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Dedicated to Frank Harary on the Occasion of His 79th Birthday

Abstract. For two vertices u and v of a connected graph G, the set I(u, v) consists of
all those vertices lying on a u–v geodesic in G. For a set S of vertices of G, the union of
all sets I(u, v) for u, v ∈ S is denoted by I(S). A set S is a convex set if I(S) = S. The
convexity number con(G) of G is the maximum cardinality of a proper convex set of G. A
convex set S in G with |S| = con(G) is called a maximum convex set. A subset T of a
maximum convex set S of a connected graph G is called a forcing subset for S if S is the
unique maximum convex set containing T . The forcing convexity number f(S, con) of S is
the minimum cardinality among the forcing subsets for S, and the forcing convexity number
f(G, con) of G is the minimum forcing convexity number among all maximum convex sets
of G. The forcing convexity numbers of several classes of graphs are presented, including
complete bipartite graphs, trees, and cycles. For every graph G, f(G, con) � con(G). It is
shown that every pair a, b of integers with 0 � a � b and b � 3 is realizable as the forcing
convexity number and convexity number, respectively, of some connected graph. The forcing
convexity number of the Cartesian product of H × K2 for a nontrivial connected graph H
is studied.
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1. Introduction

For two vertices u and v in a connected graph G, the distance d(u, v) between u

and v is the length of a shortest u–v path in G. A u–v path of length d(u, v) is also
referred to as a u–v geodesic. The set (interval) I(u, v) consists of all those vertices

lying on a u–v geodesic in G. For a set S of vertices of G, the union of all sets I(u, v)

1Research supported in part by a Western Michigan University Faculty Research and
Creative Activities Grant.
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for u, v ∈ S is denoted by I(S). Hence x ∈ I(S) if and only if x lies on some u–v

geodesic, where u, v ∈ S.

A set S is convex if I(S) = S (see [1], p. 136). Certainly, V (G) is convex for every

graph G. The convex hull [S] of a set S of vertices of G is the smallest convex set
containing S. So S is a convex set in G if and only if [S] = S. If S is a convex set

in a connected graph G, then the subgraph 〈S〉 induced by S is connected.

The closed intervals and convex sets in a connected graph were studied and char-
acterized by Nebeský [6, 7] and were also investigated extensively in the book by

Mulder [5], where it was shown that these sets provide an important tool for study-
ing metric properties of connected graphs. Convexity in graphs was also studied in

[2, 3, 4]. For a connected graph G of order at least 3, the convexity number con(G)
of G was defined in [2] as the maximum cardinality of a proper convex set of G, that

is,

con(G) = max {|S| : S is a convex set of G and S �= V (G)} .

Hence 2 � con(G) � n− 1 for all connected graphs G of order n � 3. A convex set
S in G with |S| = con(G) is called a maximum convex set.
A subset T of a maximum convex set S of a connected graph G is called a forcing

subset for S if S is the unique maximum convex set containing T . The forcing con-
vexity number f(S, con) of S is the minimum cardinality among the forcing subsets

for S, and the forcing convexity number f(G, con) of G is the minimum forcing con-
vexity number among all maximum convex sets of G. Therefore, f(G, con) � con(G)
for every connected graph G. We illustrate these concepts with the graph G of Fig-
ure 1. The sets S1 = {u1, w, v1} and S2 = {w, u1, v2} are maximum convex sets of
G. The remaining maximum convex sets of G are similar to S2. Since S1 is not
the unique maximum convex set containing any of its elements, f(S1, con) � 2. On
the other hand, S1 is the unique maximum convex set containing u1 and v1. Hence
f(S1, con) = 2. Since S2 is the unique maximum convex set containing v2, it follows

that f(S2, con) = 1. Therefore, f(G, con) = 1.

v1

w

u1

v2 v3

u3u2

G : �
Figure 1. A graph with forcing convexity number 1

Some of the following observations were used in the previous example and all of
these are fundamental to our study.
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Lemma 1.1. For a connected graph G, the forcing convexity number f(G, con) =

0 if and only if G has a unique maximum convex set. Moreover, f(G, con) = 1 if and
only if G does not have a unique maximum convex set but some vertex of G belongs

to exactly one maximum convex set.

