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EIGENVALUE DISTRIBUTION OF CERTAIN RAY PATTERNS
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Abstract. In this paper, the eigenvalue distribution of complex matrices with certain ray
patterns is investigated. Cyclically real ray patterns and ray patterns that are signature
similar to real sign patterns are characterized, and their eigenvalue distribution is discussed.
Among other results, the following classes of ray patterns are characterized: ray patterns
that require eigenvalues along a fixed line in the complex plane, ray patterns that require
eigenvalues symmetric about a fixed line, and ray patterns that require eigenvalues to be
in a half-plane. Finally, some generalizations and open questions related to eigenvalue
distribution are mentioned.
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1. Introduction

Interest in qualitative matrix analysis was stimulated, in part, by the need to ana-
lyze certain dynamical systems for which only qualitative information was available.

Such systems arise in economics, ecology, biology, chemistry, mechanics and energy
planning when only the directions of certain effects are known. Much interest has

been focused on qualitative matrix methods, since certain combinatorial results can
be obtained from them.

Until recently, qualitative matrix analysis involved the study of properties referring
to a real matrix, based strictly upon knowledge of the signs of the entries of the

matrix. A matrix whose entries are from the set {+,−, 0} is called a (real) sign
pattern (matrix). However, both in theory and in many applications, it is often

necessary to consider complex matrices. For example, linear dynamical systems with
complex entries occur in quantum mechanics (see [6, Chapter 8]). Hence, it is useful
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to investigate properties of complex matrices based upon the patterns of their entries.

Two recent papers ([3] and [8]) have begun an investigation of patterns of complex
matrices.

The set of all nonzero complex numbers whose arguments are equal to α (0 �
α < 2�), is called a ray, denoted by eiα. If β − α = 2k�, where k is an integer and

0 � α < 2�, we identify eiβ with eiα. It should be clear from the context that eiα

means either the ray eiα or the complex number eiα. A ray pattern A = (akj) is a

matrix, each of whose entries is either 0 or a ray eiαkj (see [3] or [8]). It can be seen
from this definition that ray pattern matrices are generalizations of real sign pattern

matrices.

Associated with each n-by-n ray pattern A = (akj) is a natural class of complex

matrices called the ray pattern class of A, defined by

R(A) = {B ∈ Mn(� ) | bkj = 0 iff akj = 0, arg bkj = arg akj whenever akj �= 0}.

Let P be a property referring to a complex matrix. Then a ray pattern A is said to
require P if every B ∈ R(A) has property P , and A is said to allow P if there is

some B ∈ R(A) that has property P .

The primary motivating issue for this paper is to locate the eigenvalue regions in

the complex plane for certain ray patterns. As in many other eigenvalue classification
problems in qualitiative matrix analysis, we use the fact that the eigenvalues depend

continuously upon the entries of a matrix.

The usual definitions of reducible and irreducible matrices can be extended to ray
patterns. Consequently, the Frobenius normal form of a reducible ray pattern A is a

block upper (lower) triangular ray pattern, each of whose diagonal blocks Aii is an ni-
by-ni irreducible ray pattern called an irreducible component of A. If A is a reducible

ray pattern in Frobenius normal form, and if B ∈ R(A), then it is well known that
the spectrum (the set of all eigenvalues) of B is the union (including multiplicities)

of the spectra of the irreducible components Bii, where each Bii ∈ R(Aii). Since
the eigenvalues of a matrix are similarity invariants, we may assume, without loss

of generality, that the ray pattern is in Frobenius normal form. Hence, if P is the
property that all eigenvalues lie in a specific subset of the complex plane, then it
is clear that a reducible ray pattern A requires P if and only if each irreducible

component of A requires P . Thus, without loss of generality, we may assume that A

is irreducible in the statements of our results concerning eigenvalue regions.

