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Abstract. We characterize homogeneous real hypersurfaces M ’s of type (A1), (A2) and
(B) of a complex projective space in the class of real hypersurfaces by studying the holo-
morphic distribution T 0M of M .
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0. Introduction

Let Pn(� ) be an n-dimensional complex projective space with Fubini-Study met-

ric G of constant holomorphic sectional curvature 4, and let M2n−1 be a real hy-
persurface of Pn(� ). Then M has an almost contact metric structure (ϕ, ξ, η, g)

induced by the complex structure J of Pn(� ). This structure is a useful tool
in the study of real hypersurfaces M ’s in Pn(� ) (for examples, see [1], [4], [7]).
In this paper we study the holomorphic distribution T 0M which is defined by

(T 0M)p = {X ∈ Tp(M) | X⊥ξ} for p ∈ M .
It is known that if the structure vector ξ of a real hypersurface M is a principal

curvature vector, the holomorphic distribution T 0M is not integrable (see [3]). This
implies that the holomorphic distribution of any homogeneous real hypersurfaces in
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Pn(� ), that is any of the real hypersurfaces given as orbits under subgroups of the

projective unitary group PU(n+ 1), is not integrable.
Takagi ([7]) classified homogeneous real hypersurfaces in Pn(� ). By virtue of his

work, we find that a homogeneous real hypersurface in Pn(� ) is locally congruent

to one of the six model spaces of type A1, A2, B, C, D and E. They are realized as
tubes of constant radii over compact Hermitian symmetric spaces of rank 1 or rank 2

(see Theorem A). A homogeneous real hypersurface of type A1 is usually called a
geodesic hypersphere. In the study of real hypersurfaces in Pn(� ), many differential

geometers have considered the following two problems:
(I) Give a characterization of homogeneous real hypersurfaces in Pn(� ).

(II) Construct non-homogeneous nice real hypersurfaces in Pn(� ) and characterize
such examples.

We first investigate in detail the distribution T 0M of any homogeneous real hyper-
surface M in Pn(� ). From the viewpoint of Problem (I) we establish the following

two theorems.

Theorem 1. Let M be a real hypersurface of Pn(� ). Then M is locally con-

gruent to a homogeneous real hypersurface of type A1 or type A2 if and only if the

holomorphic distribution T 0M satisfies the following two conditions:

(1) T 0M is decomposed as the direct sum of principal foliations Vλi ’s ofM in Pn(� ).

(2) For each principal foliation Vλi in condition (1), the distribution Vλi ⊕ {ξ}� is
integrable.

Theorem 2. Let M be a real hypersurface of Pn(� ), n � 3. Then M is lo-

cally congruent to a homogeneous real hypersurface of type B if and only if the

holomorphic distribution T 0M satisfies the following three conditions:

(1) T 0M is decomposed as the direct sum of principal foliations Vλi ’s ofM in Pn(� )

with dimVλi � 2.
(2) Every principal foliation Vλi in condition (1) is integrable.

(3) Every leaf of any principal foliation Vλi in condition (1) is a totally geodesic
submanifold of the real hypersurface M .

We remark that if we omit the condition (3), Theorem 2 is not true. We will
construct a certain class of non-homogeneous real hypersurfaces M ’s (in Pn(� ))

satisfying the conditions (1), (2) in Theorem 2. In this paper, a real hypersurface
satisfying the conditions (1), (2) in Theorem 2 is called a real hypersurface of Dupin

type. Needless to say, the characteristic vector ξ of any real hypersurfaceM of Dupin
type is a principal curvature vector of M in Pn(� ).

From the viewpoint of Problem (II) it is interesting to study non-homogeneous
real hypersurfaces of Dupin type in Pn(� ). We here review the definition of a Dupin
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hypersurface Mn of a real space form M̃n+1(c) of constant curvature c (that is,

M̃n+1(c) = �
n+1 , Sn+1(c) or Hn+1(c) as the curvature c is zero, positive or neg-

ative). A hypersurface Mn in M̃n+1(c) is called a Dupin hypersurface if each of

its principal curvatures has constant multiplicity and is constant along the leaves
of its principal foliation. So every leaf of its principal foliation is totally umbilic in

M̃n+1(c), but generally it is not totally geodesic in the hypersurface Mn.

