
Czechoslovak Mathematical Journal

Konrad Pióro
On some non-obvious connections between graphs and unary partial algebras

Czechoslovak Mathematical Journal, Vol. 50 (2000), No. 2, 295–320

Persistent URL: http://dml.cz/dmlcz/127570

Terms of use:
© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127570
http://dml.cz


Czechoslovak Mathematical Journal, 50 (125) (2000), 295–320

ON SOME NON-OBVIOUS CONNECTIONS BETWEEN GRAPHS

AND UNARY PARTIAL ALGEBRAS

Konrad Pióro, Warsaw

(Received May 13, 1997)

Abstract. In the present paper we generalize a few algebraic concepts to graphs. Ap-
plying this graph language we solve some problems on subalgebra lattices of unary partial
algebras. In this paper three such problems are solved, other will be solved in papers [Pió I],
[Pió II], [Pió III], [Pió IV]. More precisely, in the present paper first another proof of the
following algebraic result from [Bar1] is given: for two unary partial algebras A and B,
their weak subalgebra lattices are isomorphic if and only if their graphs G∗(A) and G∗(B)
are isomorphic. Secondly, it is shown that for two unary partial algebras A and B if their
digraphs G(A) and G(B) are isomorphic, then their (weak, relative, strong) subalgebra
lattices are also isomorphic. Thirdly, we characterize pairs 〈L,A〉, where A is a unary
partial algebra and L is a lattice such that the weak subalgebra lattice of A is isomorphic
to L.

Introduction

In Universal Algebra many papers describe connections between a (total) algebra

and its lattice of (also total) subalgebras. We recall, for example, that full character-
ization of the subalgebra lattice of a (total) algebra is given in [BiFr]. There are also

several results which characterize subalgebra lattices for algebras which belong to a
given variety or a given type (see [Jón]). Some papers investigate algebras with spe-

cial subalgebra lattices (e.g. distributive, modular, etc.) or varieties which contain
algebras such that their subalgebra lattices satisfy some given conditions ([EvGa],

[Sha1], [Sha2]). A few of these papers concern also classical algebras ([GP1], [GP2]).
Another way is to investigate connections between two algebras of the same type

or from the same variety, if we have connections between their subalgebra lattices.
The paper [Sach] on Boolean algebras is a very good example. Sachs shows that

any two Boolean algebras are isomorphic if and only if their subalgebra lattices are
isomorphic. But results so strong are rather scarce in Universal Algebra.
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Unfortunately, very few results of this kind are known for partial algebras, although

at least three structures may be considered in this case. More precisely, for any
partial algebra A =

〈
A, (fA)f∈F

〉
we have three different subalgebra lattices (see

e.g. [Bur]): the lattice of weak subalgebras Sw(A), the lattice of relative subalgebras
Sr(A) and the lattice of strong subalgebras Ss(A). The second structure is clearly
of no interest, because any subset of an algebra is the carrier of exactly one relative

subalgebra. Moreover, many properties of the third lattice are inherited from total
cases, but not much is known otherwise. Recall also that in the paper [Bar1] a

complete characterization of the weak subalgebra lattice is given.

The main aim of the present paper is to introduce a new language to investigate
unary partial algebras and their subalgebra lattices. More precisely, we show con-

nections between unary partial algebras and directed and undirected graphs. These
connections turn out to be very useful in the solution of some problems on subalgebra

lattices of unary partial algebras. For instance, applying results from this paper we
will get in [Pió I], [Pió II], [Pió III] and [Pió IV] necessary and sufficient conditions

for a unary partial algebra A of a unary type K to be uniquely determined (up to
isomorphism) in the class of all unary partial algebras of the same unary type K by

its weak subalgebra lattice.

In chapter one we generalize a few algebraic concepts to graphs. For instance, for

any digraph (directed graph) we define four kinds of subdigraphs—weak, relative,
strong and dually strong. Secondly, for any (undirected) graph we define two kinds

of subgraphs—weak and relative. We also show that families of subdigraphs (weak,
relative, strong and dually strong) form complete lattices. In this way, for any

digraph G we obtain four structures: the lattice of weak subdigraphs Sw(G), the
lattice of relative subdigraphs Sr(G), the lattice of strong subdigraphs Ss(G) and
the lattice of dually strong subdigraphs Sd(G). Analogously for any graph G we
obtain the lattice of weak subgraphs Sw(G) and the lattice of relative subgraphs
Sr(G). Next we prove, for example, that for any digraph G

Sw(G) � Sw(G∗) and Sr(G) � Sr(G∗),

i.e. the weak (relative) subdigraph lattice of G is isomorphic to the weak (relative)
subgraph lattice of the graph G∗ which is obtained from G by omitting the orienta-
tion of all edges.

We also recall the definition of digraph type. More precisely, let η be a cardinal

number. Then a digraph G is of the type η if and only if for each vertex v of G at
most η edges start from v.

In chapter two we recall first that with any unary partial algebra A we can asso-
ciate the digraph (the directed graph) G(A) (by omitting the name of operations in
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A, see [Bar1]) and the (undirected) graph G∗(A) (by omitting the orientation of all
edges of G(A)).
Next we prove several results describing connections between graphs and unary

partial algebras. For instance, we show that for any unary partial algebra A its
lattices of weak, relative, strong subalgebras and initial segments are isomorphic to
lattices of weak, relative, strong and dually strong subdigraphs of its digraph G(A),
and also its lattices of weak and relative subalgebras are isomorphic to lattices of
weak and relative subgraphs of its graph G∗(A). More precisely,

Sw(A) � Sw(G(A)) � Sw(G∗(A)), Sr(A) � Sr(G(A)) � Sr(G∗(A)),

Ss(A) � Ss(G(A)), Sd(A) � Sd(G(A))

(where Sd(A) is the lattice of initial segments of A).
We show also that if A is a unary partial algebra of a unary type K, then the

digraph G(A) is of the type |K| (where |K| is the cardinality of K), and also con-
versely, for any digraph G of the type |K| there exists a unary partial algebra A of
the unary type K such that the digraph G(A) is isomorphic to G. In other words,
the class of all unary partial algebras of the same unary type K is represented by
the class of all digraphs of the same type |K|.
Applying these results we first give another proof of the following theorem from

[Bar1]:

(A) Let A and B be arbitrary unary partial algebras. Then

Sw(A) � Sw(B) iff G∗(A) �G∗(B),

i.e. their weak subalgebra lattices are isomorphic iff their graphs are isomorphic.

Secondly, we show
(B) Let A and B be arbitrary unary partial algebras such that G(A) � G(B).

Then Sw(A) � Sw(B), Sr(A) � Sr(B), Ss(A) � Ss(B), Sd(A) � Sd(B).
Thirdly, we solve the following problem:
(C) Let L be an arbitrary lattice and let A be a unary partial algebra. When

does (necessary and sufficient condition) Sw(A) � L hold, i.e. when is the weak
subalgebra lattice of A isomorphic to L?
More precisely, in the above problem we can of course assume that for L there exists

a unary partial algebra B such that the weak subalgebra lattice of B is isomorphic to
L, i.e. we can assume that L satisfies conditions from [Bar1], where a full algebraic
characterization of such lattices is given. Then with L we can associate a graph
G(L), and we will prove that the weak subalgebra lattice of A is isomorphic to L if
and only if the graphs G∗(A) and G(L) are isomorphic.
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Applying this result (and also other results from this paper) we will characterize in

a subsequent paper the pairs 〈L,K〉, where L is a lattice and K is a unary algebraic
type, such that there exists a unary partial algebra A of the unary type K with the
weak subalgebra lattice Sw(A) isomorphic to L.