To describe our results, we define a simple p-cycle in a ray pattern A = (akj)

to be a formal product γ = ak1k2ak2k3 . . . akpk1 , where the indices k1, k2, . . . , kp are
distinct. We define a composite p-cycle to be a product of the form γ = γ1γ2 . . . γm,
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where each γk is a simple p
k
-cycle,

m∑
k=1

pk = p, and the index sets of the γk’s are

mutually disjoint. By ap(γ), we mean the actual product of the entries in γ, where

the multiplication is carried out in the usual way. For example, for the 2-cycle
γ = eiαeiβ , then ap(γ) = eiθ, where θ = α + β (modulo 2�). We associate the rays
e0i, e�i, e

�

2 i and e
3�
2 i with +, −, i and −i, respectively. If ap(γ) equals +, −, i or −i,

we say γ is a positive, negative, positive pure imaginary or negative pure imaginary
cycle, respectively. In the remainder of this paper, when we say cycle we mean a

nonzero cycle, that is, we mean a cycle that contains no zero entries. We say that
a ray pattern A is cyclically real if for every cycle γ in A, ap(γ) is real, that is, +

or −.
In Section 2, we show that an irreducible ray pattern is cyclically real if and only

if it is signature similar to a real sign pattern matrix, where a signature pattern is
a diagonal ray pattern with nonzero diagonal entries. This characterization shows

that cyclically real ray patterns generalize real sign patterns in the sense that the
eigenvalue distribution of any irreducible cyclically real pattern is the same as the

eigenvalue distribution of a real sign pattern. This is analogous to the generalization
of nonnegative patterns to cyclically nonnegative patterns, see [3]. Cyclically real ray

patterns A are also characterized in terms of the spectra of the matrices in R(A). Fi-
nally, a characterization is given for reducible ray patterns that are signature similar

to real patterns.

In Section 3, we characterize the ray patterns that require all the eigenvalues of the
matrices in R(A) to lie along a specified line in the complex plane or in a half-plane.

In particular, we characterize the patterns that require all real eigenvalues, and the
patterns that require all pure imaginary eigenvalues. In Section 4, we discuss the

more general sector patterns (see [3]), and we give some open questions concerning
ray patterns and sector patterns.

2. Cyclically real ray patterns

Considerable research has been done to characterize the eigenvalues of certain real

sign pattern matrices (see, for example, [1], [2], or [4]). A natural question to consider
is: What are the ray patterns that preserve the eigenvalue characterizations of real
sign patterns?

If S is a signature pattern, by S−1, we mean the ray pattern such that

S−1S = SS−1 =



+ 0
.. .

0 +


 .
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If A is an n-by-n ray pattern matrix, and S is a signature pattern of order n, then

S−1AS is called a signature similarity of A, where matrix multiplication is carried
out in the usual way. We use the fact that all signature similarities of a ray pattern
A preserve the qualitative cycle structure of A. That is, if γ is a cycle in A, and if γs

is the corresponding cycle in the signature similarity S−1AS, then ap(γ) = ap(γs).

In this section, among other results, we show that irreducible cyclically real ray
patterns are signature similar to real sign patterns, and, therefore, all eigenvalue

characterizations for real sign patterns carry over to these patterns. We begin by
considering entrywise nonzero cyclically real patterns in Lemma 2.1.

Lemma 2.1. If A is an entrywise nonzero cyclically real ray pattern matrix,

then A is signature similar to an entrywise nonzero real sign pattern matrix.

�����. We use induction on the order n of the ray pattern A. Clearly, the
result is true for n = 1. Now assume the result is true for entrywise nonzero cyclically

real ray patterns of order n − 1. Let A be an entrywise nonzero cyclically real ray
pattern of order n. By the induction hypothesis, there exists a signature pattern S,
such that

S−1AS =

(
A1 A2

A3 A4

)
,

where A1 is an entrywise nonzero real sign pattern matrix of order n− 1, and where
A4 = (ann) = ± since A is cyclically real.

We know that A cyclically real implies that S−1AS is cyclically real. Consequently,
the cycle

(S−1AS)nk(S
−1AS)kj(S

−1AS)jn

is real, for all indices 1 � k, j < n. Since (S−1AS)kj is an entry in the real sign
pattern matrix A1, (S−1AS)kj is real, and it follows that (S−1AS)nk(S−1AS)jn is

real for all indices 1 � k, j < n. Since (S−1AS)nk is an entry in A3, and (S−1AS)jn

is an entry in A2 for all indices 1 � k, j < n, it follows that each entry in A2 equals

±x, where x = eiθ for some θ, 0 � θ < 2�, and each entry in A3 equals ±x. Now
let S1 = diag

(
+, . . . ,+, e−iθ

)
. Then it is easy to verify that S−1

1 (S
−1AS)S1 is an

entrywise nonzero real sign pattern matrix. �

Theorem 2.2. An irreducible ray pattern A is cyclically real if and only if A is

signature similar to a real sign pattern matrix.