Corollary 1.2. For a connected graph G, the forcing convexity number

f(G, con) � 2

if and only if every vertex of each maximum convex set belongs to at least two

maximum convex sets.

Next we determine the forcing convexity number of the famous Petersen graph P

shown in Figure 2.

u1

u2

u3 u4

u5

v1

v2

v3 v4

v5

�
Figure 2. The Petersen graph P

It can be verified that the convexity number of P is 5 and that the maximum
convex sets of P are precisely those that induce a 5-cycle. Since all such sets of

cardinality 5 are similar in P , we consider the set S = {u1, u2, u3, v1, v3}. For
every w ∈ S, there exists a maximum convex set S′ �= S such that w ∈ S′. For

example, S′ = {u1, u4, u5, v1, v4} is another maximum convex set containing u1.
Therefore, every vertex of each maximum convex set of P belongs to at least two

maximum convex sets. Hence f(P, con) � 2 by Corollary 1.2. For every u, v ∈ S,
there exists a maximum convex set S∗ �= S such that u, v ∈ S∗. For example,

S∗
1 = {u1, u2, u3, u4, u5} is another maximum convex set containing ui, uj in S for 1 �

i �= j � 3, and S∗
2 = {u1, u5, v1, v3, v5} is another maximum convex set containing

u1, vk in S for k = 1, 3. Hence f(S, con) � 3. Moreover, for S0 = {u1, v3, u3},
it follows that [S0] = S. This implies that S is the unique maximum convex set

containing S0 and so f(S, con) = 3. Therefore, f(P, con) = 3.
The following theorem gives the forcing convexity numbers of some well known

graphs, all of whose convexity numbers were determined in [2]. Since the proof is
straightforward, we omit it.
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Theorem 1.3. (a) For n � 3, f(Kn, con) = con(Kn) = n − 1.
(b) For n � 4, f(Cn, con) = 2 and con(Cn) = �n/2�.
(c) For integers k, n1, n2, . . . , nk � 2, f(Kn1,n2,...,nk

, con) = con(Kn1,n2,...,nk
) = k.

(d) For a tree T of order n � 2 with k end-vertices, f(T, con) = k − 1 and
con(T ) = n− 1.

2. Graphs with prescribed forcing convexity number
and convexity number

We have already noted that if G is a connected graph with f(G, con) = a and

con(G) = b, then 0 � a � b, where b � 2. We now establish a converse result. First
we need an additional definition.

A vertex v in a graph G is called a complete vertex if the subgraph induced by
its neighborhood N(v) is complete. Connected graphs of order n � 3 containing a
complete vertex are precisely those having convexity number n−1, as was established
in [2].

Theorem A. Let G be a noncomplete connected graph of order n � 3. Then
con(G) = n− 1 if and only if G contains a complete vertex.
We first determine the forcing convex numbers of all nontrivial connected graphs

with forcing convexity number 2.

Theorem 2.1. For a connected graph G with con(G) = 2,

f(G, con) =

{
1 if G = P3,

2 otherwise.

�����. Since con(G) = 2, every pair of adjacent vertices forms a maximum
convex set of G. Hence G does not contain a unique maximum convex set and so
f(G, con) � 1. If G = P3, then f(G, con) = 1 by Theorem 1.3. Otherwise, G

contains no end-vertices by Theorem A and so every vertex of G belongs to at least
two maximum convex sets. Therefore, f(G, con) = 2 by Corollary 1.2. �

By Theorem 2.1, there is no connected graph with convexity number 2 and forcing
convexity number 0. Next we show that every pair a, b of integers with 0 � a � b

and b � 3 is realizable as the forcing convexity number and convexity number,
respectively, of some connected graph.