Recall that such a characterization for arbitrary algebraic lattices and arbitrary

type in the case of total algebras is an important problem of Universal Algebra (see
e.g. [Jón]) which is not completely solved yet. But for weak subalgebra lattices of

unary partial algebras we can give a complete solution.

1.

In this chapter we first recall a few basic definitions and notation from the theory
of directed and undirected graphs (see e.g. [Ber] [Wil], [Ore] or [Tut]).

However, our main goal in this chapter is to generalize a few concepts from the
theory of unary partial algebras (like the type of partial algebra, some kind of sub-

algebras and subalgebra lattices etc., see [BRR], [Bur] and [Grä1]) to directed and
undirected graphs. We will also prove some basic properties of these notions. For

instance, for a directed (undirected) graph we will define several kinds of subgraphs.
Next, we will prove that on the set of all directed (undirected) subgraphs of a given

kind we can define in a natural way the structure of a complete lattice.

Definitions and results of this chapter will be needed in the second chapter to

describe connections between unary partial algebras and directed and undirected
graphs.

Throughout the paper the cardinality of A is denoted by |A|. Moreover, � is the
set of all non-negative integers, Card is the class of all cardinal numbers and ℵ0 is
the countable, infinite cardinal number, i.e. ℵ0 = |�|.

1.1.
In this section we recall a few basic definitions and notation from graph theory

(see e.g. [Ber], [Ore], [Tut] or [Wil]). In order to avoid misunderstandings we start
with the definition of directed and undirected graphs.

(An undirected) graph G =
〈
V G, EG, IG

〉
is an ordered triplet such that V G and

EG are arbitrary sets of vertices and edges respectively, and IG is a function from
EG into the set {{v, w} : v, w ∈ V G} of all undirected pairs of V G. For each e ∈ EG
the elements of the set IG(e) will be called terminal vertices of e.

A digraph (directed graph) G =
〈
V G, EG, IG

〉
is an ordered triplet such that V G

and EG are arbitrary sets of vertices and edges respectively, and IG is a function from
EG into the direct product V G × V G. Let πi : V G × V G → V G be the projection
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on the i-th coordinate for i = 1, 2. Then for each e ∈ EG the vertices π1IG(e) and

π2I
G(e) will be called initial and final vertices of e, respectively.
The class of all digraphs (graphs) will be denoted by AGd (AGn).

Since we want to represent unary partial algebras by digraphs, we must consider
in general infinite digraphs. More precisely, we do not restrict the cardinality of the

vertex and edge sets, i.e. we consider digraphs and graphs such that their sets of
vertices and edges are of arbitrary (not only finite) cardinality.

Observe also that the triplet 〈∅, ∅, ∅〉 of empty sets is simultaneously a graph and
a digraph—the empty graph, which will be also denoted by ∅.
Let G,H ∈ AGd (G,H ∈ AGn) and let ϕV : V G → EH, ϕE : EG → EH be

arbitrary functions.

We say that the pair of functions ϕ = 〈ϕV , ϕE〉 is an isomorphism from G onto
H iff ϕV and ϕE are bijections and for all e ∈ EG,

πiI
H(ϕE(e)) = ϕV (πiI

G(e)) for i = 1, 2 (IH(ϕE(e)) = ϕV (IG(e))).

We write G � H and say that G and H are isomorphic digraphs (graphs) iff there
is an isomorphism ϕ from G onto H.
Now recall that with any digraph G we can associate a graph G∗ by omitting the

orientation of edges. More formally,

Definition 1.1.1. Let G ∈ AGd. Then G∗ is the graph such that

V G
∗
:= V G, EG

∗
:= EG

and for all e ∈ EG∗,
IG

∗
(e) := {π1IG(e), π2IG(e)}.

If G ∈ AGd, then for any vertex v ∈ V G we can define the set of edges

EGs (v) := {e ∈ EG : π1IG(e) = v}

and the cardinal number

sG(v) := |EGs (v)|.

Observe that sG(v) may be an arbitrary cardinal number, because we consider also
infinite digraphs, i.e. sets of vertices and edges may have arbitrary cardinalities.

In the rest of this section we generalize a few algebraic concepts (like the type
of partial algebras, subalgebras, lattices of subalgebras, etc., see [BRR] or [Bur]) to

directed and undirected graphs. Next we show that a few wellknown results from
the theory of unary partial algebras (e.g. that sets of subalgebras form a complete
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lattice) can be generalized to graphs. Definitions and results from this section will

be needed in the next chapter to formulate and prove connections between unary
partial algebras and directed and undirected graphs.

The type of a digraph is a cardinal number. More precisely,

Definition 1.1.2. Let G ∈ AGd and η ∈ Card.
(a) The digraph G is of type η iff for all v ∈ V G, sG(v) � η.

(b) G is of finite (infinite) type iff G is of type η and η < ℵ0 (η � ℵ0).

For every η the class of all digraphs of the type η will be denoted by AGd(η).

Observe that AG(0) is the class of all discrete digraphs (i.e. digraphs which have
no edges). Moreover, we have that for all η1, η2 ∈ Card if η1 � η2, then AGd(η1) ⊆
AGd(η2).

We want to represent unary partial algebras by directed and undirected graphs,

so we must define various kinds of subgraphs and subdigraphs. More precisely, we
define two kinds of subgraphs and four kinds of subdigraphs.

Definition 1.1.3. Let G,H ∈ AGn. Then

(a) We say that H is a weak subgraph of G (H �w G) iff
V H ⊆ V G, EH ⊆ EG and IH = IG|EH .

(b) We say that H is a relative subgraph of G (H �r G) iff
H �w G and for all e ∈ EG, if IG(e) ⊆ V H, then e ∈ EH.

For all G ∈ AGn, Sw(G) (Sr(G)) is the family of all weak (relative) subgraphs
of G. Observe also that the empty graph is simultaneously a weak and a relative
subgraph of an arbitrary digraph.

Definition 1.1.4. Let G,H ∈ AGd. Then:

(a) H is called a weak subdigraph of G (H �w G) iff
V H ⊆ V G, EH ⊆ EG and IH = IG|EH .

(b) H is called a relative subdigraph of G (H �r G) iff
H �w G and for all e ∈ EG, if IG(e) ∈ V H × V H, then e ∈ EH.

(c) H is called a strong subdigraph of G (H �s G) iff
H �r G and for all e ∈ EG, if π1IG(e) ∈ V H, then π2IG(e) ∈ V H.

(d) H is called a dually strong subdigraph of G (H �d G) iff
H �r G and for all e ∈ EG, if π2IG(e) ∈ V H, then π1IG(e) ∈ V H.

For all G ∈ AGd, Sw(G), Sr(G), Ss(G) and Sd(G) are the families of all weak,
relative, strong and dually strong subdigraphs of the digraph G, respectively. Ob-
serve also that the empty graph is simultaneously a weak, relative, strong and dually
strong subdigraph of an arbitrary digraph.
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Now we give a few simple facts (easy proofs are omitted).

Proposition 1.1.5. Let G ∈ AGd (G ∈ AGn). Then:

(a) Ss(G) ⊆ Sr(G) ⊆ Sw(G) and Sd(G) ⊆ Sr(G) (Sr(G) ⊆ Sw(G)).
(b) If H �w G (H �r G), then Sw(H) ⊆ Sw(G) (Sr(H) ⊆ Sr(G)).
(c) If H �s G (H �d G), then Ss(H) ⊆ Ss(G) (Sd(H) ⊆ Sd(G)).