Finally, we will construct non-homogeneous real hypersurfaces of Dupin type in

Pn(� ).

1. Preliminaries

Let M be a real hypersurface of Pn(� ) and let N be a unit normal local vector
field on M . The Riemannian connections ∇̃ of Pn(� ) and ∇ of M are related by

(1.1) ∇̃XY = ∇XY + g(AX, Y )N

and

(1.2) ∇̃XN = −AX,

where g denotes the Riemannian metric ofM induced by the Fubini-Study metric G

of Pn(� ) and A is the shape operator ofM in Pn(� ). Eigenvalues and eigenvectors of
the shape operator A are called principal curvatures and principal curvature vectors,

respectively. In what follows, we denote by Vλ the eigenspace of A associated with
the eigenvalue λ. It is known that M admits an almost contact metric structure

(ϕ, ξ, η, g) induced by the complex structure of Pn(� ), which satisfies

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1

and

g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y ).

It follows from (1.1) and (1.2) that

(∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ(1.3)

and

∇Xξ = ϕAX.(1.4)
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Let R̃ and R be the curvature tensors of Pn(� ) and M , respectively. Since the cur-

vature tensor R̃ has a nice form, we have the following Gauss and Codazzi equations:

g(R(X, Y )Z, W ) = g(Y, Z)g(X, W )− g(X, Z)g(Y, W )(1.5)

+ g(ϕY, Z)g(ϕX, W )− g(ϕX, Z)g(ϕY, W )

− 2g(ϕX, Y )g(ϕZ, W ) + g(AY, Z)g(AX, W )

− g(AX, Z)g(AY, W ),

(∇XA)Y − (∇Y A)X = η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ.(1.6)

In the following, we use the same terminology and notation as above unless otherwise
stated. Now we present without proof the following results in order to prove our

theorems:

Theorem A ([7]). Let M be a homogeneous real hypersurface of Pn(� ). Then
M is a tube of radius r over one of the following Kaehler submanifolds:

(A1) hyperplane Pn−1(� ), where 0 < r < �

2 ,

(A2) totally geodesic Pk(� ) (1 � k � n− 2), where 0 < r < �

2 ,

(B) complex quadric Qn−1, where 0 < r < �

4 ,

(C) P1(� ) × Pn−1
2
(� ), where 0 < r < �

4 and n (� 5) is odd,
(D) complex Grassmann G2,5(� ), where 0 < r < �

4 and n = 9,

(E) Hermitian symmetric space SO(10)/U(5), where 0 < r < �

4 and n = 15.

The number of distinct principal curvatures of these homogeneous real hypersur-
faces is 2, 3, 3, 5, 5, 5, respectively.

Theorem B ([2]). Let M be a real hypersurface of Pn(� ). Then M has constant

principal curvatures and ξ is a principal curvature vector if and only if M is locally

congruent to a homogeneous real hypersurface.

Proposition A ([5]). Assume that ξ is a principal curvature vector and the

corresponding principal curvature is α. Then α is locally constant. In addition,

AϕX = αλ+2
2λ−αϕX holds for any X(⊥ξ) ∈ Vλ.
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2. Proof of Theorems

����� of Theorem 1. Let M be a real hypersurface satisfying the conditions

(1), (2) in Theorem 1. We shall show that our manifold is of type A1 or type A2. T 0M

is decomposed as T 0M = Vλ1⊕Vλ2⊕. . .⊕Vλd
, where d is the number of distinct prin-

cipal curvatures λi corresponding to the principal curvature vectors vλi(⊥ξ). Then
for any X(= Σd

i=1X
ivλi) ∈ T 0M , g(Aξ, X) = g(ξ, AX) = Σd

i=1g(ξ, X
iλivλi ) = 0, so

that ξ is principal. By hypothesis, for anyX(∈ Vλi) we have∇Xξ−∇ξX ∈ Vλi⊕{ξ}�
(i = 1, . . . , d). We note that ∇Xξ − ∇ξX is perpendicular to ξ for any X(∈ Vλi),

because ξ is a principal curvature (unit) vector, so that

A(∇Xξ −∇ξX) = λi(∇Xξ −∇ξX) for any X ∈ Vλi .

