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Abstract. The author obtains an estimate for the spatial gradient of solutions of the
heat equation, subject to a homogeneous Neumann boundary condition, in terms of the
gradient of the initial data. The proof is accomplished via the maximum principle; the
main assumption is that the sufficiently smooth boundary be convex.
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1. Introduction

In [1] the writer obtained an estimate for the spatial gradient of the solution u(x, t)
of the following initial-boundary value problem for the heat equation:

(1.1)





ut = ∆u in Ω× (0,∞)
u = 0 on ∂Ω× (0,∞)
u(x, 0) = f(x) in Ω,

where Ω is a bounded domain in Rn, n � 2. Assuming that f(x) ∈ C1(Ω) and
vanished on ∂Ω; and that ∂Ω was C3 and satisfied an appropriate mean curvature
condition (see (1.6) in [1]), the estimate

(1.2) |gradu(x, t)| � max
Ω
|gradf(x)|, (x, t) ∈ ∂Ω× (0,∞)

was obtained as a consequence of the maximum principle. (Here gradu(x, t) denotes
the gradient with respect to the spatial variables x).
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The purpose of this paper is to obtain the same estimate for solutions of the
problem (1.1) in which u satisfies a homogeneous Neumann boundary condition
rather than a homogeneous Dirichlet boundary condition.
In order to obtain this result we need a stronger assumption on ∂Ω than the mean

curvature assumption (1.6) made in [1]. In fact we need to assume that ∂Ω satisfies
a convexity condition.
To describe this condition let p be a typical point on ∂Ω and suppose that after

suitable rotation and translation of our coordinate system placing p at the origin of
the system, the portion of ∂Ω lying in a neighbourhood of p is the surface corre-
sponding to the function

(1.3) xn = g(x1, . . . , xn−1)

where (x1, . . . , xn−1) varies over a neighbourhood of (x1 = 0, . . ., xn−1 = 0), with
g(0, . . . , 0) = 0 and with the positive xn direction corresponding to the outward
normal direction from ∂Ω at p. Then the convexity condition that we shall assume
∂Ω to satisfy is that

(1.4)
∑

1�j,k�n−1
gxjxk

(0, . . . , 0)ηjηk � 0

for any η = (η1, . . . , ηn−1) ∈ Rn−1.
We can now state the result we wish to prove as follows:

Theorem 1. Assume




ut = ∆u in Ω× (0,∞)
∂u

∂n
= 0 on ∂Ω× (0,∞)

u(x, 0) = f(x) in Ω

with f(x) ∈ C1(Ω) and satisfying the boundary condition

∂f

∂n
= 0 on ∂Ω.

Suppose further that ∂Ω ∈ C3 and satisfies the convexity condition (1.4). Then

(1.5) |gradu(x, t)| � max
Ω
|grad f(x)|, (x, t) ∈ Ω× (0,∞).

The proof of the theorem will be presented in the following section of the paper.
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Section 2

The proof of Theorem 1 will be conducted along the same general lines as the
proof of the same estimate (1.2) for problem (1.1) given in [1]. As in that proof it
suffices, in view of the maximum principle (see Proposition 2.1 and Theorem 2.2 of
[1]), to show that

(2.1)
∂

∂n
|gradu|2

∣∣∣
∂Ω×(0,∞)

� 0.

However, unlike that proof, where to establish (2.1) we used the fact that u was a
solution of the heat equation in Ω× (0,∞), we don’t use the equation here. Rather,
the conclusion (2.1) stems in the present case from the boundary condition ∂u

∂n = 0
satisfied by u on ∂Ω× (0,∞) and the convexity condition (1.4) satisfied by ∂Ω. This
result is of independent interest and we state it separately as:

Theorem 2. Suppose that u(x) is a C2(Ω) function which satisfies the boundary
condition

(2.2)
∂u

∂n

∣∣∣
∂Ω
= 0;

and suppose that ∂Ω is C3 and satisfies the convexity condition (1.4). Then
|gradu(x)|2 satisfies the boundary condition

(2.3)
∂

∂n
|gradu(x)|2

∣∣∣
∂Ω

� 0.

Preliminaries. To prove Theorem 2 we are going to show that for a typical
point p of ∂Ω

(2.4)
∂

∂n
|gradu(x)|2

∣∣∣
p

� 0.