�����. Let A = (akj) be an n-by-n irreducible cyclically real pattern. Let

P1 = akj1aj1j2 . . . ajpj be a path from k to j. Since A is irreducible, there is at least
one path from j to k, say, P = ajm1am1m2 . . . amqk. Since P1P is a product of simple
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cycles in A, it follows that ap(P1P ) = + or −. Thus, if x = ap(P1), and if y = ap(P ),
then y = ±x.
Define the n-by-n matrix A′ = (a′kj) by

a′kj =

{
akj if akj �= 0;
ap(Pkj) if akj = 0, where Pkj is some path from k to j.

Then it can be seen that A′ is entrywise nonzero and cyclically real. From Lemma

2.1, there exists a signature pattern S such that S−1A′S is real; hence, S−1AS is
real.

Since the converse is obvious, we omit the proof. �

Example 2.3. Let

A =




0 e−iθ1 0 −e−iθ1

0 + −e−iθ2 0
ei(θ1+θ2) −eiθ2 0 −eiθ2
eiθ1 − 0 −


 .

Then A is cyclically real, and A is signature similar to




0 + 0 +

0 + − 0
+ − 0 +

− + 0 −


 = S−1AS,

where S = diag
(
e−iθ1 ,+, eiθ2 ,−

)
.

An immediate consequence of Theorem 2.2 is that if A is an irreducible cyclically

real ray pattern, then there exists a signature pattern S such that S−1AS = Â,
where Â is a real sign pattern matrix. Thus,

R(Â) = {B̂ ∈ Mn(�) | B̂ = D−1BD, B ∈ R(A)}

where D is the unique complex matrix in R(S), whose diagonal entries have moduli

equal to 1. Now let T be a subset of the complex numbers � . Since eigenvalues
are similarity invariants, it follows that A requires k eigenvalues in T if and only if

Â requires k eigenvalues in T , for some integer 1 � k � n. With this in mind, we
state Theorem 2.4 which follows from Theorem 1.1 in [4]. First, however, we extend

two definitions to ray patterns that are needed to describe our results. A square ray
pattern matrix A is ray nonsingular if every B ∈ R(A) is nonsingular. A ray pattern

A is bipartite if the directed graph D(A) is bipartite (see [4]).

Theorem 2.4. An irreducible n-by-n cyclically real ray pattern A requires all

nonreal eigenvalues if and only if A satisfies all of the following:

i) A is bipartite;
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ii) all simple cycles in A are negative; and

iii) A is ray nonsingular.

In Section 3, we characterize additional cyclically real ray patterns. Now, however,
we turn our attention to a result that relates a cyclically real ray pattern A to the

eigenvalues of the matrices B in R(A)

Theorem 2.5. An n-by-n irreducible ray pattern A is cyclically real if and only

if A requires all of the nonreal eigenvalues (if any) to occur in complex conjugate

pairs.

�����. First assume that A is an n-by-n irreducible cyclically real ray pattern.
From Theorem 2.2, we know that there exists a nonsingular diagonal matrix D

such that D−1BD is a real matrix for each B ∈ R(A). Consequently, the nonreal
eigenvalues (if any) of every B ∈ R(A) occur in complex conjugate pairs, that is, A

requires the desired property.

Conversely, assume that A requires all the nonreal eigenvalues (if any) to occur in
complex conjugate pairs. For contradiction, assume A has a nonreal simple p-cycle

γ = ak1k2 . . . akpk1 . We emphasize the cycle γ in A, by choosing a matrix B ∈ R(A)
such that the entries in B along γ are of modulus 1, and the other nonzero entries

in B are of moduli less than or equal to a sufficiently small ε > 0 (see [4]). Then
p eigenvalues of B are arbitrarily close to the pth complex roots of some nonreal

number eiθ. Since the product of these p roots is ±eiθ, it follows that there is at
least one nonreal root whose conjugate is not a root, otherwise, the product would be

real. Thus B has at least one nonreal eigenvalue that does not occur in a conjugate
pair, contradicting our assumption that A requires all nonreal eigenvalues to occur

in conjugate pairs. Consequently, we conclude that A is cyclically real. �

An alternative statement of Theorem 2.5 is that the spectrum of every B ∈ R(A)

is symmetric with respect to the real axis in the complex plane if and only if A

is cyclically real. In order to generalize this result, we let L(θ) be the line in the

complex plane containing the ray eiθ. If A = (akj) is a ray pattern, we define the
ray pattern eiαA by eiαA = (eiαakj).