This, together with (1.4) and Proposition A, shows

(2.1) (A− λiI)∇ξX = λi

(
αλi + 2
2λi − α

− λi

)
ϕX.

It follows from (1.4), (2.1) and Proposition A that

(∇XA)ξ − (∇ξA)X = ∇X(αξ) −A∇Xξ −∇ξ(AX) +A∇ξX

= αϕAX −AϕAX − (ξλi)X + (A− λiI)∇ξX

= λi

(
α− αλi + 2
2λi − α

)
ϕX − (ξλi)X + λi

(
αλi + 2
2λi − α

− λi

)
ϕX

= λi(α− λi)ϕX − (ξλi)X.

On the other hand, the Codazzi equation (1.6) implies

(∇XA)ξ − (∇ξA)X = −ϕX.

Hence, the principal curvature λi is a solution of the quadratic equation

(2.2) λ2i − αλi − 1 = 0.

Then our manifold M is locally congruent to one of the homogeneous real hyper-
surfaces in Pn(� ) (see Theorem B). Moreover, again by using (2.2) we find that

ϕVλi = Vλi (i = 1, . . . , d), which yields that M is of type A1 or type A2 (cf. [5]).
Our theorem is obvious for type A1. So, let M be of type A2 (which is a tube

of radius r). Let x = cot r (0 < r < �

2 ). Then at any point p of M , Tp(M) is
decomposed as Tp(M) = {ξ}�⊕Vλ1 ⊕Vλ2 , where λ1 = x, λ2 = − 1x , α = x− 1

x . Note
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that ϕVλi = Vλi (i = 1, 2) (for details, see [8]). We remark that neither Vλ1 nor Vλ2

is integrable. Our aim here is to prove that Vλ1 ⊕ {ξ}� (Vλ2 ⊕ {ξ}�) is integrable
and moreover, that any leaf of the distribution Vλ1 ⊕{ξ}� (respectively, Vλ2 ⊕{ξ}�)
is a totally geodesic submanifold of M . Let T = Vλ1 ⊕ {ξ}�. Then we can show the
following:

∇ξξ ∈ T , ∇Xξ ∈ T , ∇ξX ∈ T and ∇XY ∈ T for any X, Y ∈ Vλ1 .

In fact, (1.4) yields ∇ξξ = 0 ∈ T and ∇Xξ = ϕAX = λ1ϕX ∈ Vλ1 ⊂ T . Next,

(∇ξA)X − (∇XA)ξ = ∇ξ(AX)−A∇ξX −∇X(Aξ) +A∇Xξ

= (λ1I −A)∇ξX − αϕAX +AϕAX

= (λ1I −A)∇ξX + λ1(λ1 − α)ϕX.

On the other hand, it follows from (1.6) that

(∇ξA)X − (∇XA)ξ = ϕX ∈ Vλ1 .

Thus for any Z ∈ Vλ (λ = λ2, α) we find g
(
(λ1I − A)∇ξX, Z

)
= 0, so that ∇ξX ∈

Vλ1 ⊂ T . Finally, for any X, Y ∈ Vλ1 and for any Z ∈ Vλ2 we get

g((∇XA)Y, Z) = g(∇X(AY )−A∇XY, Z)

= g((λ1I −A)∇XY, Z)

= (λ1 − λ2)g(∇XY, Z).

On the other hand, it follows from (1.6) that

g((∇XA)Y, Z) = g((∇XA)Z, Y )

= g((∇ZA)X, Y )

= g(∇Z(AX)−A∇ZX, Y )

= g((λ1I −A)∇ZX, Y ) = 0.