Of course, for graphs only points (a) and (b) hold.

Now we want to show that for any G ∈ AGd (G ∈ AGn), the sets of all weak,

relative, strong and dually strong subdigraphs (weak and relative subgraphs) form
complete lattices. To this purpose we give a few facts (simple proofs are left to the

reader).

Proposition 1.1.6. Let G ∈ AGd (G ∈ AGn). Then:

(a) For all H1,H2 �w G,
H1 �w H2 iff V H1 ⊆ V H2 and EH1 ⊆ EH2 .

H1 =H2 iff V H1 = V H2 and EH1 = EH2 .
(b) For all H1,H2 �r G,
H1 �r H2 (H1 = H2) iff V H1 ⊆ V H2 (V H1 = V H2).

(c) For all H1,H2 �s G, H1 �s H2 iff V H1 ⊆ V H2 .

(d) For all H1,H2 �d G, H1 �d H2 iff V H1 ⊆ V H2 .

Of course, for graphs only points (a) and (b) hold.

By the above facts we have that for any digraph (graph) G, the relations �w,
�r, �s and �d (�w and �r) are partial orders. Secondly, it is easily shown

that for any non-empty family {Hi}i∈I of weak, or strong, or dually strong
subdigraphs (weak subgraphs) of the digraph G, the set-theoretical intersection〈 ⋂

i∈I

V Hi ,
⋂
i∈I

EHi ,
⋂
i∈I

IHi

〉
and the set-theoretical union

〈 ⋃
i∈I

V Hi ,
⋃
i∈I

EHi ,
⋃
i∈I

IHi

〉

is again a weak, strong, dually strong subdigraph (a weak subgraph) of G, respec-
tively.

Observe also that for relative subdigraphs (subgraphs) of G we have the following
two facts: for any set W ⊆ V G there exists exactly one relative subdigraph (sub-
graph) H of G such that V H = W . Secondly, it is easily shown that for any non-

empty family of relative subdigraphs (subgraphs) {Hi}i∈I of G, the set-theoretical

intersection
〈 ⋂

i∈I

V Hi ,
⋂
i∈I

EHi ,
⋂
i∈I

IHi

〉
is a relative subdigraph (subgraph) ofG, too.

So we have proved the following results:

Proposition 1.1.7. Let G ∈ AGd (G ∈ AGn). Then:
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(a) Sx(G) = 〈Sx(G),�x〉, where x = w, s or d (Sw(G) = 〈Sw(G),�w〉) are com-
plete lattices, where infimum

∧
and supremum

∨
are defined in the following

way: for all {Hi}i∈I (I 	= ∅),

∧

i∈I

Hi :=

〈⋂

i∈I

V Hi ,
⋂

i∈I

EHi ,
⋂

i∈I

IHi

〉
,

∨

i∈I

Hi :=

〈⋃

i∈I

V Hi ,
⋃

i∈I

EHi ,
⋃

i∈I

IHi

〉
;

if I = {i1, i2}, then we write H1 ∧H2 and H1 ∨H2.
(b) Sr(G) = 〈Sr(G),�r〉 is a complete lattice, where the operation

∧
is defined as

above and for all {Hi}i∈I (I 	= ∅),
∨
i∈I

Hi is the relative subdigraph (subgraph)

such that V

∨
i∈I

Hi

=
⋃
i∈I

V Hi .

(c) Ss(G) and Sd(G) are sublattices of the lattice Sw(G).

Let G ∈ AGd and W ⊆ V G. Then the above proposition implies that there
exists the least with respect to order �s (�d) strong (dually strong) subdigraph of

G containing W . Such a strong (dually strong) subdigraph of G will be denoted
by 〈W 〉sG (〈W 〉dG) and we will say that W generates this strong (dually strong)

subdigraph of G.

More formally, let G ∈ AGd and W ⊆ V G. Then we define

〈W 〉sG :=
∧
{H �s G : W ⊆ V H}, 〈W 〉dG :=

∧
{H �d G : W ⊆ V H}.

Finally, observe that P. 1.1.5 and P. 1.1.7 easily imply the following facts (for all

lattices L and K, K � L denotes that K is a sublattice of L).

Proposition 1.1.8.

(a) Let G ∈ AGd (G ∈ AGn) and H1 �w G, H2 �r G. Then

Sw(H1) � Sw(G) and Sr(H2) � Sr(G).

(b) Let G ∈ AGd and H1 �s G, H2 �d G. Then

Ss(H1) � Ss(G) and Sd(H2) � Sd(G).
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1.2.
Now we prove two less trivial results which will be needed in the next chapter.

First we formulate a result describing strong and dually strong subdigraphs which
are generated by a given set of vertices. This is a graph-theoretical generalization of

the classical result on the generation of (strong) subalgebras.
Next we prove that for any digraphG the lattices of weak and relative subdigraphs

of G are isomorphic to the lattices of weak and relative subgraphs of the graph G∗.
But first we recall the definitions of a finite chain and a path in a digraph. Let

G ∈ AGd and let r =
〈
(f ri )

i=Nr

i=1 , (uri )
i=Nr+1
i=1

〉
be a pair of finite sequences of edges

and vertices respectively and Nr � 1.
We say that r is a finite chain in G iff IG(fri ) =

〈
uri , u

r
i+1

〉
for 1 � i � Nr.

A finite chain r is a finite path in G iff url 	= urk for all 1 � l < k � Nr + 1.

CRfin(G) (Rfin(G)) is the family of all finite chains (paths) in G.

Proposition 1.2.1. Let G ∈ AGd and W ⊆ V G. Then:

(a) The following conditions are equivalent:

(a.1) v ∈ V 〈W 〉dG ,

(a.2) v ∈W or there exists r ∈ Rfin(G) such that ur1 = v and urNr+1 ∈ W ,
(a.3) v ∈W or there exists r ∈ CRfin(G) such that ur1 = v and urNr+1 ∈W.

(b) The following conditions are equivalent:

(b.1) v ∈ V 〈W 〉sG ,

(b.2) v ∈W or there exists r ∈ Rfin(G) such that ur1 ∈W and urNr+1 = v,

(b.3) v ∈W or there exists r ∈ CRfin(G) such that ur1 ∈W and urNr+1 = v.

�����. The implications (a.2)⇒ (a.3) and (b.2)⇒ (b.3) are trivial. Secondly,
the implications (a.3)⇒ (a.2) and (b.3)⇒ (b.2) follow from the wellknown fact that
for any p ∈ CRfin(G), if u

p
1 	= upNp+1

, then there is r ∈ Rfin(G) which connects u
p
1

and upNp+1, i.e. u
r
1 = u

p
1 and u

r
Nr+1 = u

p
Np+1.

(a.1)⇔ (a.3) and (b.1)⇔ (b.3): Let V1 (V2) be the set of all vertices which satisfy
the condition (a.3) ((b.3)) and let H1 (H2) be the relative subdigraph of G such
that

V H1 = V1 (V H2 = V2).

First we prove that
H1 �d G and H2 �s G.

We show only that H1 �d G, the analogous proof of the second part is left to the
reader.