Theorem 2.2. For every pair a, b of integers with 0 � a � b and b � 3, there
exists a connected graph G with f(G, con) = a and con(G) = b.
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�����. We have already seen that f(Kb+1, con) = con(Kb+1) = b. Thus, we

assume that 0 � a < b. If a � 1, then any tree of order b + 1 having a + 1 end-
vertices has the desired property by Theorems A and 1.3(b). Thus we may assume
that a = 0.

We construct a connected graph G with f(G, con) = 0 and con(G) = b. In order to
do this, we first construct three graphs F1, F2 and F . First let F1 = K2+H , whereH

is any graph of order b−2 � 1 and V (K2) = {u, v}. Next let F2 be a graph with vertex
set {x1, x2, x3, y1, y2, y3} such that xixi+1, yiyi+1, xiyi+1, yixi+1 ∈ E(F2) for i = 1, 2.

Then the graph F is obtained from F1 and F2 by adding edges ux1, uy1, vx3, vy3.
The graphs F1, F2, and F are shown in Figure 3.

v

u

HF1 : � y1 y2 y3

x3x2x1

F2 : F :

Figure 3. The graphs F1, F2, and F

The graph G is then obtained from F by adding two new vertices x and y and the
edges (1) xx1, xy1, xy3, yx3, yy1, yy3 and (2) xw, yw for every w ∈ V (H), where H

is the subgraph of F . In particular, if b = 3, then H = K1 and the graph G is shown
in Figure 4. We claim that G has the desired properties, that is, f(G, con) = 0 and

con(G) = b. We show only that the graph G in Figure 4 (where b = 3) has forcing
number 0 and convexity number 3 since the proofs for the cases when b � 4 are
similar.

v

w

u

y3

y2

y1

x3

x2

x1

y

x

G :

Figure 4. The graph G for b = 3

First we make an observation. Let

W = V (F2) ∪ {x, y} = V (G)− {u, v, w}.

For any two nonadjacent vertices z′, z′′ of W , we have [{z′, z′′}] = V (G). Hence if S0
is any set of vertices containing two nonadjacent vertices of W , then [S0] = V (G).
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Next we show that con(G) = 3. Since S = {u, v, w} is a convex set in G, it follows

that con(G) � 3. Assume, to the contrary, that there exists a convex set S′ with
|S′| � 4 and S′ �= V (G). Since S′ cannot contain two nonadjacent vertices of W ,
it follows that S′ contains at most two vertices of W . On the other hand, |S′| � 4
and so S′ contains at least two vertices of {u, v, w}. Since u, v ∈ S′ implies that
w ∈ S′, it follows that either {u, v, w, z} ⊆ S′, where z ∈ W , or, without loss of

generality, that {u, w, z1, z2} ⊆ S′, where z1, z2 ∈ W and z1z2 ∈ E(G). In each case,
it is routine to verify that [S′] = V (G). Since S′ is a convex set, S′ = [S′] = V (G),

which is a contradiction. Therefore, con(G) = 3.

Finally, we show that S is the unique maximum convex set in G, implying that
f(G, con) = 0. Therefore, assume, to the contrary, that there exists a convex set

S∗ of G such that S∗ �= S and |S∗| = 3. Necessarily, 〈S∗〉 = P3. Again, since S∗

cannot contain two nonadjacent vertices ofW , it follows that S∗ contains at most two

vertices of W . Hence S∗ contains at least one and at most two vertices of {u, v, w}.
We consider two cases.

Case 1 S∗ contains exactly one vertex in {u, v, w}. First assume that w ∈ S∗.
Then S∗ contains exactly one of x and y as well as a neighbor z of this vertex.

