associate an operator Lg on Vλ which transforms the functions f(p) ∈ Vλ

where p ∈ M under the rule

(2.2) Lgf(p) = (g · f)(p) = f(g−1 · p).

Lg defines a representation of G in Vλ.

Moreover Vλ can be endowed with the inner product

(2.3) (f, g) =
∫

M

f · g dv.

For convenience we shall normalize it in such a way that the integral over M of the
canonical measure dv is the dimension mλ of Vλ.
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An orthonormal basis (f1, f2, . . . , fmλ
) of Vλ, defines a map: ϕ : M −→ �

mλ by

ϕ(p) = (f1(p), f2(p), . . . , fmλ
(p)) with p ∈ M .

As ∆ϕ = (∆f1,∆f2, . . . ,∆fmλ
), we see that ϕ is a solution of (2.1).

Due to the normalization,
∑
i

(fi)2 = 1. for all p ∈ M . It turns out that ϕ defines a

map of M into ϕ(M) ⊂ Smλ−1
1 ∈ �mλ . The identification of Vλ with �mλ is possible

after the choice of the orthonormal basis.

Remark 2.1. It can be proved that the action of G on M defined by (2.2) leaves

the eigenspace Vλ invariant and is an isometry for the inner product (2.3).

If now we change the metric g on M with the metric g̃ =
mλ∑
i=1
( dfi)2 induced on

M by the Euclidean metric on �mλ , the immersion ϕ : (M, g̃) into Smλ−1 becomes

an isometry. Since both metrics g and g̃ are G-invariant,and hence in p they are
invariant under the irreducible action of the isotropy group K, the metric g is a

multiple of the metric g̃,namely

(2.4) g̃ = cg

for c > 0 as the functions fi are not constants.

This relation is true in any point of M since G acts transitively and isometrically
on M

Denoting by M̃ the manifold M with the metric g̃, the Laplacian of M̃ is given
by ∆̃ = 1/c∆. Thus ϕ : M̃ −→ Smλ−1

1 becomes an isometric immersion satisfying

∆̃ϕ+ λ̃ϕ = 0 where λ̃ = λ/c.
From Takahashi’s theorem it follows that ϕ is a minimal immersion into a sphere

of radius r =
√

n/λ̃. As here r=1 we obtain c = λ/n and this determines g̃.
This immersion is called standard, minimal immersion (s.m.i) of degree k if k is

the k-th non zero eigenvalue associated to the immersion.

Definition 2.2. Two minimal standard immersions are called equivalent or con-
gruent if they differ by an isometry of the ambient space. Note that a different choice

of the orthonormal basis of Vλ gives rise to an equivalent immersion.

Let us now consider a particular homogeneous space, namely M = SO(n +
1)/SO(n). M can be realized as a sphere Sn of the Euclidean space �n+1 with

a metric g of constant curvature 1. In that case the spectrum and the eigenfunction
of M are known.

The eigenspace Vλk
of the Laplacian on (Sn

1 , g) associated to the eigenvalue λk, for
each k ∈ �+, are the restrictions to Sn

1 of the homogeneous polynomials P
k
n of degree

k defined on �n+1 which satisfy on Sn
1 the equation ∆P = 0. Such restrictions are

called spherical harmonics of Sn
1 .
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It is proved that all the harmonic homogeneous polynomials of degree k restrict

to Sn
1 are eigenfunctions of ∆ with the same eigenvalue.

The value of the eigenvalues are the following:

λk = k(k + n− 1)

and the dimension of the associated eigenspaces Vλk
are

(2.5) mk = (n+ 2k − 1)
(n+ k − 2)!
k!(n− 1)! .

From the general considerations that we have seen above, it follows that an ortho-

normal basis of the vector space Vλk
consisting of the spherical harmonics of Sn of

order k gives a standard minimal isometric immersion of order k. We shall denote

it ϕn,k:

(2.6) ϕn,k : Sn
ck
−→ Smk−1

1 ∈ �mk

where Sn
ck
is the n-sphere with constant sectional curvature ck. The curvature ck is

defined by the fact that the metric g̃ in Sn
ck
is (λk/n)g.

We obtain then:

(2.7) ck =
n

k(k + n− 1) .

For odd k the standard minimal isometric immersion is a minimal isometric embed-
ding of Sn

ck
into Smk−1

1 .