Since H1 �r G, we must only prove that for an arbitrary edge e ∈ EG, if
π2I

G(e) ∈ V H1 , then π1IG(e) ∈ V H1 . Let us take e ∈ EG such that π2IG(e) ∈
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V H1 := V1. From the condition (a.3) we have that π2IG(e) ∈ W or there exists

r ∈ CRfin(G) such that ur1 = π2IG(e) and urNr+1 ∈W . Then it is easily shown that
the sequence of edges e, fr1 , . . . , f

r
Nr
(or the sequence of one element e) is a finite

chain which connects π1IG(e) and the set W . Thus from definition of V1 we obtain

that π1IG(e) ∈ V1.
Since W ⊆ V1 = V H1 , W ⊆ V2 = V H2 and H1 �d G, H2 �s G, the definitions of

the digraphs 〈W 〉dG and 〈W 〉sG imply

V 〈W 〉dG ⊆ V1 and V 〈W 〉sG ⊆ V2.

Now let us take v ∈ V1 (v ∈ V2). Of course we can assume that v 	∈ W . Then there
exists r ∈ CRfin(G) such that ur1 = v, urNr+1 ∈ W (ur1 ∈ W , urNr+1 = v). Now

applying a simple induction (see D. 1.1.4) we get

uri ∈ V 〈W 〉dG for i = Nr + 1, . . . , 1 (uri ∈ V 〈W 〉sG for i = 1, . . . , Nr + 1).

Hence, v = ur1 ∈ V 〈W 〉dG (v = urNr+1 ∈ V 〈W 〉s
G). Thus we have shown

V1 ⊆ V 〈W 〉dG and V2 ⊆ V 〈W 〉dG .

The above inclusions imply V 〈W 〉d
G = V1 and V 〈W 〉sG = V2. Thus the proof of our

equivalences is complete. �

Now we want to show that for any digraph G the function ∗ (see D. 1.1.1) induces

an isomorphism between the lattices of weak and relative subdigraphs of G and the
lattices of weak and relative subgraphs of G∗.

To this purpose we first formulate two simple facts.

Proposition 1.2.2. Let G, H ∈ AGd. Then:

(a) If H �w G (H �r G), then H∗ �w G∗ (H∗ �r G∗).

(b) If H �w G and H∗ �r G∗, then H �r G.

Proof is obtained from D. 1.1.3 and D. 1.1.4 and the definition of ∗.

Proposition 1.2.3. Let G ∈ AGd. Then for all K �w G∗ (K �r G∗) there

exists exactly one H �w G (H �r G) such that H∗ = K.

�����. (a): Let us take K �w G∗ and let H =
〈
V H, EH, IH

〉
be a triplet such

that V H = V K, EH = EK and IH = IG|EH . Applying D. 1.1.4 and the definiton
of ∗ it is easily shown that H is the digraph such that H∗ = K and H �w G.
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Now let H1 be a digraph such that H1 �w G and H∗
1 = K. Then from the

definiton of ∗ we obtain in particular V H
∗
1 = V K = V H

∗
= V H and EH

∗
1 = EK =

EH
∗
= EH. Thus from P. 1.1.6 we have H1 =H.

The case of relative subgraphs follows of course from P. 1.2.2 and from the case

of weak subgraphs (which has been proved above). �

Theorem 1.2.4. Let G ∈ AGd. Then

Sw(G) � Sw(G∗) and Sr(G) � Sr(G∗).

�����. (a): Let us take a function ϕ : Sw(G) −→ Sw(G∗) such that

ϕ(H) := H∗ for all H ∈ Sw(G).

We want to prove that ϕ is the required isomorphism. From P. 1.2.2 we have that ϕ
is well defined, and from P. 1.2.3 we obtain that ϕ is a bijection. Since Sw(G) and
Sw(G∗) are total algebras, we must only show

(H1 ∧H2)∗ = H∗
1 ∧H∗

2 and (H1 ∨H2)∗ =H∗
1 ∨H∗

2 for all H1,H2 ∈ Sw(G).

From the definition of the operations ∧ and ∨ (see P. 1.1.7) we have

V (H1∧H2)
∗
= V H1∧H2 = V H1 ∩ V H2 = V H∗1 ∩ V H∗2 = V H∗1∧H∗2 ,

E(H1∧H2)
∗
= EH1∧H2 = EH1 ∩EH2 = EH∗1 ∩EH∗2 = EH∗1∧H∗2 ,

V (H1∨H2)
∗
= V H1∨H2 = V H1 ∪ V H2 = V H∗1 ∪ V H∗2 = V H∗1∨H∗2 ,

E(H1∨H2)
∗
= EH1∨H2 = EH1 ∪EH2 = EH∗1 ∪EH∗2 = EH∗1∨H∗2 .

Since (H1 ∧H2)∗, (H1 ∨H2)∗,H∗
1 ∧H∗

2,H
∗
1 ∨H∗

2 ∈ Sw(G∗), so P. 1.1.6 implies the

desired equalities. This is the end of the proof of (a).
(b): We want to prove that ϕ|Sr(G) is the required isomorphism. P. 1.2.2 and (a)

imply that ϕ|Sr(G) goes into Sr(G∗). Secondly, from P. 1.2.3 we have that ϕ|Sr(G)

is a bijection. Since Sr(G) and Sr(G∗) are total algebras, we must only show

(H1 ∧H2)∗ =H∗
1 ∧H∗

2 and (H1 ∨H2)∗ = H∗
1 ∨H∗

2 for all H1,H2 ∈ Sr(G).

From the definition of the operations ∧ and ∨ (see P1.1.7) we have

V (H1∧H2)
∗
= V H1∧H2 = V H1 ∩ V H2 = V H∗1 ∩ V H∗2 = V H∗1∧H∗2 ,

V (H1∨H2)
∗
= V H1∨H2 = V H1 ∪ V H2 = V H∗1 ∪ V H∗2 = V H∗1∨H∗2 .

Since (H1 ∧H2)∗, (H1 ∨H2)∗,H∗
1 ∧H∗

2,H
∗
1 ∨H∗

2 ∈ Sw(G∗), so P. 1.1.6 implies the

desired equalities. Thus the proof of (b) is complete. �
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2.

We assume knowledge of basic concepts and facts from the theory of partial and
total algebras, and also from lattice theory (see e.g. [Bur], [BRR], [Grä1], [Grä2],

[Jón], [MMT]).
Now we recall only some basic notation and definitions. A unary partial algebra

of a unary type K (where K is a set of unary operation symbols) is an algebra
A =

〈
A, (fA)f∈K

〉
such that for all f ∈ K, fA is a partial function from A into

A, i.e. fA is a unary partial operation on A. The class of all unary partial algebras
of a unary type K will be denoted by UPAlg(K), and the class of all unary partial
algebras will be denoted by UPAlg.
Recall also that for a given unary partial algebra we can define at least four kinds of

subalgebras which form four different lattices of subalgebras. More precisely, let A =〈
A, (fA)f∈K

〉
,B =

〈
B, (fB)f∈K

〉
∈ UPAlg(K). B is a weak (relative) subalgebra

of A, denoted by B �w A (B �r A), iff B ⊆ A and fB ⊆ fA (fB = fA ∩ (B ×B))
for all f ∈ K. B is a strong subalgebra (initial segment) of A, denoted by B �s A
(B �d A), iff B ⊆ A and fB = fA ∩ (B ×A) (fB = fA ∩ (A×B)) for all f ∈ K.
Sw(A), Sr(A), Ss(A) and Sd(A) are the sets of all weak, relative, strong subalgebras
and initial segments of the unary partial algebra A respectively (of course the empty
algebra is simultaneously a weak, relative, strong subalgebra and an initial segment

of A).
Recall that Sw(A) = 〈Sw(A),�w〉, Sr(A) = 〈Sr(A),�r〉, Ss(A) = 〈Ss(A),�s〉

and Sd(A) = 〈Sd(A),�d〉 are complete lattices. More precisely, the operations of
infimum

∧
and supremum

∨
in the lattices Sw(A), Ss(A) and Sd(A) are defined in

the following way: for each non-empty family {Bi}i∈I ,

∧

i∈I

Bi :=

〈⋂

i∈I

Bi, (
⋂

i∈I

fBi)f∈K

〉
,

∨

i∈I

Bi :=

〈⋃

i∈I

Bi, (
⋃

i∈I

fBi)f∈K

〉
.