However, either u or v lies on a w−z geodesic and so S∗ is not convex, a contradiction.
Hence either u ∈ S∗ or v ∈ S∗, say v ∈ S∗. Thus S∗ = {v, z1, z2}, where z1, z2 ∈ W

and z1z2 ∈ E(G). Since z1z2 ∈ E(G), one of z1 and z2 is at distance 2 from v, say
d(v, z1) = 2. Thus either (1) x2 ∈ S∗ or y2 ∈ S∗, or (2) x ∈ S∗ or y ∈ S∗. In (1), we

must have x3, y3 ∈ S∗, while in (2), we must have w ∈ S∗. In either cases, we have
a contradiction.

Case 2 S∗ contains exactly two vertices in {u, v, w}, namely v, w ∈ S∗ or u, w ∈
S∗, say the former. Then S∗ = {v, w, z}, where z ∈ W . Similarly to that described
above, either (1) z = x3 or z = y3, or (2) z = x or z = y. In (1), we must have

y ∈ S∗, while in (2), y3 ∈ S∗. Hence S∗ is not convex, producing a contradiction.

Therefore, S is the unique maximum convex set of G. �

3. The forcing convexity number of H ×K2

In this section, we consider the relationship between f(H, con) and f(H×K2, con)
for a connected graph H . Let H × K2 be formed from two copies H1 and H2 of

H , where corresponding vertices of H1 and H2 are adjacent. Let Si ⊆ V (Hi) for
i = 1, 2. Then S2 is called the projection of S1 onto H2 if S2 is the set of vertices

in H2 corresponding to the vertices of H1 that are in S1. The following two results
appeared in [3].
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Lemma B. For a nontrivial connected graph H , let H ×K2 be formed from two

copies H1 and H2 of H , where corresponding vertices of H1 and H2 are adjacent.

Then every convex set of H ×K2 is either

(1) a convex set in H1,

(2) a convex set in H2, or

(3) S1 ∪ S2, where S1 is convex in H1 and S2 is the projection of S1 onto H2.

Theorem C. If H is a nontrivial connected graph of order n, then

con(H ×K2) = max{2 con(H), n}.

In order to establish a relationship between f(H × K2, con) and f(H, con) for a

nontrivial connected graph H , we first verify the following lemma. For a graph G

and a set S of vertices of G, we write fG(S, con) to indicate the forcing convexity

number of S in the graph G.

Lemma 3.1. Let H be a connected graph of order n � 2 such that con(H×K2) =

2 con(H) > n. Moreover, let H × K2 be formed from two copies H1 and H2 of H ,

where corresponding vertices ofH1 andH2 are adjacent. If S = S1∪S2 is a maximum

convex set in H ×K2, where Si ⊆ V (Hi) for i = 1, 2, then

fH×K2(S, con) = fHi(Si, con).

�����. Since S = S1 ∪ S2 is a maximum convex set in H × K2, it follows by
Lemma B that Si is a maximum convex set of Hi for i = 1, 2 and that S2 is the

projection of S1 onto H2. Certainly, fH1(S1, con) = fH2(S2, con). We first show
that fH×K2(S, con) � fH1(S1, con). Let T1 be a minimum forcing subset for S1.

Thus |T1| = f(S1, con) and S1 is the unique maximum convex set in H1 containing
T1. Let T2 be the projection of T1 onto S2 in H2. We claim that S is the unique

maximum convex set in H ×K2 containing T1. Assume, to the contrary, that there
exists a maximum convex set S′ in H × K2 containing T1 such that S′ �= S. Hence

S′ = S′
1 ∪ S′

2, where S′
i ⊆ V (Hi), i = 1, 2. Again, by Lemma B, S′

i is a maximum
convex set in Hi containing Ti, i = 1, 2, and S′

2 is the projection of S′
1 onto H2.

Since S′ �= S, it follows that S′
1 �= S1. This implies that S1 is not the unique

maximum convex set in H1 containing T1 since S′
1 contains T1 as well, contrary to

our assumption. Hence S is the unique maximum convex set in G containing T1, as
claimed. Therefore, fH×K2(S, con) � |T1| = fH1(S1, con).