For even k all the components of the immersion are invariant under the antipodal

map, and we get a minimal isometric embedding of RPn into Smk−1

Remark 2.3. The standard minimal isometric immersions between spheres

ϕn,k : Sn
ck
−→ Smk−1

1 ∈ �mk

have some nice properties:

1) they are full ; namely ϕn,k(Sn
ck
) is not contained in a proper vector subspace of

�
mk or equivalently, in a totally geodesic submanifold of Smk−1

1

2) they are equivariant (see definition 1.6). we have then a decomposition (1.10)
for the tangent bundle in normal spaces
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3. Osculating immersions and helical geodesic immersions

Let ϕn,k : Sn
ck
−→ Smk−1

1 be a standard minimal immersion. Fixing an orthonor-

mal basis {e1, e2, . . . , en} of the tangent space to the sphere Sn
ck
in a point p, we have

an isomorphism between Tp(Sn
ck
) and �n . This isomorphism extends to an isomor-

phism from the symmetric product Sh(Tp(Sn
ch
)) of h-copies of the tangent space of

Sn
ch
to the vector space P h

n of the homogeneous polynomials of degree h on �n .

We recall two propositions of do-Carmo-Wallach that will be useful in the follow-
ing.

Proposition 3.1. Let ϕn,k be a standard, minimal immersion then ker
k
s ⊇ r2 ·P k

n

where r2 =
n∑

i=1
e2i ∈ P 2n is the distance function from the origin of �

n and
k
s is the

fundamental form of order k + 2. [d-W]2.

�����. The proposition is proved by induction on k. For k = 0 the minimality
condition gives

o
s(r2) = 0.

Suppose now
k−1
s (r2.Sk−1(Tp(Sn

ck
)) = 0 . As

k
s(Y, X1, . . . , Xn+1) = (∇Y

k−1
s (X1, X2, . . . , Xk+1))N

k+1

from the inductive hypothesis we conclude that for every t ∈ Sk(Tp(Sn
ck
))

(3.1)
k
s(r2.t) = 0, i.e.

k
s(r2.P k

n ) = 0

namely ker
k
s ⊇ r2 · P k

n . �

Proposition 3.2. Let ϕn,k be a standard minimal immersion. Then the vector

normal spaceNh−1 of order h−1 is isomorphic to the vector spaceHh
n of the spherical

harmonics of order h on Sn−1
1 , for every h � k [d-W]2.

�����. We recall [B] that the space P h
n of the homogeneous polynomials of

degree h of �n admits the following decomposition in the direct sum of the subspace
Hh

n of the harmonic polynomials homogeneous of degree h in n variables and of the

polynomials of the form r2P h−2
n :

(3.2) P h
n = Hh

n ⊕ r2 · P h−2
n .

Using the isomorphism Sh(Tp(Sn
ch
))=̃P h

n , from the epimorphism (cf. 1.7)

(3.3)
h−2
s : Sh(Tp(Sn

ch
)) −→ Nh−1

p
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and from Proposition 3.1 and the decomposition (3.2) of P h
n , we obtain the injective

map:
h−2
s : Sh(Tp(Sn

ch
) −→ Hh

n

and thus the bijective map

(3.4)
h−2
s : Hh

n −→ Nh−1

of vector spaces. Then the isomorphism between the set of the spherical harmonics
of order h on Sn−1

1 and Nh−1 for every h � k follows. �

Theorem 3.3. The sequence ϕn,2, ϕn,3, . . . , ϕn,k of minimal standard immersions

between spheres, with k > 1, n > 1, defines a sequence of generalized osculating
immersions of order 2, 3, . . . , k. Moreover the normal bundles N1, N2, . . . , Nk−1

to the osculating spaces O1, O2, . . . , Ok−1 of the immersions ϕn,2, ϕn,3, . . . , ϕn,k are

parallel.

�����. We exclude the case k = 1 as for k = 1 the map ϕn,1 gives the standard
immersion Sn

1 −→ Sn
1 ⊂ �

n+1 .

We exclude also the case n = 1 as for any k and n = 1 we have a map from S1ck

to S11 .

For k = 2, the map ϕn,2 : Sn
c2 −→ Sm2−1

1 , considering that the immersion is full,
gives

(3.5) T (Sm2−1
1 ) = No ⊕N1 = T (Sn

c2)⊕N1 = O1 ⊕N1

with dimN1 = m2 − n − 1, equal to the dimension of the space of the harmonic
polynomials of degree two on �n restricted to Sn−1

1 . The decomposition (3.5) is the

Whitney sum of the tangent bundle ϕ−1(T (Sm2−1
1 )), since the standard maps are

equivariant (cf. 1.4). We semplify the notations omitting ϕ−1.

For k = 3 we obtain, considering (3.5),

(3.6) T (Sm3−1
1 )=̃T (Sm2−1

1 )⊕N2=̃No ⊕N1 ⊕N2=̃O2 ⊕N2

where we have called N2 the supplementary of Sm2−1
1 in Sm3−1

1 and where the N1,

which appears in (3.5), is isomorphic to the space N1 which appears in (3.6) as both
for Prop. 3.2 are isomorphic to H2n, spherical harmonic of order 2 on the sphere Sn−1

1 .

