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BASIC SUBGROUPS IN ABELIAN GROUP RINGS

Peter V. Danchev, Plovdiv

(Received February 4, 1999)

Abstract. Suppose R is a commutative ring with identity of prime characteristic p and G
is an arbitrary abelian p-group. In the present paper, a basic subgroup and a lower basic
subgroup of the p-component Up(RG) and of the factor-group Up(RG)/G of the unit group
U(RG) in the modular group algebra RG are established, in the case when R is weakly
perfect. Moreover, a lower basic subgroup and a basic subgroup of the normed p-component
S(RG) and of the quotient group S(RG)/Gp are given when R is perfect and G is arbitrary
whose G/Gp is p-divisible. These results extend and generalize a result due to Nachev
(1996) published in Houston J. Math., when the ring R is perfect and G is p-primary. Some
other applications in this direction are also obtained for the direct factor problem and for
a kind of an arbitrary basic subgroup.

Keywords: basic and lower basic subgroups, units, modular abelian group rings
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1. Introduction

Let RG be the group ring of an abelian group G over a commutative ring R
with unity of prime characteristic p, let U(RG) be the group of all units in RG
with a subgroup V (RG) of the normalized (i.e. whose coefficient sum is equal to 1)
units, and let Up(RG) and S(RG) be their p-torsion parts, respectively. For G an
abelian group, Gp denotes its p-primary component and for R a commutative ring,
we let U(R) denote the group of all invertible elements of R, Up(R) denotes its p-

component and N(R) =
∞⋃

n=1
R(pn) denotes the nilradical of R (i.e. the ideal of all

nilpotent elements) (cf. [1]). We shall follow essentially the notation and terminology
from the abelian group theory used in [6].
The main purpose of this paper is to obtain a (lower) basic subgroup of Up(RG) =

S(RG)×Up(R), S(RG), Up(RG)/G and S(RG)/Gp under some minimal restrictions
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on R and G. These restrictions are that R must be weakly perfect, that is, Rpi

=
Rpi+1

for any fixed natural i, i.e. Rpi

is perfect, and moreover N(Rpi

) = 0 and G
must contain only p-torsions; or R is perfect and G/Gp is p-divisible for G arbitrary.
In this aspect N. Nachev gave a basic subgroup of S(RG) [11] provided R is perfect
and G is p-primary. Moreover, this result of Nachev was extended and generalized
in [3] by using another technique and a different method of proof to find a criterion for
the p-group S(RG;B) = 1+I(RG;B) to be basic in S(RG) where B is a p-subgroup
of G(B � Gp) and I(RG;B) is a relative augmentation ideal of RG with respect
to B, generated by the elements 1−b, where b varies in B. Some other facts on basic
subgroups of S(RG) can be found in [2, 4]. As an example, in [4] we stated and proved
that if B is a p-basic subgroup of G (so Bp is basic in Gp), then S(RG;Bp) ⊆ B∗,
the basic subgroup of S(RG). That is why probably B∗ = S(RG;Bp) + J , where
J is a special selected ideal of RG. Besides (see [3]), S(RG;Bp) = B∗ assuming R
perfect and G/Gp p-divisible. On the other hand, the direct factor problem for basic
subgroups is considered, and the form of an arbitrary basic subgroup of Up(RG) and
S(RG) is discussed, too. Thus we begin with the following central section.

2. A construction of basic subgroups

The next statement, part of which was announced in [2], plays an important role
in this work:

Main Theorem. Suppose G is an abelian p-group and R is an abelian ring
with identity of prime characteristic p so that there is i ∈ �0 for which Rpi

=
Rpi+1

and Rpi

has no nilpotents. Then if B is (proper) basic in G, the subgroup

S(RG;B) + R(pi)G is (proper) basic in Up(RG), and conversely. Moreover, B is a
direct factor of S(RG;B)+R(pi)G, and S(RG;B)+R(pi)G is a lower basic subgroup
if and only if inf

n∈�
max(|Rpn |, |Gpn |) = max(|Rpi |, |G/B|) (in particular |Rpi | > |Gpi |).

Under the above assumptions, (S(RG;B) +R(pi)G)G/G is basic in Up(RG)/G.