It remains to verify the reverse inequality fH×K2(S, con) � fH1(S1, con). Assume,
to the contrary, that fH×K2(S, con) < fH1(S1, con). Let T be a minimum forcing
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subset for S. Then |T | = fH×K2(S, con) and S is the unique maximum convex set

in H ×K2 containing T . We consider two cases.

Case 1. T ⊆ S1 or T ⊆ S2, say the former. Since |T | < fH1(S1, con), it follows
that S1 is not the unique maximum convex set containing T in H1. So there exists

a maximum convex set W1 containing T in H1 such that W1 �= S1. Let W2 be the
projection of W1 onto H2 and let W =W1∪W2. Then W �= S and W is a maximum

convex set containing T in H ×K2, a contradiction.

Case 2. T ∩ Si �= ∅, i = 1, 2. Then T = T1 ∪ T2, where ∅ �= Ti ⊆ Si for
i = 1, 2. Let �(T1) be the projection of T1 onto H2 and �

−1(T2) be the (inverse)

projection T2 onto H1. Then the set T ′ = T1 ∪ �
−1(T2) is a subset of S1. Since

|T ′| � |T1| + |�−1(T2)| = |T1| + |T2| = |T | < fH1(S1, con), it follows that S1 is not
the unique maximum convex set containing T ′ in H1. So there exists a maximum

convex set U1 containing T ′ in H1 such that U1 �= S1. Let U2 be the projection of
U1 onto H2 and let U = U1 ∪U2. Then U �= S and U is also a maximum convex set

containing T in H ×K2, a contradiction. �

We now determine f(H ×K2) for almost all graphs H .

Theorem 3.2. Let H be a connected graph of order n � 2 for which con(H) �=
n/2, and let H×K2 be formed from two copies H1 and H2 of H whose corresponding

vertices are adjacent. Then

f(H ×K2, con) =

{
1 if con(H ×K2) = n

f(H, con) if con(H ×K2) = 2 con(H).

�����. Let G = H × K2. Assume first that con(G) = n. By Theorem C,
n > 2 con(H). It follows by Lemma B that G contains exactly two maximum convex

sets, namely S1 = V (H1) and S2 = V (H2). Hence f(H ×K2, con) = 1.

We now assume that con(H × K2) = 2 con(H). By Theorem C, 2 con(H) > n.
Again, by Lemma B, the maximum convex sets of G are of the form S1 ∪ S2, where

S1 is a maximum convex set in H1 and S2 is the projection of S1 onto H2. Moreover,
by Lemma 3.1, fG(S, con) = fH1(S1, con) for every maximum convex set S in G.

Hence

f(G, con) = min{f(S, con): S is a maximum convex set in G}
= min{fH1(S1, con): S1 is a maximum convex set in H1}
= f(H1, con) = f(H, con).

This completes the proof. �
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If H is a connected graph of order n � 2 containing a complete vertex, then
con(H) = n − 1 by Theorem A. Certainly, if n � 3, then 2 con(H) > n. This
observation yields the following corollary.

Corollary 3.3. If H is a connected graph of order n � 3 containing complete
vertices, then f(H ×K2, con) = 1.

What remains to consider then are connected graphs H of order n � 4 with
con(H) = n/2. Certainly, n is even then. For such a graph H , a maximum convex

set inH×K2 is either V (Hi), i = 1, 2, or is of the form S1∪S2, where Si is a maximum
convex set of cardinality n/2 in Hi, i = 1, 2, and S2 is the projection of S1 onto H2.

Since H×K2 contains more than one maximum convex set, f(H×K2, con) � 1. IfH
contains a vertex v that belongs to no maximum convex set of H , then V (H1) is the

unique maximum convex set in H ×K2 containing v1, where v1 is the corresponding
vertex of v in H1 of H × K2. Therefore, in this case, f(H × K2, con) = 1. This

observation yields the following result.

Proposition 3.4. If H is a connected graph of order n � 4 with con(H) = n/2
such that H contains a vertex that belongs to no maximum convex set of H , then

f(H ×K2, con) = 1.