With O3 is denoted the generalized osculating bundle of order 3 on Sn
c3 .

By recurrence, for the pull-back bundle of T (Smk−1
1 ), we obtain the following

decomposition in “generalized normal bundles”

(3.7) T (Smk−1
1 ) = N0 ⊕N1 ⊕ . . .⊕Nk−1.
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We call Os = No ⊕ N1 ⊕ . . . Ns−1 generalized osculating bundle of order s. Here

the adjective generalized is used to point out that the normal spaces are associated
to different maps between spheres having the radius of the sphere domain varying
homothetically with r (r � k − 1) and the dimension of the sphere image varying as
well at every step.

The isomorphism between these different normal spaces relative to different maps

is possible because the normal spaces N1, N2, . . . , Nk−1 are isomorphic to the spher-
ical harmonics respectively of order 2, 3, . . . , k on the sphere of dimension n− 1.
We can therefore state that the sequence of the maps ϕn,2, ϕn,3, . . . , ϕn,k defines

a sequence of generalized osculating immersions, namely the map ϕn,k defines a
generalized osculating immersion of order k of Sn

ck
in a sphere of radius one contained

in the eigenspace Vλk
.

Moreover the immersions jr : Smr−1
1 −→ S

mr+1−1
1 with r = 2, 3, . . . , k − 1, are

totally geodesic since they are inclusions of the unitary euclidean sphere Smr−1 into

the unitary euclidean sphere Smr+1−1 induced by the inclusions ir : �mr −→ �
mr+1 .

The normal bundles of the immersions jr consist of those tangent vectors to
Smr+1−1 supplementary and orthogonal to the tangent vectors to Smr−1.

We deduce that

(3.8) ∇Xξr = 0

for any X ∈ ϕn,r(Sn
cr
), ξr ∈ ΓN r, section of the bundle N r normal to the osculating

space Or, and ∇ covariant derivative in Smr−1
1 .

The normal bundles are then parallel. �

Corollary 3.4. For any k ∈ �+, the dimension of the spherical harmonic of order
k on Sn−1

1 is given by the difference between the dimensions of the eigenspaces Vλk

and Vλk−1 of the Laplacian on the unitary n-sphere.

Definition 3.5. We recall [Sa], that an isometric immersion f : M −→ M of
a connected complete Riemannian manifold M into a Riemannian manifold M is

called helical geodesic immersion of order s if, for each geodesic γ of M , the curve
f · γ has constant curvatures k1, k2, . . . , ks which do not depend on γ.

It is known that strongly harmonic manifolds admit a helical geodesic minimal

immersion into a sphere [Be], and standard immersions between spheres admit such
immersions [Ts].

On the subject of helical geodesic immersions of Riemannian manifolds there are

interesting papers of [Sa] and of [Ts]. Our approach of considering a standard map
as approximated by the previous standard maps seems to show some new aspects as
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it gives, in the case of s.m.i. between spheres, the values of the various curvatures

expressing them by means of eigenvalues of the Laplacian and the dimension n.

Remark 3.6. It will be convenient to indicate some notations that will be used
in the following theorem.

We will indicate hr,s the homothety

(3.9) hr,s : Sn
cr
−→ Sn

cs
,

by jr,s the totally geodesic immersion

(3.10) jr,s : Smr−1
1 −→ Sms−1

1 , mr < ms,

by ir the canonical immersion

(3.11) ir : Sn
cr
−→ �

n+1 ,

and by ∇ the covariant derivative in the ambient space.

Theorem 3.7. Let ϕn,k be a s.m.i. of order k, if γ is any geodesic of Sn
ck
then, in

the equivalence class of the minimal, standard immersions ϕn,r with r � k, the princi-

pal curvatures of the curve ϕn,kγ are
√

n/λ2,
√

n/λ3, . . . ,
√

n/λk with λ2, λ3, . . . , λk

eigenvalues of the Laplacian respectively on the spheres Sn
c2 , S

n
c3 , . . . , S

n
ck
.

�����. We start by considering the geodesic γ′ obtained from the geodesic γ

by the homothety hk,2 : Sn
ck
−→ Sn

c2 . Let γ′ : I −→ Sn
c2 ⊂ �

n+1 be parametrized by

the arc length t with γ(o) = p point of Sn
c2 and let X be the unitary tangent vector

to γ′ in p.