Secondly, for every set X ⊆ A there exists exactly one C �r A such that C = X.
Thus the operations of infimum

∧
and supremum

∨
in the lattice Sr(A) are de-

fined in the following way:
∧
i∈I

Bi :=
〈 ⋂

i∈I

Bi, (
⋂
i∈I

fBi)f∈K

〉
and

∨
i∈I

Bi is the unique

relative subalgebra which is induced by the set
⋃
i∈I

Bi.

In this chapter we first recall that with any unary partial algebra A we can asso-
ciate the digraph G(A) and the graph G∗(A). Next, we show the correspondence
between the class of all unary partial algebras of type K—UPAlg(K) and the class
of all digraphs of type |K|—AGd(|K|) (where |K| is the cardinality of the set K).
In the second section we prove that for any A ∈ UPAlg, the subalgebra lattices of

A are isomorphic to the subdigraph lattices of the digraph G(A). From this result
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we will obtain in a simple way that for any two unary partial algebras (they can even

be of different types) if their digraphs are isomorphic, then their subalgebra lattices
are also isomorphic.
In the third section we prove that for any two graphsG andH their weak subgraph

lattices are isomorphic iff the graphs G and H are isomorphic. From this result we
will also obtain that for any two digraphsG andH their weak subdigraph lattices are
isomorphic iff the graphs G∗ and H∗ are isomorphic. Secondly, we obtain another
proof of the following theorem (proved first in [Bar1]): for any two unary partial

algebras A and B their weak subalgebra lattices are isomorphic iff their graphs
G∗(A) and G∗(B) are isomorphic.
In the end of this chapter we show that the theorem which contains a full algebraic

characterization of the weak subalgebra lattice of a unary partial algebra from [Bar1]

can be generalized to digraphs and graphs. Next, we will prove a result which
characterizes (in graph language) unary partial algebras A and lattices L such that
Sw(A) � L. We also give analogous results for digraphs and graphs.

2.1.
In this section we first recall that with any unary partial algebra we can associate

in a natural way a digraph and a graph (see [Bar1]). Next, we will show that the
class of all unary partial algebras of a unary type K—UPAlg(K) is represented by
the class of all digraphs of type |K|—AGd(|K|).

Definition 2.1.1. Let A =
〈
A, (fA)f∈K

〉
∈ UPAlg(K). Then:

(a) G(A) =
〈
V G(A), EG(A), IG(A)

〉
is the digraph such that

V G(A) := A, EG(A) := {〈a, f, b〉 ∈ A×K ×A : 〈a, b〉 ∈ fA}
and IG(A)(〈a, f, b〉) := 〈a, b〉 for all 〈a, f, b〉 ∈ EG(A).

(b) G∗(A) := (G(A))∗.

Now we formulate and prove a few properties of the digraph G(A).

Proposition 2.1.2. Let A =
〈
A, (fA)f∈K

〉
∈ UPAlg(K). Then

G(A) ∈ AGd(|K|).

�����. Let us take an arbitrary v ∈ V G(A). Then D. 2.1.1 implies

EG(A)s (v) = {〈v, f, b〉 ∈ {v} ×K ×A : 〈v, b〉 ∈ fA},

so we can take a function Φ: EG(A)s (v)→ K such that

Φ(〈v, f, b〉) = f for all 〈v, f, b〉 ∈ EG(A)s (v).

307



Since fA is a partial function for all f ∈ K, we easily obtain that Φ is an injection.
Hence we have

sG(A)(v) := |EG(A)s (v)| � |K|.

Thus the proof is complete. �

The inverse result is also true. More precisely,

Theorem 2.1.3. Let η ∈ Card, G ∈ AGd(η) and let K be a unary type such
that

(∗) |K| = η.

Then there exists a unary partial algebra A such that

G �G(A) and A ∈ UPAlg(K).

�����. By virtue of (∗) there exist injections Φ(v) : EGs (v)→ K for all v ∈ V G.
Let us take

Φ :=
⋃

v∈V G

Φ(v).

Since EGs (w1) ∩ EGs (w2) = ∅ for all w1 	= w2 (recall that EGs (w) is the set of all
edges which start from w), we obtain easily that Φ is a well defined function from

EG into K. Secondly, by the definition of Φ we have
1) for all e1, e2 ∈ EG, if π1IG(e1) = π1IG(e2) and Φ(e1) = Φ(e2), then e1 = e2.
Now for all f ∈ K, let f be a binary relation such that for each a, b ∈ V G,

〈a, b〉 ∈ f iff ∃e∈EG Φ(e) = f and IG(e) = 〈a, b〉 .

Applying 1) we get that for all f ∈ K, f is a partial function of V G into V G. Thus
we obtain that

A =
〈
A, (fA)f∈K

〉
∈ UPAlg(K),

where

A := V G and fA := f for all f ∈ K.

Now we want to prove that

G � G(A).

Let ϕV := idV G and let ϕE : EG → V G ×K × V G be a mapping such that

ϕE(e) :=
〈
π1I

G(e),Φ(e), π2IG(e)
〉
for all e ∈ EG.
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From the above definitions and D. 2.1.1 we have

V G = A = V G(A), ϕE(E
G) = EG(A)

and for all e ∈ EG,
IG(A)(ϕE(e)) = I

G(e).

The property 1) implies also that ϕE is an injection. From this facts we obtain that
ϕ = 〈ϕV , ϕE〉 is an isomorphism of G onto G(A). This completes the proof of our
proposition. �

The following result is an immediate consequence of Th. 2.1.3:

Corollary 2.1.4. Let G ∈ AGd. Then there exists A ∈ UPAlg such that

G(A) �G.

�����. Let η := |EG|. Then G ∈ AGd(η), since sG(v) � |EG| for all v ∈ V G.
Now we apply P. 2.1.3. �

Proposition 2.1.5. Let G ∈ AGn. Then:

(a) There exists H ∈ AGd such that H∗ � G.
(b) There exists A ∈ UPAlg such that G∗(A) � G.

�����. The proof of (a) is left to the reader (it is enough to apply the axiom
of choice and for any e ∈ EG to choose from the set IG(e) exactly one vertex which
will be the initial vertex of e). (b) is obtained from (a) and Cor. 2.1.4. �

2.2.
Now we want to prove that for any unary partial algebra A its subalgebra lattices

are isomorphic to the subdigraph lattices of the digraphG(A). This theorem implies
of course that for any two unary partial algebras (they can even be of different unary
types) their lattices of subalgebras (weak, relative, strong and initial segment) are

isomorphic provided their digraphs are isomorphic.
To this purpose we have to prove some facts.