Assume now that H is a connected graph of order n � 4 with con(H) = n/2 such

that every vertex of H belongs to some maximum convex set of H . Consequently,
every vertex in H × K2 belongs to at least two maximum convex sets in H × K2.

For example, let v1 be a vertex in H × K2 such that v1 ∈ V (H1) and let S1 be a
maximum convex set in H1 containing v1. Then V (H1) and S = S1∪S2, where S2 is

the projection of S1 onto H2, are both maximum convex sets in H ×K2 containing
v1. By Corollary 1.2,

(1) f(H ×K2, con) � 2.

Moreover, equality holds in (1) when f(H, con) = 1 as we show next.

Proposition 3.5. If H is a connected graph of order n � 4 with con(H) = n/2

and f(H, con) = 1 such that every vertex of H belongs to some maximum convex

set, then f(H ×K2, con) = 2.

�����. By the discussion above, we see that f(H × K2, con) � 2. Since
f(H, con) = 1, there exists a maximum convex set S1 in V (H1) and a vertex v1 ∈ S1

such that S1 is the unique maximum convex set in H1 containing v1. Let S =
S1 ∪ S2, where S2 is the projection of S1 onto H2. Then S contains both v1 and its
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corresponding vertex v2 in H2. We claim that S is the unique maximum convex set in

H×K2 containing v1 and v2. Assume, to the contrary, that there exists a maximum
convex set S′ in H × K2 containing v1 and v2 such that S′ �= S. Then S′ �= V (Hi),
i = 1, 2, and so S′ = S′

1 ∪ S′
2, where S′

1 is the maximum convex set in H1 containing

v1 and S′
2 is the projection of S′

1 onto H2. Since S �= S′, it follows that S′
1 �= S1,

implying that S1 is not the unique maximum convex set in H1 containing v1, which

is a contradiction. Hence f(S, con) = 2. Therefore, f(H ×K2, con) = 2. �

We are now only concerned with determining f(H × K2, con), where H is a

connected graph of order n � 4 having the three properties (1) con(H) = n/2,
(2) f(H, con) � 2, and (3) every vertex of H belongs to at least one maximum con-
vex set of H . We now introduce a new term. For a connected graph H of order
n � 3, the anti-convexity number acon(H) of H is the minimum number of vertices
of H that belongs to no maximum convex set ofH . For graphsH satisfying the three
properties listed above, acon(H) � 2. Each graph Hi, i = 1, 2, of Figure 5 satisfies

the properties (1)–(3). In particular, con(H1) = 3 and con(H2) = 4. Observe that
acon(Hi) = 2 for i = 1, 2, where a 2-element set {u, v} of vertices belonging to no
maximum convex set is indicated in each graph. We note also that f(H1, con) = 3
and f(H2, con) = 2. We have already seen that the Petersen graph P , which has

order 10 and is shown in Figure 2, has con(P ) = 5 and f(P, con) = 3. It is also the
case that acon(P ) = 3. We now determine f(H × K2, con) for graphs H satisfying

properties (1)–(3) in terms of f(H, con) and acon(H).

u v

H1 : � v

u

H2 : �
Figure 5. Two graphs whose convexity numbers are half their order

Theorem 3.6. LetH be a connected graph of order n � 4 satisfying (1) con(H) =
n/2, (2) f(H, con) � 2, and (3) every vertex of H belongs to at least one maximum
convex set of H . Then

f(H ×K2, con) = min{acon(H), f(H, con)}.

�����. Let S be a maximum convex set of H ×K2. There are two possibilities
for S.