The next result is a strong generalization and extension of a theorem due to
Nachev ([11, 2, 3]). Moreover, our proof is absolutely different from that in [11]. Its
advantage is clear. Thus we can formulate

Theorem. Assume that R is an abelian unitary perfect ring of prime charR = p
and G is an abelian group such that G/Gp is p-divisible. If Bp is (proper) basic

in Gp, then S(RG;Bp) is (proper) basic in S(RG) and conversely, and Bp is its
direct factor. Moreover, S(RG;Bp) is a lower basic subgroup of S(RG) if and only
if max(|R|, |G/Bp|) = inf

n∈�
max(|R|, |Gpn |) (in particular |R| > |Gp|). By the above

assumptions, S(RG;Bp)Gp/Gp is basic in S(RG)/Gp.
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We continue with

3. Proofs of the theorems

Now, we can attack the main assertions stated above. However, before proving
the main theorem we need some preliminaries. The next claim is well-known and
documented [9], but for the convenience of the reader we give a standard proof.

Proposition 1. Let P and L be commutative rings with 1. Moreover, let G and A
be abelian groups. If ϕP : P → L is a ring-epimorphism and ψG : G→ A is a group-

epimorphism, then ΦPG : PG→ LA defined by ΦPG

(∑
k

αkgk

)
=

∑
k

ϕP (αk)ψG(gk),

where αk ∈ P and gk ∈ G, is a ring-epimorphism.

�����. It is evident that ΦPG is a correctly defined map which is a surjection.
Now, suppose x =

∑
k

αkgk ∈ PG and x′ =
∑
k

α′kgk ∈ PG (α′k ∈ P ). Then

ΦPG(x+ x′) = ΦPG

(∑

k

(αk + α′k)gk

)
=

∑

k

ϕP (αk + α′k)ψG(gk)

=
∑

k

[ϕP (αk) + ϕP (α
′
k)]ψG(gk) =

∑

k

ϕP (αk)ψG(gk) +
∑

k

ϕP (α
′
k)ψG(gk)

= ΦPG(x) + ΦPG(x
′).

Further, xx′ =
∑
k,l

αkα
′
lgkgl and

ΦPG(xx
′) =

∑

k,l

ϕP (αkα
′
l)ψG(gkgl) =

∑

k,l

ϕP (αk)ϕP (α
′
l)ψG(gk)ψG(gl)

=

[∑

k

ϕP (αk)ψG(gk)

][∑

k

ϕP (α′k)ψG(gk)

]
= ΦPG(x) · ΦPG(x′),

which gives the result. �

Corollary 2. The map ΦRG : RG → Rpi

(G/H) where i ∈ �0 , defined as

ΦRG

(∑
k

rkgk

)
=

∑
k

rpi

k gkH , is a ring-epimorphism with the kernel

kerΦ = I(RG;H) +R(pi)G.

Thus

RG/(I(RG;H) +R(pi)G) ∼= Rpi

(G/H).
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In particular, if G is a p-torsion, then

ΦUp(RG) : Up(RG)→ Up(Rpi

(G/H))

defined as above under the restriction on Up(RG), is a surjection (a group-
epimorphism) with the kernel 1 + kerΦ = 1 + I(RG;H) +R(pi)G. Thus

Up(RG)/(1 + I(RG;H) +R(pi)G) ∼= Up(Rpi

(G/H)).

�����. The Frobenious epimorphism R → Rpi

along with the natural epi-
morphism G → G/H induce a group ring-epimorphism RG → Rpi

(G/H) accord-
ing to Proposition 1. Now we shall calculate the kernel of this map. Assume
x ∈ I(RG;H) + R(pi)G. Hence x =

∑
k,l

rklgkl(1 − hk) +
∑
j

αjaj , where rkl ∈ R,

αj ∈ R(pi); gkl ∈ G, aj ∈ G, hk ∈ H . Since Φ is a homomorphism, it is a routine
matter to see that

Φ(x) = Φ

(∑

k,l

rklgkl(1− hk)

)
+Φ

(∑

j

αjaj

)
= 0.