Proposition 2.2.1. Let A,B ∈ UPAlg. Then:
(a) B �w A iff G(B) �w G(A).
(b) B �r A iff G(B) �r G(A).
(c) B �s A iff G(B) �s G(A).
(d) B �d A iff G(B) �d G(A).
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�����. (a): “⇒” Let us assume that B �w A. Then from D. 2.1.1 we obtain

V G(B) ⊆ V G(A).

Secondly, for all f ∈ K and a, b ∈ B we have

〈a, f, b〉 ∈ EG(B) ⇒ 〈a, b〉 ∈ fB ⇒ 〈a, b〉 ∈ fA ⇒ 〈a, f, b〉 ∈ EG(A).

Now applying the definition of IG(B) and IG(A) we get G(B) �w G(A).
“⇐” Let us assume that G(B) �w G(A). Then from D. 1.1.4 and D. 2.1.1 we

obtain

B ⊆ A.

Secondly, for all f ∈ K and a, b ∈ B we have

〈a, b〉 ∈ fB ⇒ 〈a, f, b〉 ∈ EG(B) ⇒ 〈a, f, b〉 ∈ EG(A) ⇒ 〈a, b〉 ∈ fA.

So we have shown that B �w A.
(b): “⇒” Let B �r A and 〈a, f, b〉 ∈ EG(A). Then D. 2.1.1 implies

IG(A)(〈a, f, b〉) ∈ V G(B) × V G(B) ⇒ 〈a, b〉 ∈ fA

∧ a, b ∈ B ⇒ 〈a, b〉 ∈ fB ⇒ 〈a, f, b〉 ∈ EG(B).

Now from (a) and D. 1.1.4 we obtain G(B) �r G(A).
“⇐” Let G(B) �r G(A) and a, b ∈ A. Then D. 1.1.4 and D. 2.1.1 imply

〈a, b〉 ∈ fA and a, b ∈ B ⇒
〈a, f, b〉 ∈ EG(A) and IG(A)(〈a, f, b〉) ∈ V G(B) × V G(B) ⇒

〈a, f, b〉 ∈ EG(B) ⇒ 〈a, b〉 ∈ fB.

Now applying (a) we get B �r A.
The analogous proofs of (c) and (d) are left to the reader. �

Proposition 2.2.2. Let A,B ∈ UPAlg. Then A = B iff G(A) =G(B).

The proof follows straightforward from D. 2.1.1 and P. 2.2.1.

Proposition 2.2.3. Let A =
〈
A, (fA)f∈K

〉
∈ UPAlg(K) and H �w G(A).

Then there exists B �w A such that H =G(B).
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�����. Since H �w G(A), we have V H ⊆ V G(A) = A and EH ⊆ EG(A). Now

let B =
〈
B, (fB)f∈K

〉
be the pair such that

B = V H

and for all f ∈ K, a, b ∈ B,

〈a, b〉 ∈ fB iff 〈a, f, b〉 ∈ EH.

Then we obtain (see also D. 2.1.1)

B ⊆ V G(A) = A and fB ⊆ fA for all f ∈ K.

This facts clearly imply that B is a unary partial algebra and B �w A. Applying
once more the definitions of B and G(B) we can easily show that

G(B) =H.

This completes the proof. �

Now we can prove the main result of this section.

Theorem 2.2.4. Let A ∈ UPA. Then

Sw(A) � Sw(G(A)), Sr(A) � Sr(G(A)),

Ss(A) � Ss(G(A)), Sd(A) � Sd(G(A)).

�����. (a): Let us take the function ϕ : Sw(A)→ Sw(G(A)) such that

ϕ(B) = G(B) for all B ∈ Sw(A).

We want to prove that ϕ is the required isomorphism. P. 2.2.1 implies that ϕ is well

defined, and from P. 2.2.2 and P. 2.2.3 we have that ϕ is a bijection. Since Sw(A)
and Sw(G(A)) are total algebras, we must only show that for all B1,B2 ∈ Sw(A),

G(B1 ∧B2) =G(B1) ∧G(B2) and G(B1 ∨B2) = G(B1) ∨G(B2).

From D. 2.1.1 and the definition of the operation ∧ in the lattices Sw(A) and
Sw(G(A)) we obtain

V G(B1∧B2) = B1 ∩B2 = VG(B1) ∩ V G(B2) = V G(B1)∧G(B2).
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Secondly, for all f ∈ K and a, b ∈ A we have

〈a, f, b〉 ∈ EG(B1∧B2) ⇔ 〈a, b〉 ∈ fB1∧B2 ⇔ 〈a, b〉 ∈ fB1

∧ 〈a, b〉 ∈ fB2 ⇔ 〈a, f, b〉 ∈ EG(B1) ∩ EG(B2) ⇔ 〈a, f, b〉 ∈ EG(B1)∧G(B2).

So we have shown

V G(B1∧B2) = V G(B1)∧G(B2) and EG(B1∧B2) = EG(B1)∧G(B2).

From these facts and P.1.1.6 we obtain the first equality. The analogous proof of the

second equality is left to the reader.
(b): We want to prove that ϕ|Sr(A) is the required isomorphism. Applying P. 2.2.1

and (a) we get that ϕ|Sr(A) is a bijection of Sr(A) onto Sr(G(A)). Since Sr(A) and
Sr(G(A)) are total algebras, we must only show that for all B1,B2 ∈ Sw(A),

G(B1 ∧B2) =G(B1) ∧G(B2) and G(B1 ∨B2) = G(B1) ∨G(B2).

From D. 2.1.1 and the definition of the operation ∧ in the lattices Sr(A) and
Sr(G(A)) we obtain

VG(B1∧B2) = B1 ∩B2 = V G(B1) ∩ VG(B2) = V G(B1)∧G(B2)

and

V G(B1∨B2) = B1 ∪B2 = VG(B1) ∪ V G(B2) = V G(B1)∨G(B2).
From the above facts and P. 1.1.6 we obtain the desired equalities.

(c) and (d): P. 2.2.1 and (a) easily imply that ϕ|Ss(A) (ϕ|Sd(A)) is a bijection
of Ss(A) (Sd(A)) onto Ss(G(A)) (Sd(G(A))). Since A is a unary partial algebra,
Ss(A) (Sd(A)) is a sublattice of the lattice Sw(A). Thus from P. 1.1.7 and (a) we
obtain that ϕ|Ss(A) (ϕ|Sd(A)) is an isomorphism of the lattices Ss(A) and Ss(G(A))
(Sd(A) and Sd(G(A))). This completes the proof of (c) and (d). �

Recall that for anyA ∈ UPAlg and ∅ 	= B ⊆ A we have the least strong subalgebra
(initial segment) of A containing B. This strong subalgebra (initial segment) will be
denoted by 〈B〉sA (〈B〉

d
A). More formally, we define

〈B〉sA :=
∧
{C �s A : B ⊆ C} and 〈B〉dA :=

∧
{C �d A : B ⊆ C}.

Now observe that the above theorem implies the following conclusion:

Proposition 2.2.5. Let A ∈ UPAlg and ∅ 	= B ⊆ A. Then

G(〈B〉sA) = 〈B〉
s
G(A) and G(〈B〉dA) = 〈B〉

d
G(A) .
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�����. Let ϕ be the lattice isomorphism from the proof of Th. 2.2.4(a). Then

we easily obtain the following equalities:

G(〈B〉sA) = ϕ(〈B〉
s
A) = ϕ

(∧
{C �s A : B ⊆ C}

)

=
∧
{ϕ(C) �s ϕ(A) : B ⊆ V ϕ(C)} =

∧
{G(C) �s G(A) : B ⊆ V G(C)}

=
∧
{H �s G(A) : B ⊆ V H} =: 〈B〉sG(A) .