The value of the second fundamental form of the immersion i2 on the couple of
vectors (X,X) is

(3.12)
o
si2(X, X) = ∇XX −∇XX =

√
c2 · ξ1

as the radius of the osculating circle to γ′ is the radius of the sphere in which the
curve lies and where ξ1 is the first unitary principal normal to γ′.

As ϕn,2 is full, ϕn,2(Sn
c2) cannot be contained in a subspace of �

m2 . It turns out
then that ξ1 must belong to N1.
The value of the second fundamental form of the immersion ϕn,2 on the same

couple of vectors is:

(3.13)
o
sϕn,2(X, X) = (∇XX)

N1

=
√

c2 · η1
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with η1 ∈ ΓN1. Moreover as N1 ∈ Tp(S
m2−1
1 ), with an isometry in Sm2−1 we obtain

a map ϕ̃n,2 equivalent to ϕn,2 satisfying the equality:

(3.14)
o
sϕ̃n,2(X, X) =

√
c2 · ξ1.

From the factorization of ϕn,k in the product of an homothety and a totally geodesic

immersion,namely ϕn,k = j2,k ·ϕn,2 ·hk,2 and considering that the fundamental forms
of an homothety and of a totally geodesic immersions are zero, from the formula of

the fundamental forms of a product of two maps (cf. [E.S], [E.R.] we obtain

(3.15)
o
sϕ̃n,k

(X, X) =
√

c2 · ξ1.

To get information on the second curvature of ϕn,kγ, we need to consider ϕn,3,

osculating map of third order.
By the homothety h2,3 : Sn

c2 −→ Sn
c3 we obtain the geodesic h2,3γ

′ ⊂ Sn
c3 ⊂ �

n+1 .

The value of the third fundamental form for the immersion i3, gives

(3.16)
1
si2(X, ξ1) =

√
c3 · ξ2

with ‖ξ2‖ = 1, and, since ϕn,3 is full, ξ2 belongs to N2.

By the generalized Frenet formula (cf. 1.12) for the immersion ϕn,3 we obtain

(3.17) ∇Xξ1 = −A1(X, ξ1)⊕ (∇Xξ1)N
1 ⊕ 1sϕn,3(X, ξ1)

where from the (3.8) of theorem (3.3) is (∇Xξ1)N
1
= 0 .

Moreover
〈
A1(X, ξ1), X

〉
=

〈
0
sϕn,2(X, X), ξ1

〉
=
√

c2.
Considering that ϕn,3 is full, for the same reasons valid in the case k = 2, with an

isometry of Sm3−1
1 we can find an equivalent standard map such that

(3.18)
1
sϕ̃n,3(X, ξ1) =

√
c3 · ξ2.

As ϕn,k = j3,k · ϕn,3 · hk,3, we see that

1
sϕ̃n,k

(X, ξ1) =
√

c3 · ξ2.

Moreover (3.17) gives

(3.19) ∇Xξ1 = −√c2.X +
√

c3 · ξ2

where ci = n/λi (i = 2, 3) and λi is an eigenvalue of ∆ on Sci .
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By recurrence, we obtain, for the image of γ in Sn
ck
, the k − 1 equations:

(3.21) ∇Xξk−2 = −√ck−1 · ξk−3 +
√

ck · ξk−1.

Taking into account that the immersions jr are totally geodesic, the covariant
derivative which appears in the above k − 1 equations (3.19), (3.20) can all be eval-
uated in Smk−1

1 .
We conclude that the map ϕn,k is an helical geodesic minimal immersion and the

values of the principal curvatures of the curve image of any geodesic γ of Sn
ck
by

ϕn,k are
√

n/λ2,
√

n/λ3, . . . ,
√

n/λk with λ2, λ3, . . . , λk eigenvalues of the Laplacian

respectively on the spheres Sn
c2 , S

n
c3 . . . Sn

ck
.

The equations (3.21) for k = 2, 3, . . . , k give the Frenet equations for any geodesic

of Sn
ck
with respect to the Frenet frames R(t) = (X(t), ξ1(t), . . . , ξk(t)) �

Corollary 3.8. Given any geodesic of Sn
ck
we can always find in the equivalence

class of the minimal standard immersions ϕn,r, (r = 2, 3, . . . , k) a s.m.i. ϕ̃n,r such

that the following equalities are verified

o
si2(X, X) =

o
sϕ̃n,2(X, X) =

o
sϕ̃n,k

(X, X) =
√

c2 · ξ1,
s−2
s is(X, ξs−2) =

s−2
s ϕ̃n,s

(X, ξs−2) =
s−2
s ϕ̃n,k

(X, ξs−2) =
√

cs · ξs−1

with s = 2, 3, . . . , k + 1.

We thank G. Romani for some useful remarks in the proof of Theorem 3.7.
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