Corollary 2.6. Let A be an n-by-n irreducible ray pattern. Then A requires

the locations of the eigenvalues in the complex plane to be symmetric with respect

to the line L(θ) if and only if e−iθA is cyclically real.

�����. Suppose e−iθA is cyclically real. From Theorem 2.5 and the comment

immediately preceeding this corollary, we know that the spectrum of every matrix
in the ray pattern class of e−iθA is symmetric with respect to the real axis. If an
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eigenvalue of any matrix e−iθB ∈ R(e−iθA) is real, it lies on L(0). Consequently,

if λ is a real eigenvalue of e−iθB then eiθλ ∈ σ(B) lies on L(θ). Now suppose λ is
any nonreal eigenvalue of e−iθB. Then by symmetry, λ ∈ σ(eiθB). Hence, eiθλ and
eiθλ are eigenvalues of B that are clearly symmetric with respect to L(θ). Thus A

requires that the eigenvalues of each of the matrices in R(A) to be symmetric about
the line L(θ).

Since the converse argument is similar, we omit the proof. �

The conjugate of a ray is defined in the natural way, for example, the conjugate

of eiα (0 � α < 2�) is ei(2�−α). Hence A∗ is defined in the usual way. If A = (akj)
is a cyclically real ray pattern, then all 2-cycles of A are real, that is, ajk = ±akj or
0. Hence if A is a cyclically real ray pattern (as in Theorem 2.7), then each entry of

A+ A∗ is a ray, a line through the origin, or 0. We define a generalized ray pattern
to be a matrix, each of whose entries is either 0, a ray, or a line through the origin.

Note that the notions such as “cycles” and “cyclically real” extend to generalized ray
patterns. In particular, a cycle γ in a generalized ray pattern is real if ap(γ) is +, −,
or #, where # is the ambiguous sum (+)+ (−), that is, in the context of this paper,
# is the same as L(0). We also observe that Theorem 2.2 extends to generalized

ray patterns, that is, an irreducible generalized ray pattern A is cyclically real if and
only if A is signature similar to a generalized real sign pattern [7], each of whose

entries is in the set {+,−, 0,#}.
Since every cycle of a reducible matrix in Frobenius normal form occurs in some

irreducible component, a ray pattern is cyclically real if and only if each irreducible

component is cyclically real. It is also of interest to characterize reducible n-by-n ray
patterns that are signature similar to real sign pattern matrices. In Theorem 2.2, the

irreducible ray patterns that are signature similar to real sign patterns are character-
ized in terms of cycles. However, if a ray pattern A is reducible, then a nonzero entry

of A is not necessarily on a cycle, and, hence, the cycle condition is not sufficient for
A to be signature similar to a real sign pattern. For example, if

A =



+ + i

0 − −
0 0 +


 ,

then A is cyclically real, but A is not signature similar to a real sign pattern, as can

be seen from the next theorem.

Theorem 2.7. Let A be an n-by-n ray pattern. Then the following are equiva-

lent:

i) A is signature similar to a real sign pattern;
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ii) A is cyclically real and A+A∗ is signature similar to a generalized real sign

pattern;

iii) A and A+A∗ are both cyclically real.

�����. i) ⇒ ii). If S−1AS is real for some signature pattern S, then S−1A∗S is
also real. Hence S−1(A+A∗)S is a generalized real sign pattern.

ii) ⇒ iii) is clear.
iii) ⇒ i). Recall that A is a cyclically real ray pattern implies that A + A∗ is a

generalized ray pattern. Now suppose both A and A+ A∗ are cyclically real. Since
(A+A∗)∗ = A+A∗, the Frobenius normal form of A+A∗ is given by

P ∗(A+A∗)P =




A11
A22

. . .

Amm


 ,

for some permutation pattern P . Since each irreducible component Aii is cyclically

real, by the modified version of Theorem 2.2 mentioned above, there exists a signature
matrix Sii such that S−1

ii AiiSii is a generalized real sign pattern matrix. Therefore

if

S =




S11
. . .

Smm


 ,

then S−1P ∗(A + A∗)PS is a generalized real sign pattern, and hence, so is

PS−1P ∗(A+A∗)PSP ∗. Clearly, S̃ = PSP ∗ is a signature pattern, and S̃−1(A+A∗)S̃
is a generalized real sign pattern. Notice that S̃−1(A + A∗)S̃ = S̃−1AS̃ + S̃−1A∗S̃.