The analogous proof of the second part is omitted. �

Of course, isomorphic unary partial algebras have isomorphic lattices of subalge-

bras. Now Th. 2.2.5 implies the following stronger result:

Theorem 2.2.6. Let A,B ∈ UPAlg satisfy the condition

G(A) � G(B).

Then

Sw(A) � Sw(B), Sr(A) � Sr(B), Ss(A) � Ss(B), Sd(A) � Sd(B).

Theorem 2.2.4 and the results from chapter one imply also that the lattices of
weak and relative subalgebras ofA are isomorphic to the lattices of weak and relative
subgraphs of the graph G∗(A). More precisely, the following results are satisfied:

Theorem 2.2.7. Let A ∈ UPAlg. Then

Sw(A) � Sw(G∗(A)) and Sr(A) � Sr(G∗(A)).

Proof is obtained from Th. 1.2.4 and Th. 2.2.4. Observe that these isomorphisms

are provided by the function ϕ : Sw(A) −→ Sw(G∗(A)) such that

ϕ(B) = G∗(B) for all B ∈ Sw(A)

and the function ϕ|Sr(A). This follows from the proofs of these two theorems.

The above theorem implies the following result, which is a stronger version of
Th. 2.2.6 for the lattices of weak and relative subalgebras.

Theorem 2.2.8. Let A,B ∈ UPAlg satisfy the condition

G∗(A) � G∗(B).
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Then

Sw(A) � Sw(B) and Sr(A) � Sr(B).

2.3.
In the first part of this section we give another proof of the following theorem

(which has been proved first in [Bar1] by W. Bartol): for two unary partial algebras

A and B their weak subalgebra lattices Sw(A) and Sw(B) are isomorphic iff their
graphs G∗(A) and G∗(B) are isomorphic.
More precisely, applying Th. 2.2.7 we get that we must only prove the following

result: for any two graphs G and H their weak subgraph lattices are isomorphic iff
G and H are isomorphic. To this purpose we have to give a few facts about digraphs
and graphs.

We recall yet a few concepts of the lattice theory (see e.g. [Grä2], [Jón]). We
assume that the reader knows the definitions of complete, algebraic, distributive

lattices, etc. For any lattice L = 〈L,∧,∨〉, �L is the lattice partial ordering of L,
i.e. l �L k⇔ l = k ∧ l⇔ k = l ∨ k.
Now let L = 〈L,�L〉 be a complete lattice and let 0 be the least element (i.e. 0 :=∧
L). An element a ∈ L is an atom iff for all b ∈ L if 0 �L b �L a, then b = 0 or

b = a. An element i ∈ L is join irreducible iff for all l, k ∈ L if i = l ∨ k, then l = i

or k = i. Let us introduce the following notation:

La is the set of all atoms of the lattice L.
Li is the set of all i ∈ L such that i 	= 0, i 	∈ La, i is join irreducible.
Now we describe the sets Sw(G)a and Sw(G)i for any graph G. To this purpose

we start with the following definition:

Definition 2.3.1. Let G ∈ AGn, v ∈ V G and e ∈ EG. Then:
(a) G(v) is the weak subgraph of G which has one vertex v only and no edges.
(b) G(e) is the weak subgraph of G which has one edge e only and its endpoints as
the only vertices.

(c) NGV := {G(v) ∈ Sw(G) : v ∈ V G}, NGE := {G(e) ∈ Sw(G) : e ∈ EG}.

Lemma 2.3.2. Let G ∈ AGn. Then NGV = Sw(G)a and NGE = Sw(G)i.

The proof is obtained by a simple verification and is therefore omitted. Recall
that the empty graph ∅ = 〈∅, ∅, ∅〉 belongs to the set Sw(G) and it is the smallest
element with respect to the relation �w.
Now we can prove a result which describes the weak subgraph lattice of any graph.

Theorem 2.3.3. Let G,H ∈ AGn. Then

G � H iff Sw(G) � Sw(H).
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�����. The implication “⇒” is obvious.
“⇐”: Let Φ: Sw(G)→ Sw(H) be an isomorphism of lattices and let

ΦV := Φ|NG
V
, ΦE := Φ|NG

E
.

The definition of lattice isomorphism and L. 2.3.2 imply that ΦV (ΦE) is a bijection

from NGV (N
G
E ) onto N

H
V (N

H
E ).

Let ψV,G : V G → NGV and ψV,H : V H → NHV be functions such that

ψV,G(w) := G(w) for all w ∈ VG and ψV,H(u) :=H(u) for all u ∈ V H.

Let ψE,G : EG → NGE and ψE,H : EH → NHE be functions such that

ψE,G(e) := G(e) for all e ∈ EG and ψE,H(h) := H(h) for all h ∈ EH.

By D. 2.3.1 we easily obtain that ψV,G, ψV,H , ψE,G, ψE,H are bijections. Now let us

take
ϕV := ψ

−1
V,H ◦ ΦV ◦ ψV,G and ϕE := ψ

−1
E,H ◦ ΦE ◦ ψE,G.

We want to prove that the pair ϕ := 〈ϕV , ϕE〉 is an isomorphism of G onto H.
Obviously we have that ϕV (ϕE) is a bijection from V G (EG) onto V H (EH). Thus

we must only show

IH(ϕE(e)) = ϕV (IG(e)) for all e ∈ EG.

Let us take e ∈ EG and let w1, w2 ∈ V G, u1, u2 ∈ V H be vertices such that
{w1, w2} = IG(e) and {u1, u2} = IH(ϕE(e)). Then (see D. 2.3.1)

G(wi) �w G(e) and H(ui) �w H(ϕE(e)) for i = 1, 2.

Since Φ is a lattice isomorphism, L. 2.3.2 and the above facts imply

ΦV (G(wi)) �w ΦE(G(e)) and Φ−1V (H(ui)) �w Φ
−1
E (H(ϕE(e))) for i = 1, 2,

so by the definitions of ϕV , ϕE we have

H(ϕV (wi)) �w H(ϕE(e)) and G(ϕ−1V (ui)) �w G(e) for i = 1, 2.

Thus we obtain (see D. 2.3.1)

ϕV (wi) ∈ IH(ϕE(e)) and ϕ−1V (ui) ∈ IG(e), for i = 1, 2.

Hence we obviously get
IH(ϕE(e)) = ϕV (IG(e)).

This completes the proof of our theorem. �
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Theorem 2.3.4. Let G,H ∈ AGd. Then

Sw(G) � Sw(H) iff G∗ �H∗.

The proof is obtained from Th. 1.2.4 and Th. 2.3.3.

Theorem 2.3.5. (W. Bartol, 1989) Let A,B ∈ UPAlg. Then

Sw(A) � Sw(B) iff G∗(A) � G∗(B).

The proof follows easily from Th. 2.2.7 and Th. 2.3.3 (the above theorem has been
first formulated and proved by W. Bartol in [Bar1]. His proof does not use graph

theory, but is based on the algebraic description of the weak subalgebra lattice which
has been given in his paper). Observe also that unary partial algebras in this theorem

can even be of different unary types.
In the second part of this section we will show first that the full algebraic char-

acterization theorem of the weak subalgebra lattice of a unary partial algebra from
[Bar1] may be generalized to the case of digraphs and graphs.