Case 1. S = V (H1) or S = V (H2), say the former. Let T be a minimum forcing
subset for S in H × K2 such that |T | = fH×K2(S, con). Hence S is the unique
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maximum convex set in H × K2 containing T . Since S = V (H1), it follows that T

belongs to no maximum convex set in H1. So acon(H) � |T |. We claim, in fact,
that |T | = acon(H), that is, we claim that T is a minimum set of vertices of H1 that
belongs to no maximum convex set in H1. Assume, to the contrary, that there is a

set T ′ of vertices of H1 such that |T ′| < |T | and T ′ belongs to no maximum convex
set in H1. Then S is the unique maximum convex set in H ×K2 containing T ′ and

so fH×K2(S, con) � |T ′| < |T |, contrary to the fact that |T | = fH×K2(S, con). So
|T | = acon(H), as claimed. Therefore, in this case fH×K2(S, con) = acon(H).

Case 2. S = S1 ∪S2, where S1 is a maximum convex set in H1 and S2 is the pro-

jection of S1 onto H2. An argument similar to the one employed in Lemma 3.1 shows

that fH1(S1, con) � fH×K2(S, con). Thus, it remains to show that fH×K2(S, con) �
fH1(S1, con). Let T1 = {t1, t2, . . . , tk} be a minimum forcing set for S1 in H1. Thus

|T1| = fH1(S1, con). Since f(H, con) � 2, it follows that |T1| = k � 2. Let t′k be the
corresponding vertex of tk in H2 and let T ∗ = {t1, t2, . . . , tk−1, t′k}. Next we show
that S is the unique maximum convex set in H ×K2 containing T ∗. Assume, to the
contrary, that there exists a maximum convex set S′ in H×K2 such that S′ contains

T ∗ and S′ �= S. Since S′ contains the vertex t1 of H1 and the vertex t′k of H2, it
follows S′ �= V (Hi) for i = 1, 2. Hence S′ = S′

1 ∪ S′
2, where S′

1 is a maximum convex

set in H1 and S′
2 is the projection of S′

1 onto H2. Then S′
1 is a maximum convex

set in H1 containing T1. Since S′ �= S, it follows that S′
1 �= S1 and so S1 is not the

unique maximum convex set containing T1 in H1, a contradiction. Therefore, in this
case fH×K2(S, con) = fH1(S1, con).

Combining Cases 1 and 2, we have

f(H ×K2) = min{fH×K2(S, con): S is a maximum convex set of H ×K2}
= min{acon(H), min{fH(S, con): S is a maximum convex set in H}}
= min{acon(H), f(H, con)}.

This completes the proof. �

We have seen examples of graphsH satisfying the properties (1)-(3) in Theorem 3.6

such that acon(H) = f(H, con) and acon(H) < f(H, con). Thus, in both cases,
f(H × K2, con) = acon(H). Of course, if acon(H) � f(H, con) for all graphs H

satisfying (1)-(3), then f(H×K2, con) = acon(H). However, we know of no example
of a graph H satisfying (1)-(3) for which f(H × K2, con) �= acon(H). If such an
example does exist, then f(H ×K2, con) = acon(H)− 1 as we now show.

Theorem 3.7. For every nontrivial connected graph H ,

acon(H) � f(H, con) + 1.
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�����. Let S be a maximum convex set in H such that f(S, con) = f(H, con),

and let T be a minimum forcing subset for S. For v ∈ T , the set T − {v} is not
a forcing set for S. Hence there exists a maximum convex set S′ distinct from S

containing T − {v}. For w ∈ S′ − S, let T ′ = T ∪ {w}. Then T ′ belongs to no

maximum convex set in H . Therefore,

acon(H) � |T ′| = |T |+ 1 = f(H, con) + 1,

completing the proof. �

As a consequence of the results presented in this section, we are able to state the
forcing convexity numbers of f(H ×K2, con) of some well known graphs H .

Corollary 3.8. (a) For n � 3, f(Kn ×K2, con) = 1.

(b) If T is a tree of order least 3, then f(T ×K2, con) = 1.
(c) For n � 4, f(Cn ×K2, con) = 2.

(d) For integers k, n1, n2, . . . , nk � 2 with n1 � n2 � . . . � nk,

f(Kn1,n2,...,nk
×K2, con) =

{
1 if nk � 3
2 otherwise.

(e) For n � 3, f(Qn, con) = 2.
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