Since the sum of two ray patterns is a generalized real sign pattern only when the
two ray patterns are real, it follows that S̃−1AS̃ is real, that is, A is signature similar

to a real sign pattern. �

Example 2.8. Let

A =




0 e−iθ1 0 eiθ2 +

0 + −eiθ1 −ei(θ1+θ2) 0
+ e−iθ1 − 0 −
0 0 0 + e−iθ2

0 0 0 eiθ2 0




.

Then since A + A∗ is cyclically real, it follows that A is signature similar to a real

sign pattern. Indeed, S−1AS is a real sign pattern if S = diag
(
+, eiθ1 ,+, e−iθ2 ,+

)
.
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3. Patterns that require eigenvalues along a line or in a half-plane

We first consider ray patterns that require all eigenvalues distributed along a fixed
line in the complex plane. We begin with the fundamental case where the line

involved is the real axis.

Theorem 3.1. Let A be an n-by-n irreducible ray pattern. Then A requires all

real eigenvalues if and only if

i) each diagonal entry of A is in the set {0,+,-},
ii) all simple 2-cycles in A are positive, and

iii) there are no simple cycles in A of length greater than 2.

�����. Suppose that A requires all real eigenvalues. Assume that A has a non-
real diagonal entry, that is, A has a nonreal 1-cycle γ. By emphasizing γ, we can find

a complex matrix B ∈ S(A) that has at least one nonreal eigenvalue, contradicting
the assumption that A requires all real eigenvalues. Thus i) is true. To prove ii), as-

sume that A has a simple nonpositive 2-cycle γ = ak1k2ak2k1 . Then by emphasizing
γ, we can find a matrix B = (bkj) ∈ S(A), such that c = bk1k2bk2k1 = e

iθ is not a

positive number. It can be seen that B has two nonreal eigenvalues, arbitrarily close
to ±ei θ

2 , contradicting the assumption that A requires all real eigenvalues. Thus

ii) holds. Finally, assume that A has a simple p-cycle γ, for some p � 3. Then by
emphasizing γ, we can find a matrix B = (bkj) ∈ S(A), such that B has p eigenval-

ues arbitrarily close to the p-th complex roots of some eiθ. At least p − 2 of these
eigenvalues would be nonreal, contradicting the assumption that A requires all real

eigenvalues. Thus we have iii).
Conversely, suppose that conditions i)-iii) hold. Then it is easy to see that A

is cyclically real. By Theorem 2.2, A is signature similar to a real sign pattern
matrix (in which conditions ii) and iii) remain true). Since eigenvalue properties are

invariant under signature similarity, it follows that A requires all real eigenvalues
(see [4, Theorem 1.6]). �

By multiplying each entry of the ray patterns in Theorem 3.1 by a fixed ray eiθ,
clearly we get ray patterns that require all eigenvalues to be along the line L(θ).

Therefore, we have the following two corollaries.

Corollary 3.2. Let A be an n-by-n irreducible ray pattern. Then A requires all

pure imaginary eigenvalues if and only if

i) each diagonal entry of A is in the set {0, i,−i},
ii) all simple 2-cycles in A are negative, and

iii) there are no simple cycles in A of length greater than 2.
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�����. A requires all pure imaginary eigenvalues if and only if iA requires all

real eigenvalues. �

Corollary 3.3. Let A be an n-by-n irreducible ray pattern. Then A requires all

eigenvalues on the line L(θ) if and only if

i) each diagonal entry of A lies on the line L(θ),
ii) all simple 2-cycles in A are of the form (eiα)(ei(2θ−α)), for some α, 0 � α < 2�,

and

iii) there are no simple cycles in A of length greater than 2.

�����. A requires all eigenvalues on the line L(θ) if and only if e−iθA requires
all real eigenvalues. �

Clearly, an n-by-n ray pattern A allows an eigenvalue not on the line L(θ) if and
only if A does not satisfy at least one of the three conditions stated in the above

corollary.

Another eigenvalue region of considerable interest is a half-plane. Recall that a

matrix B is said to be stable if each eigenvalue of B has negative real part, that is,
lies in the left half-plane. As in [3], we say a ray pattern A is ray stable if every

B ∈ R(A) is stable. The following result is Theorem 5.2 in [3].