Next, we will show that for any lattice L which satisfies the conditions (d.1)–
(d.4) from Th. 2.3.6 the graph from (c) may be constructed straightforward from L
(D. 2.3.7 and Th. 2.3.8).
At the end of this chapter, we apply this result obtaining a characterization (in

graph language) of the pairs 〈L,A〉, where A is a unary partial algebra and L is a
lattice such that Sw(A) � L. We will also give analogous results for digraphs and
graphs.

Theorem 2.3.6. Let L = 〈L,�L〉 be an arbitrary lattice. Then the following
conditions are equivalent:

(a) There exists A ∈ UPA such that Sw(A) � L.
(b) There exists G ∈ AGd such that Sw(G) � L.
(c) There exists exactly one (up to isomorphism) G ∈ AGn such that Sw(G) � L.
(d) The lattice L = 〈L,�L〉 satisfies the following conditions:
(d.1) L is algebraic and distributive,
(d.2) for all l ∈ L, l = ∨{k ∈ La ∪ Li ∪ {0} : k �L l},
(d.3) for each l ∈ Li, 1 � |{k ∈ La : k �L l}| � 2,
(d.4) Li is an antichain with respect to the lattice ordering �L.

The proof of the equivalence (a)⇔ (d) is given in the paper [Bar1]. The equiva-
lence (a)⇔ (b) is obtained from Cor. 2.1.4 and Th. 2.2.5. The equivalence (b)⇔ (c)
follows from Th. 1.2.4, P. 2.1.5 and Th. 2.3.3.

Now we show that the graph from (c) can be constructed straightforward from L.
More precisely,
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Definition 2.3.7. Let a lattice L = 〈L,�L〉 satisfy the conditions (d.1)–(d.4)
from Th. 2.3.6. Then G(L) is the graph such that

V G(L) := La, EG(L) := Li

and for all e ∈ EG(L),

IG(L)(e) := {v ∈ V G(L) : v �L e}.

A simple verification of the above definition (that G(L) is indeed a graph) is left
to the reader. Secondly, it is easily shown that for any two lattices L andK if L �K
then G(L) � G(K). The following result is also true:

Theorem 2.3.8. Let a lattice L satisfy (d.1)–(d.4) from Th. 2.3.6. Then

Sw(G(L)) � L.

�����. Th. 2.3.6 implies that there exists G ∈ AGn such that Sw(G) � L. So
we must only show that

G(L) � G.

Let Φ: Sw(G)→ L be a lattice isomorphism and let (see D. 2.3.1)

ΦV := Φ|NG
V
, ΦE := Φ|NG

E
.

The definition of a lattice isomorphism and L. 2.3.2 imply that ΦV (ΦE) is a bijection

from NGV (N
G
E ) onto L

a (Li).

Let ψV : V G → NG
V and ψE : EG → NG

E be functions such that

ψV (v) :=G(v) and ψE(e) := G(e) for all v ∈ V G, e ∈ EG.

Then ψV (ψE) is a bijection from V G (EG) onto NGV (N
G
E ) (see D. 2.3.1). Now let

us take

ϕV := ΦV ◦ ψV and ϕE := ΦE ◦ ψE .

We want to show that ϕ = 〈ϕV , ϕE〉 is an isomorphism ofG andG(L). First observe
that from the above facts and the definition of G(L) we obtain that ϕV (ϕE) is a

bijection from V G (EG) onto V G(L) (EG(L)). So we must only prove

ϕV (IG(e)) = IG(L)(ϕE(e)) for all e ∈ EG.
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Let us take e ∈ EG. D. 2.3.1 and D. 2.3.7 imply

v ∈ IG(e)⇒ ψV (v) �w ψE(e)⇒ ΦV (ψV (e)) �L ΦE(ψE(e))

⇒ ϕV (v) �L ϕE(e)⇒ ϕV (v) ∈ IG(L)(ϕE(e)).

Thus we have shown

ϕV (IG(e)) ⊆ IG(L)(ϕE(e)).

Now let IG(L)(ϕE(e)) = {u1, u2}, i.e. u1, u2 �L ϕE(e) (see D. 2.3.7). Since Φ is a

lattice isomorphism, we obtain

Φ−1V (ui) �w Φ
−1
E (ϕE(e)) = ψE(e) for i = 1, 2.

Hence and by D. 2.3.1 and L. 2.3.2 we get

ψ−1V ◦ Φ−1V (ui) ∈ IG(e) for i = 1, 2.

Since ϕ−1V = ψ−1V ◦ Φ−1V and ϕ−1E = ψ−1E ◦ Φ−1E , we obtain from the above fact that

ϕ−1V (ui) ∈ IG(e), for i = 1, 2.

Thus we have shown that

IG(L)(ϕE(e)) ⊆ ϕV (I
G(e)).

These two inclusions imply the desired equality. This completes our proof. �

Theorem 2.3.9. Let G ∈ AGd (G ∈ AGn). Then

G(Sw(G)) � G∗ (G(Sw(G)) � G).

The proof follows from Th. 1.2.4, Th. 2.3.3 and Th. 2.3.8.

Theorem 2.3.10. Let A ∈ UPAlg. Then

G(Sw(A)) �G∗(A).

The proof is obtained from Th. 2.2.7 and Th. 2.3.9.

Now we can give a characterization (in the graph language) of the pairs 〈L,G〉,
where L is a lattice and G is a digraph (graph) such that Sw(G) � L. Moreover, we
also prove the analogous result for the pairs 〈L,A〉, where L is a lattice and A is a
unary partial algebra such that Sw(A) � L.

Theorem 2.3.11. Let a lattice L satisfy (d.1)–(d.4) from Th. 2.3.6 and let G ∈
AGd (G ∈ AGn). Then the following conditions are equivalent:

(a) Sw(G) � L.
(b) G∗ � G(L) (G �G(L)).
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The proof is obtained from Th. 1.2.4, Th. 2.3.3 and Th. 2.3.8.

Theorem 2.3.12. Let a lattice L satisfy (d.1)–(d.4) from Th. 2.3.6 and let A ∈
UPA. Then the following conditions are equivalent:
(a) Sw(A) � L.
(b) Sw(G∗(A)) � L.
(c) G∗(A) �G(L).

The proof follows straightforward from Th. 2.2.7 and Th. 2.3.11.

Theorem 2.3.13. Let a lattice L satisfy (d.1)–(d.4) from Th. 2.3.6 and let K
be a unary algebraic type (i.e. K is a set of unary operation symbols). Then the

following conditions are equivalent:

(a) There exists A ∈ UPAlg(K) such that Sw(A) � L.
(b) There exists A ∈ UPAlg(K) such that G∗(A) �G(L).
(c) There exists G ∈ AGd(|K|) such that Sw(G) � L.
(d) There exists G ∈ AGd(|K|) such that G∗ � G(L).

The equivalence (a) ⇔ (b) ((c) ⇔ (d)) follows from Th. 2.3.12 (Th. 2.3.11), and
the equivalence (a)⇔ (c) is obtained from P. 2.1.2, P. 2.1.3 and Th. 2.2.4(a).
Applying this result (and also other results from this paper) we will characterize in

a subsequent paper the pairs 〈L,K〉, where L is a lattice and K is a unary algebraic
type, such that there exists a unary partial algebra A of the unary type K with the
weak subalgebra lattice Sw(A) isomorphic to L.
Recall that such a characterization for arbitrary algebraic lattices and arbitrary

types in the case of total algebras is an important problem of Universal Algebra (see
e.g. [Jón]) which is not completely solved yet. But for weak subalgebra lattices of

unary partial algebras we can give a complete solution.
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