So, x ∈ kerΦ and immediately we conclude I(RG;H) +R(pi)G ⊆ kerΦ.
For the converse, take y ∈ kerΦ. Consequently, y =∑

k

rkgk (rk ∈ R, gk ∈ G) and

Φ(y) =
∑
k

rpi

k gkH = 0. Without loss of generality we may assume that g1H = . . . =

gm−1H and gmH �= . . . �= gtH �= gmH (1 � k � t, m is fixed such that 1 � m � t).
Therefore

rpi

1 + . . .+ r
pi

m−1 = (r1 + . . .+ rm−1)p
i

= 0

and rpi

m = . . . = rpi

t = 0. Thus we derive r1 + . . . + rm−1 ∈ R(pi) and rm ∈
R(pi), . . . , rt ∈ R(pi). Furthermore,

y = r1g1(1− gm−1g
−1
1 ) + r2g2(1− gm−1g

−1
2 ) + . . .+ rm−2gm−2(1 − gm−1g

−1
m−2)

+ (r1 + r2 + . . .+ rm−1)gm−1 + rmgm + . . .+ rtgt ∈ I(RG;H) +R(pi)G,

which gives that kerΦ ⊆ I(RG;H) + R(pi)G. Finally, kerΦ = I(RG;H) + R(pi)G
as claimed.
Now we can apply the well-known “theorem for the homomorphisms” to obtain

RG/ kerΦ ∼= Rpi

(G/H).
Let us assume that G is p-primary. Choose

∑
k

rpi

k gkH ∈ Up(Rpi

(G/H)). Hence

(∑
k

rpi

k gkH
)ps

= H for any fixed natural s. We may select s so that gps

k = 1.
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Consequently,
∑
k

rpi+s

k = 1 and so

∑

k

rpi+s

k gpi+s

k =

(∑

k

rkgk

)pi+s

= 1.

That is why
∑
k

rkgk ∈ Up(RG). The converse has a similar proof and so Φ is a map of

Up(RG) onto Up(Rpi

(G/H)). Clearly kerΦUp(RG) = 1+ kerΦRG = 1+ I(RG;H) +
R(pi)G. The proof is completed. �

Lemma 3. For every ordinal δ the following identities are true:
(a) (Gp)p

δ

= (Gpδ

)p, [N(R)]p
δ

= N(Rpδ

),
(b) Upδ

(R) = U(Rpδ

), [Up(R)]p
δ

= Up(Rpδ

),
(c) Upδ

(RG) = U(Rpδ

Gpδ

), [Up(RG)]p
δ

= Up(Rpδ

Gpδ

),
(d) Spδ

(RG) = S(Rpδ

Gpδ

).

�����. (a): It is obvious and so we omit the details.
(b), (c) and (d): Now we observe that it is sufficient to show only that Upδ

(R) =
U(Rpδ

) holds. From this, in view of the first equality of (a) and of the simple facts
that charRG = p and (RG)p

δ

= Rpδ

Gpδ

, it will follow that all the other relations
are fulfilled.
In the sequel our conclusions are based of the standard transfinite induction on δ

and so we will consider only the case for δ = 1. Put δ = 1 and choose x ∈ Up(R).
Hence x = rp where r ∈ U(R). Thus there exists r′ ∈ R such that r · r′ = 1.
Obviously rp · (r′)p = 1 and x ∈ U(Rp), i.e. Up(R) ⊆ U(Rp).
Conversely, putting y ∈ U(Rp) we conclude y = αp where α ∈ R and αp·α′p = 1 for

some α′ ∈ R. Consequently, α·αp−1 ·α′p = 1, i.e. α·α′′ = 1 where αp−1 ·α′p = α′′ ∈ R.
Finally, α ∈ U(R) and so y ∈ [U(R)]p, which gives U(Rp) ⊆ Up(R) and completes
the proof. �

Lemma 4. Suppose that there exists i ∈ �0 such that Rpi

contains no nilpotents,

i.e. N(Rpi

) = 0. Then N(R) = R(pi) and [R(pi)]p
n

= Rpn

(pi) for each n ∈ �0 .

�����. For n � i the proof is obvious, because [R(pi)]p
n

= 0 and moreover
Rpn

(pi) = 0, Rpn ⊆ Rpi

. Now consider the case when n < i. By definition R(pi) =
{r ∈ R | rpi

= 0} and Rpn

(pi) = {αpn | α ∈ R and αpn+i

= 0}. Clearly [R(pi)]p
n ⊆

Rpn

(pi). For the converse, choose x ∈ Rpn

(pi). Therefore x = αpn

and (αpi

)p
n

= 0,
i.e. x = αpn

and αpi

= 0. Finally, x ∈ [R(pi)]p
n

, as desired.
Now assume r ∈ R and rpt

= 0 for t > i. Hence rpt+i

= 0, i.e. (rpi

)p
t

= 0. Thus
rpi

= 0, and we may conclude that R(pt) = R(pi), i.e. N(R) = R(pi). The proof of
the lemma is complete. �
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Remark. By the same argument as above N(Rpi

) = 0 ⇔ R(pi) = R(pi+1) ⇔
N(R) = R(pi).