Theorem 3.4. Let A be an n-by-n irreducible ray pattern, where all the diagonal

entries of A are in the left half-plane. Then A is ray stable if and only if

i) all simple 2-cycles in A are negative, and

ii) there are no simple cycles in A of length greater than 2.

Let H(θ) denote the open half-plane consisting of all rays that can be obtained

by rotating eiθ counterclockwise through an angle γ, 0 < γ < �. Note that H(θ) can

be obtained by rotating the left half-plane counterclockwise through an angle θ− �

2
.

Consequently, we obtain the following generalization of Theorem 3.4.

Corollary 3.5. Let A be an n-by-n irreducible ray pattern, where all the diag-

onal entries of A are in H(θ). Then A requires all eigenvalues to be in H(θ) if and

only if

i) all simple 2-cycles in A are of the form (eiα)(ei(2θ−α)), for some α, 0 � α < 2�,

and

ii) there are no simple cycles in A of length greater than 2.

�����. A requires all eigenvalues to be in H(θ) if and only if ei(�/2−θ)A is ray
stable. �
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We say that an n-by-n ray pattern A is ray semistable if, for each B ∈ R(A),

Re(λ) � 0 for all λ in the spectrum of B. Note that a matrix B is semistable if and
only if B − εI is stable for every ε > 0. Thus the following corollary follows from
Theorem 3.4.

Corollary 3.6. Let A be an n-by-n irreducible ray pattern. Then A is ray

semistable if and only if

i) all diagonal entries of A are in the closed left half-plane,
ii) all simple 2-cycles in A are negative, and

iii) there are no simple cycles in A of length greater than 2.

Corollary 3.7. Let A be an n-by-n irreducible ray pattern. Then A requires all

eigenvalues to be in the closure of H(θ) if and only if

i) all diagonal entries of A are in the closure of H(θ),
ii) all simple 2-cycles in A are of the form (eiα)(ei(2θ−α)), for some α, 0 � α < 2�,

and

iii) there are no simple cycles in A of length greater than 2.

4. Generalizations and open questions

Recall that in [3], a sector pattern is defined to be a matrix where each entry

is either 0 or an arbitrary sector (with vertex at the origin) in the complex plane.
Associated with each sector pattern A is a sector pattern class, S (A), defined in

an analogous manner to a ray pattern class. We note that the definition of a sector
pattern is analogous to the definition of an interval matrix (see [9] for a recent

reference).

Replacing real sign pattern classes with sector pattern classes, it is easy to see that
the results on repeated eigenvalues in [5] hold for sector patterns. A key observation

is that the proof of the lemma in [5] can be modified to show that the results of the
lemma hold for sector patterns. Since all the other proofs of the results in [5] are

entirely combinatorial and rely only on the zero/nonzero structure of the matrices,
these proofs also hold for sector patterns.

If an irreducible sector pattern A (whose diagonal entries are rays) requires the

eigenvalues to lie on a line or in a half-plane, then it can be seen that A has no simple
cycle of length � 3, and each nonzero off-diagonal entry is on a simple 2-cyle whose
actual product is a ray. Thus each nonzero off-diagonal entry is, in fact, a ray, and
the sector pattern degenerates to a ray pattern. This is why we stated the results
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in Section 3 directly in terms of ray patterns, instead of sector patterns. However,

we note that Theorem 3.4 and its corollaries could be stated in such a way that the
diagonal entries are any sectors in the particular half-plane. The proofs remain the
same since any complex matrix B in a sector pattern class is in a ray pattern class.

It should be noted that if the restriction on diagonal entries in Theorem 3.4 is
relaxed, namely, to allow some diagonal entries to have real part 0, then the charac-

terization of ray stable patterns remains open.

In Theorem 2.4, we characterized the n-by-n cyclically real ray patterns that

require all nonreal eigenvalues. However, Theorem 2.4 is not valid for ray patterns

that are not cyclically real. For example,

(
+ i

+ 0

)
requires all nonreal eigenvalues,

but does not satisfy conditions i) and ii) of Theorem 2.4. A natural research question
is to identify the ray patterns that require all nonreal eigenvalues.

More generally, it is of interest to determine the ray patterns and sector patterns
that require k nonreal eigenvalues, for some integer k between 1 and n. The following

is an example of a sector pattern that requires 3 nonreal eigenvalues.