Hence, ∇XY ∈ T . Thus we can see that every leaf L of the distribution T is a totally
geodesic submanifold of M . The manifold L is locally congruent to a homogeneous

real hypersurface (with the unit vector −N) of type A1 of radius (�2 − r) in Pm+1(� )
which is a holomorphic totally geodesic submanifold of Pn(� ), where 2m = dimVλ1

(see Theorem 1 in [1]). The same discussion as above yields that the distribution
S = Vλ2 ⊕ {ξ}� is integrable and moreover, that every leaf K of the distribution

S is a totally geodesic submanifold of M . The manifold K is locally congruent to
a homogeneous real hypersurface (with the unit normal vector N) of type A1 of

radius r in Pk+1(� ) which is a holomorphic totally geodesic submanifold of Pn(� ),
where 2k = dimVλ2 . �
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����� of Theorem 2. Let M be a real hypersurface satisfying the condi-

tions (1), (2), (3) in Theorem 2. We shall show that the manifold M is of type B.
From the condition (1) we can set T 0M = Vλ1 ⊕ Vλ2 ⊕ . . . ⊕ Vλd

. It follows from
the conditions (2), (3) that A∇XY = λi∇XY for any X, Y ∈ Vλi (i = 1, 2, . . . , d).

Hence, for any X, Y ∈ Vλi we get (∇XA)Y = (Xλi)Y . On the other hand, it
follows from the condition (3) and (1.1) that every leaf of Vλi is a totally umbilic

submanifold of Pn(� ). Needless to say, the mean curvature of any totally umbilic
submanifold whose dimension is greater than 1 in Pn(� ) is constant, which implies

that Xλi = 0 for any X ∈ Vλi . Hence,

(2.3) (∇XA)Y = 0 for any X, Y ∈ Vλi .

Thus, for each unit X ∈ Vλi and for any Z ∈ TM

0 = g((∇XA)X, Z) (from (2.3))

= g((∇XA)Z, X)

= g((∇ZA)X + η(X)ϕZ − η(Z)ϕX − 2 · g(ϕX, Z)ξ, X) (from (1.6))

= g((∇ZA)X, X) = g(∇Z(AX)−A∇ZX, X)

= g((Zλi)X + (λiI −A)∇ZX, X)

= Zλi.

Then Theorem B tells us that the manifold M is homogeneous in Pn(� ). However,
the principal foliation Vλ is not integrable in the case that ϕVλ = Vλ (see (1.6)).

Thus we can see that M is of type B (for details, see [8]).
Conversely, let M be of type B. Then at any point p of M , Tp(M) is decomposed

as Tp(M) = Vλ1 ⊕ Vλ2 ⊕ {ξ}�, where λ1 = 1+x
1−x , λ2 = x−1

x+1 , α = x − 1
x and x =

cot r (0 < r < �

4 ) (cf. [8]). We note that ϕVλ1 = Vλ2 (see Proposition A). We shall

prove that the principal foliation Vλ1 (resp. Vλ2) on M is integrable, and moreover
that every leaf of the distribution Vλ1 (resp. Vλ2 ) is a totally geodesic submanifold

of M . It suffices to verify that ∇XY ∈ Vλ1 for any X, Y ∈ Vλ1 . We first have

A∇XY = ∇X(AY )− (∇XA)Y

= λ1∇XY − (∇XA)Y.

For any Z ∈ TM , since A is symmetric, from (1.6) we find

g((∇XA)Y, Z) = g((∇XA)Z, Y )

= g((∇ZA)X + η(X)ϕZ − η(Z)ϕX − 2 · g(ϕX, Z)ξ, Y )

= g((∇ZA)X, Y ) = g(∇Z(AX)−A∇ZX, Y )

= g((Zλ1)X + (λ1I −A)∇ZX, Y ) = 0,
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so that (∇XA)Y = 0 for any X, Y ∈ Vλ1 . This implies that every leaf Lλ1 of the

principal foliation Vλ1 is a totally geodesic submanifold of the real hypersurface M .
Lλ1 is locally congruent to a totally umbilic hypersurface of constant curvature c

(with
√

c− 1 = |λ1|) in Pn(�) which is a totally real totally geodesic submanifold of

Pn(� ). �

Example. Let Vn−1 be a complex hypersurface of Pn(� ), n � 3 such that
(1) any principal curvature with respect to the shape operator Aξ for any unit

normal vector ξ of Vn−1 is non zero, and
(2) multiplicity of each principal curvature with respect to Aξ for any unit normal

vector ξ of Vn−1 is constant.
Then by [1, Proposition 3.1, p. 487] we can see that a real hypersurfaceM which lies

on the tube of radius r > 0 over Vn−1 satisfies the conditions (1), (2) in Theorem 2.
We remark that there exists such complex hypersurfaces Vn−1.
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