Recall that for H � G we have defined S(RG;H) = 1 + Ip(RG;H) = {1 + z |
zpt

= 0 for some natural t when z ∈ I(RG;H)}.

Lemma 5. Assume 1 ∈ L � R and B � H � G, A � G. Then

(∗) I(RG;H) ∩ LA = I(LA;A ∩H) and
HS(RG;B) ∩ S(LA) = (Ap ∩H)S(LA;A ∩B),

(∗∗) (I(RG;H) +R(pi)G) ∩ LA = I(LA;A ∩H) + L(pi)A and
G(S(RG;H) +R(pi)G) ∩ Up(LA) = Ap(S(LA;A ∩H) + L(pi)A).

�����. (∗) Indeed, x = ∑
k

rkgk ∈ I(RG;H) if and only if
∑
k

rkgkH = 0,

i.e.
∑

gk∈gH

rk = 0 for any g ∈ G. Hence we can write

z =
∑

k

rkgk =
∑

k

αkak ∈ I(RG;H) ∩ LA,

where
∑
k

rkgkH = 0 (rk ∈ R, αk ∈ L; gk ∈ G, ak ∈ A). Because g ∈ A and

gk = ak ∈ A we deduce gH ∩A = g(H ∩A) and
∑

gk∈gH∩A

rk =
∑

gk∈g(H∩A)

rk =
∑

ak∈g(H∩A)

rk = 0,

i.e. z ∈ I(LA;A ∩H). The converse is elementary. To verify the second relation we
observe that each element of the left hand-side is

∑
a∈A

αaa = h
∑

g∈G

rgg, where αa ∈ L,
rg ∈ R and h ∈ H . Moreover,

∑

g∈gB

rg =

{
0, g �∈ B,
1, g ∈ B

for each g ∈ G, and ∑
a∈A

αa = 1. Observe that αa = rg and a = hg. Since
∑

a∈A

αaa ∈

S(LA), there is ap ∈ Ap. Since clearly ap ∈ H
( ∑
g∈B

rg =
∑

a∈A

αa = 1, g = ah−1 ∈

B ⊆ H
)
, it follows that

∑
a∈A

αaa = ap

∑
a∈A

αaaa
−1
p has the coefficient sum

∑

a∈aB

αa =

{
0, a �∈ B,
1, a ∈ B

for every a ∈ A and as above we conclude the equality holds.
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(∗∗) We can proceed analogously to the above. To demonstrate this, choose z on
the left hand-side. Write z =

∑
k

αkak where
∑

ak∈aH

αpi

k = 0 for any a ∈ A. But

aH ∩A = a(H ∩A) and consequently
∑

ak∈a(H∩A)

αpi

k = 0,

i.e. z ∈ I(LA;A ∩H) + L(pi)A. The converse is trivial.
For the last relation note that every element on the left hand-side is

∑
a∈A

αaa =

g′
∑

g∈G

rgg, where αa ∈ L, rg ∈ R and g′ ∈ G. Besides,

∑

g∈gH

rpi

g =

{
1, g ∈ H,
0, g �∈ H

for all g ∈ G. It is easily seen that αa = rg and a = g′g (g ∈ gH ⇐⇒ a ∈ aH

for each a ∈ A). Because
∑

a∈A

αaa ∈ Up(LA), there is ap ∈ Ap. Consequently,
∑

a∈A

αaa = ap

∑
a∈A

αaaa
−1
p has the Frobenious coefficient sum equal to

∑

a∈aA

αpi

a =

{
1, a ∈ H,
0, a �∈ H

for every a ∈ A. This completes the proof in general. So the lemma is shown. �

Part of the next statement is an expansion of facts well-documented and men-
tioned in [3,5], and is included here in details for the sake of completeness and the
convenience of the reader.

Theorem 6. Let H be a pure p-subgroup of G. Then S(RG;H)/H and

[S(RG;H) + R(pi)G]/H are direct sums of cyclic groups provided that H is. Thus
H is a direct factor of S(RG;H) and S(RG;H)+R(pi)G with a direct sum of cyclics
complements.