Example 4.1. Let

A =




0 [ei0, ei�/6] 0 0 0
0 0 ei�/3 0 0

[ei0, ei�/6] 0 0 [ei0, ei�/5] 0
0 0 0 0 ei�/5

0 0 [ei0, ei�/5] 0 0




.

Then the characteristic polynomial of any B ∈ S (A) has the form x2(x3 − c) = 0,

where the complex number c has a positive imaginary part. In fact, c is in [ei
�

3 ,
ei
2�
3 ] + [ei

�

5 , ei
3�
5 ] = (ei

�

5 , ei
2�
3 ), where the addition of the sectors is carried out in

the usual way of adding two subsets. Hence, the three nonzero eigenvalues are in
the union of the sectors (ei

�

15 , ei
2�
9 ), (ei

11�
15 , ei

8�
9 ), and (ei

21�
15 , ei

14�
9 ). Further, each of

these sectors contains precisely one eigenvalue of B. Clearly, A requires three nonreal
eigenvalues and two zero eigenvalues. This type of pattern is called a C3-cockade

(see [7]).

In Section 3, the ray patterns that require all the eigenvalues lie along a line or in

a half-plane were studied. It is known that all the simple cycles in such ray patterns
have length 1 or 2. Note that a half-plane may be regarded as a sector with central

angle �. If, however, a ray pattern A has a cycle γ of length k � 3, and requires that
all the eigenvalues to lie in a sector Ω, then by emphasizing the cycle γ we can get

a matrix B ∈ R(A) that has k eigenvalues arbitrarily close to the k-th roots of a
complex number of modulus 1. Hence, the central angle of the sector Ω must be at
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least k−1
k 2� (� 4�/3). If a sector Ω with central angle θ � 4�/3 is specified, how can

one characterize the ray patterns (or sector patterns) that require all the eigenvalues
to lie in Ω?

We now consider sector patterns that do not have simple cycles of length � 4.
The following proposition can be proved by emphasizing the simple cyles of specified
lengths in A.

Proposition 4.2. Let Ω = (eiα, ei(2�−α)), �4 < α � �

3 . Suppose a sector pattern

A requires all eigenvalues to be in Ω. Then

i) each diagonal entry of A is 0 or is in Ω;
ii) each simple 2-cycle γ in A satisfies ap(γ) ⊆ (ei2α, ei(2�−2α));

iii) each simple 3-cycle γ in A satisfies ap(γ) ⊆ (ei3α, ei(2�−3α)); and
iv) there is no simple cycle in A of length k � 4.

In Proposition 4.2, for convenience of notation, we defined Ω so that its bisector
is the negative real axis. However, Ω could be rotated, as in Section 3. A natural

question is: How can the conditions in Proposition 4.2 be strengthened to guarantee
sufficiency?

We now give a sector pattern that satisfies the conditions in Proposition 4.2, and
that requires all eigenvalues to be in the specified sector.

Example 4.3. Let Ω = (ei
�

3 , ei
5�
3 ), and let

A =



(ei

2�
3 , ei

4�
3 ) (ei

2�
3 , ei

4�
3 )

+ (ei
2�
3 , ei

4�
3 )


 .

Clearly, A and Ω satisfy the conditions in Proposition 4.2. We now show that A

requires all eigenvalues to be in Ω. Let Â =

(
eiθ1 eiθ2

+ eiθ3

)
, where 2�3 < θ1, θ2, θ3 <

4�
3 . Then by Corollary 3.5, Â requires all eigenvalues to be in H(θ2/2). Since
2�
3 < θ2 < 4�

3 , we see that H(θ2/2) ⊆ Ω. Since Â is an arbitrary ray pattern such

that R(Â) ⊂ S (A), it follows that A requires all eigenvalues to be in Ω.

Another interesting open problem is to characterize the ray patterns and sector

patterns that require nonsingularity (that is, A requires all the eigenvalues to be in
the sector Ω = [e0i, e2�i)). Such patterns are known to have properties very different

from real sign patterns that require nonsingularity. Some basic results can be found
in [3] and [8].

In Theorem 2.1 of [3], it was shown that the determinantal region {detB | B ∈
S (A)} is a sector for sign nonsingular complex patterns A of the form A1 + iA2,
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where A1 and A2 are n-by-n real sign patterns. Similarly, it can be proved that the

determinantal region of any ray pattern or sector pattern that requires nonsingu-
larity is again a sector. More generally, it is of interest to investigate the possible
determinantal regions of ray patterns and sector patterns.
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