For this purpose we introduce the same coordinate change used in [1] and delin-
eated in Section 3 of that paper.
Recapitulating, that coordinate change was based on the function

xn = g(x1, . . . , xn−1)

which described the surface constituting that portion of ∂Ω lying in a sufficiently
small neighbourhood of the point p, with p placed at the origin of our coordinate
system, and so

(2.5) g(0, . . . , 0) = 0.
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We also assumed the positive xn direction to correspond to the outward normal
direction on ∂Ω at p, which implies that xn = 0 is the tangent plane to ∂Ω at p; so
that necessarily

(2.6) gxj(0, . . . , 0) = 0 for j = 1, . . . , n− 1.

Starting from the point (ξ1, . . . , ξn−1, g(ξ1, . . . , ξn−1)) on the surface describing
∂Ω, we then proceeded ξn units in the outward normal direction arriving at the
point (x1, . . . , xn) in Rn. Accordingly, the coordinates of the resulting point x =
(x1, . . . , xn) are connected to the coordinates of ξ = (ξ1, . . . , ξn) through the formulas

(2.7)





xj = ξj − gξj (ξ1, . . . , ξn−1)

(
1 +

n−1∑
k=1

g2ξk
(ξ1, . . . , ξn−1)

)− 12
ξn

j = 1, . . . , n− 1, and

xn = g(ξ1, . . . , ξn−1) +

(
1 +

n−1∑
k=1

g2ξk
(ξ1, . . . , ξn−1)

)− 12
ξn.

And it is these equations, abbreviated as x = x(ξ), which describe the coordinate
change from ξ to x that we are going to use prove (2.4).

Clearly, from the way we arrived at (2.7), the outward normal derivative in the x
coordinates on ∂Ω corresponds to differentiation with respect to ξn in the ξ co-
ordinates when ξn = 0. More precisely if ϕ(x) represents a function in the x
coordinates and ψ(ξ) represents the corresponding function in the ξ coordinates,
i.e. ψ(ξ) = ϕ(x(ξ)), then

(2.8)
∂ϕ(x)
∂n

∣∣∣
∂Ω
=
∂ψ(ξ)
∂ξn

∣∣∣
ξn=0
;

in particular

(2.9)
∂ϕ(x)
∂n

∣∣∣
p
=
∂ψ(ξ)
∂ξn

∣∣∣
ξ=0

.

The differentiability properties of the transformation x = x(ξ) defined by (2.7) are
described in Propositions 3.1 and 3.2 of [1] and we summarize them here.

Most importantly, if g(ξ1, . . . , ξn−1) is C2 in a neighbourhood of (ξ1 = 0, . . .,
ξn−1 = 0), then x = x(ξ) is a C1 transformation in a neighbourhood of ξ = 0,
sending ξ = 0 into x = 0, whose Jacobian at the origin is the identity matrix:

(2.10)
∂x

∂ξ

∣∣∣
ξ=0
= I.
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Consequently, the inverse transformation ξ = ξ(x) exists in a neighbourhood of
x = 0, is C1 there and its Jacobian at the origin is also the identity matrix:

(2.11)
∂ξ

∂x

∣∣∣
x=0
= I.

Moreover, if g(ξ1, . . . , ξn−1) is C3 in a neighbourhood of (ξ1 = 0, . . . , ξn−1 = 0),
then both x = x(ξ) and ξ = ξ(x) are C2 transformations in neighbourhoods of
ξ = 0 and x = 0, respectively; with the following identities holding for their second
derivatives at the origin ξ = x = 0;

(2.12)
∂

∂ξm

(∂ξj
∂xl

)∣∣∣
ξ=0
= − ∂

∂ξm

(∂xj

∂ξl

)∣∣∣
ξ=0

,

j, l,m = 1, . . . , n (see equation (3.9) of [1]).

����� of Theorem 2. We are now prepared to establish Theorem 2 by showing
that the function u(x) which that theorem concerns satisfies the condition (2.4). Our
first step in doing so is to introduce the coordinate transformation x = x(ξ) defined
by (2.7) and then to consider the function u(x) referred to ξ coordinates which we
denote by v(ξ), i.e. v(ξ) = u(x(ξ)). Expressing |gradu(x)|2 in terms of v(ξ) we obtain

|gradu(x)|2 =
∑

1�j,k�n

bjk
∂v

∂ξj

∂v

∂ξk

where

(2.13) bjk =
n∑

i=1

∂ξj
∂xi

∂ξk
∂xi

j, k = 1, . . . , n.