�����. Indeed, we can write [6], H =
∞⋃

n=1
Hn, Hn ⊆ Hn+1 and Hn ∩ Hpn

=

1. Since H ∩ Gpn

= Hpn

, we have Hn ∩ Gpn

= 1. Furthermore S(RG;H) =
∞⋃

n=1
S(RG;Hn), where S(RG;Hn) ⊆ S(RG;Hn+1), and by virtue of (∗) and (c) we

compute

S(RG;Hn) ∩ Spn

(RG;H) ⊆ S(RG;Hn) ∩ Spn

(RG) = S(RG;Hn) ∩ S(Rpn

Gpn

)

= S(Rpn

Gpn

;Gpn ∩Hn) = 1.
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Moreover, S(RG;H)/H =
∞⋃

n=1
[S(RG;Hn)H/H ] and Lemma 5 ensures that

(S(RG;Hn)H) ∩ [S(Rpn

Gpn

;Hpn

)H ] = H((S(RG;Hn)H) ∩ S(Rpn

)Gpn

;Hpn

))

= HS(Rpn

Gpn

;Gpn ∩Hn) = H.

Thus the well-known Kulikov criterion in [6] is applicable to obtain that S(RG;H)/H
is a direct sum of cyclics, as stated. Finally, by what we have shown above,

([S(RG;H) +R(pi)G]/H)p
i ∼= S(Rpi

Gpi

;Hpi

)/Hpi

is a direct sum of cyclics since Hpi

is a direct sum of cyclics and is pure in Gpi

.
Consequently [6], so is the desired group. Besides, H is pure in S(RG;H) and the
latter is pure in S(RG) [3]. So H is pure in S(RG), whence it is pure in S(RG;H)+
R(pi)G ⊆ S(RG) and the Kulikov theorem [6, Theorem 28.2] is applicable. The
proof is complete. �

Now we are in position to begin with

����� of Main Theorem. We shall establish that the p-groupB∗ = S(RG;B)+
R(pi)G satisfies the three necessary and sufficient conditions for a basic subgroup
given in [6]. From this it will follow immediately that B∗ is a basic subgroup of
Up(RG) and we are done since the converse is apparent.
1) A direct sum of cyclic groups. First consider the problem of the decomposition

of B∗ into a direct sum of cyclics. According to ([6], p. 111, Proposition 18.3) B∗ is
a direct sum of cyclics if and only if (B∗)p

i

= S(Rpi

Gpi

;Bpi

) (see [3]) is a direct sum
of cyclics. But B is a direct sum of cyclics and B is pure in G. Hence Bpi ⊆ B is a
direct sum of cyclics and Bpi

is pure in Gpi

. Therefore Theorem 6 or ([3], Theorem 2)
applies to prove our claim.
2) Purity. Secondly, consider the question of the purity of B∗ in Up(RG). We

shall show that if B is pure in G, then for every n ∈ � we have

[S(RG;B) +R(pi)G] ∩ Upn

p (RG) =

{
S(Rpn

Gpn

;Bpn

) +Rpn

(pi)Gpn

, n < i,

S(Rpn

Gpn

;Bpn

), n � i.

In fact, we can apply Lemma 3 and Lemma 5 together with the facts that B∩Gpn

=
Bpn

and

R(pi) ∩Rpn

= Rpn

(pi) =

{
Rpn

(pi), n < i,

0, n � i.

Thus owing to Lemma 4 (more specially, Rpn

(pi) = [R(pi)]p
n

or to N(R) = R(pi)
combined with (a)) and also to [6], we arrive at the conclusions in this case.
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3) Divisibility. Because Up(RG) = S(RG) × Up(R), by virtue of Lemma 3 and
[3, Corollary 2] we get that Up(RG) is divisible if and only if R is perfect and G
is divisible (this assertion follows also obviously). Thus we are ready to show that
Up(RG)/B∗ is divisible provided G/B is divisible and Rpi

is perfect. Indeed, owing
to Corollary 2, Up(RG)/B∗ ∼= Up(Rpi

(G/B)). So, the above conclusions imply that
Up(Rpi

(G/B)) is divisible as required. The direct factor property follows by utilizing
Theorem 6. This completes the proof of the first part of the theorem in general.
The fact that

(
S(RG;B) +R(pi)G

)
G/G ∼= (S(RG;B) +R(pi)G)

/
B

(
[S(RG;B) +R(pi)G] ∩G = B

)

is basic in Up(RG)/G follows by making use of Corollary 2 plus the fact that an
epimorphic image of a divisible group is divisible [6], Lemmas 3 and 5, Theorem 6
and conclusions similar to the above. Finally, we obtain a lower basic subgroup. In
fact, Corollary 2 and [12, 13] guarantee that

rank(Up(RG)/S(RG;B) +R(pi)G) = rankUp(Rpi

(G/B)) = rankS(Rpi

(G/B))

= max(|Rpi |, |G/B|).