Hence, in view of the correspondence (2.8) between differentiation in the normal
direction on ∂Ω in the x coordinates and differentiation with respect to ξn when
ξn = 0 in the ξ coordinates, we have

∂

∂n
|gradu|2

∣∣∣
∂Ω
=

∂

∂ξn

( ∑

1�j,k�n

bjk
∂v

∂ξj

∂v

∂ξk

)∣∣∣
ξn=0

=
∑

1�j,k�n

∂

∂ξn
(bjk)

∂v

∂ξj

∂v

∂ξk

∣∣∣
ξn=0

+
∑

1�j,k�n

2bjk
∂2v

∂ξn∂ξj

∂v

∂ξk

∣∣∣
ξn=0

.(2.14)

But now in terms of v(ξ), our hypotheses ∂u
∂n |∂Ω = 0, asserts, again because of

(2.8), that ∂v
∂ξn

|ξn=0 = 0; and consequently
∂2v

∂ξn∂ξj
|ξn=0 = 0 for j �= n; thus the

preceding becomes

(2.15)
∂

∂n
|gradu|2

∣∣∣
∂Ω
=

∑

1�j,k�n−1

∂

∂ξn
(bjk)

∂v

∂ξj

∂v

∂ξk

∣∣∣
ξn=0

+
n−1∑

k=1

2bnk
∂2v

∂ξ2n

∂v

∂ξk

∣∣∣
ξn=0

.
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Specializing down to the point x = p on ∂Ω, which corresponds to ξ = 0, we then
find, on account of bnk|ξ=0 = 0 for k �= n (see equation (4.6) of [1]), that

(2.16)
∂

∂n
|gradu|2

∣∣∣
p
=

∑

1�j,k�n−1

∂

∂ξn
(bjk)

∂v

∂ξj

∂v

∂ξk

∣∣∣
ξ=0

.

Finally, from the evaluation

(2.17)
∂

∂ξn
(bjk)

∣∣∣
ξ=0
= 2gξjξk

(0, . . . , 0), 1 � j, k � n− 1,

which we will establish in a moment, (2.16) then yields

∂

∂n
|gradu|2

∣∣∣
p
=

∑

1�j,k�n−1
2gξjξk

(0, . . . , 0)
∂v

∂ξj

∂v

∂ξk

∣∣∣
ξ=0

� 0

because of the assumed convexity condition (1.4) regarding ∂Ω. This proves (2.4)
and with it Theorem 2.
It remains to establish the evaluation (2.17). For this purpose we differentiate the

defining formula (2.13) for bjk with respect to ξn and evaluate at ξ = 0:

∂

∂ξn
(bjk)

∣∣∣
ξ=0
=

n∑

i=1

∂

∂ξn

(∂ξj
∂xi

)∂ξk
∂xi

∣∣∣
ξ=0
+

n∑

i=1

∂ξj
∂xi

∂

∂ξn

(∂ξk
∂xi

)∣∣∣
ξ=0

.

In view of (2.11), ∂ξk

∂xi
|ξ=0 = δki, where δki is the Kronecker delta, i.e. δki = 1 if

k = i and is zero otherwise. Hence

∂

∂ξn
(bjk)

∣∣∣
ξ=0
=

∂

∂ξn

( ∂ξj
∂xk

)∣∣∣
ξ=0
+

∂

∂ξn

(∂ξk
∂xj

)∣∣∣
ξ=0

.

Making use of (2.12) this becomes

∂

∂ξn
(bjk)

∣∣∣
ξ=0
= − ∂

∂ξn

(∂xj

∂ξk

)∣∣∣
ξ=0

− ∂

∂ξn

(∂xk

∂ξj

)∣∣∣
ξ=0

.

The derivatives on the right are then evaluated directly by differentiating the ex-
pressions (2.7) defining the xj ’s in terms of the ξk’s; taking (2.6) into account, this
yields

∂

∂ξn

(∂xj

∂ξk

)∣∣∣
ξ=0
=

∂

∂ξk

(∂xj

∂ξn

)∣∣∣
ξ=0
= −gξjξk

(0, . . . , 0) for j, k = 1, . . . , n− 1;

and (2.17) follows. �
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