On the other hand, Lemma 3 and [6, 9] yield

fin rankUp(RG) = inf
n∈�
rank(Upn

p (RG)) = inf
n∈�
rank(Up(Rpn

Gpn

))[p]

= inf
n∈�

|Up(Rpn

Gpn

)[p]| = inf
n∈�
max(|Rpn |, |Gpn |),

completing the proof of the second part. The theorem is proved. �

We continue with

����� of Theorem. The fact that S(RG;Bp) is basic in S(RG) as well as
the converse situation follow by virtue of [3]. The direct factor property holds by
virtue of Theorem 6. Moreover, S(RG;Bp)Gp/Gp

∼= S(RG;Bp)/Bp is indeed basic
in S(RG)/Gp according to Lemmas 3, 5 and Theorem 6 along with conclusions
analogous to those in [3]. The lower basic subgroup can be established as in Main
Theorem. The proof is complete. �

Remark. P. Hill in [8] has shown that V (RG)/G has a special basis (called a
ν-basis or more properly, a Hill-basis) provided R is a perfect field and G is an
abelian p-group. Our two theorems give another basis to that of Hill, which, how-
ever, determines the group V (RG)/G more completely for a more general coefficient
ring R (cf. [6]). Thus the long-standing direct factor problem due to May [9] whether
V (RG)/G is totally projective, is well-examined.
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Corollary 7 ([11], [3]). Suppose R is perfect and N(R) = 0. Then if B is a basic
subgroup of a p-group G, then S(RG;B) is basic in S(RG).

�����. Follows by application of our main theorem, since R = Rpi

implies
Rpi

= Rpi+1
and also N(Rpi

) = 0 and R(pi) = 0. Therefore 1 + I(RG;B) +R(pi)G
reduces to 1 + I(RG;B) = S(RG;B), which gives the result. �

Remark. The above corollary is true even if N(R) �= 0 (cf. [11] or [3] and the
second central theorem stated in Section 2).

Corollary 8. Suppose R is weakly perfect of exponent i such that its maximal
perfect subring has no nilpotents and B is basic in the p-torsion G. If BS(RG) and

BUp(R) are the basic subgroups of S(RG) and Up(R) respectively, then

BS(RG)
∼= [1 + I(RG;B) +R(pi)G]/BUp(R).

�����. Since Up(RG) = S(RG) × Up(R), it follows from [6] that BUp(RG) =
BS(RG)×BUp(R). But as we see, BUp(RG) = 1+I(RG;B)+R(pi)G, and so apparently
the above isomorphism holds. The proof is complete. �

4. Applications

In this section we proceed by proving the following ring-theoretic assertion:

Example 9. Let R be finite. Then R is perfect if and only if N(R) = 0.

�����. The sufficiency is well-known, but we will prove it. In fact, ϕ : R→ Rpi

defined by ϕ(r) = rpi

(r ∈ R) is an isomorphism and so |R| = |Rpi |, i.e. R = Rpi

.
Conversely, using Lemma 3, R perfect yieldsN(R) is perfect, i.e.N(R) = [N(R)]p

n

for every n ∈ �. But R is finite, hence N(R) is. Thus R(pm) = R(pm+1) for
any m ∈ � and consequently N(R) = R(pm) (see Lemma 4 and also the remark
formulated below). Finally, N(R) = [R(pm)]p

n

= 0 when n � m. This completes
the proof. �

Remark. By the same argument as above, R perfect and N(R) finite yield
N(R) = 0.

Of some interest and importance is the calculation of a power of the basic subgroup
which is given in the sequel.

Proposition 10. If G is arbitrary with G/Gp p-divisible and R is abelian unitary
perfect of prime charR = p, orG is p-primary and R is unitary abelian weakly perfect
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of prime charR = p such that its maximal perfect subring is without nilpotents,

then the basic subgroup of the infinite groups S(RG) or Up(RG) has cardinality
max(|R|, |G|).

Corollary 11. Under the above assumptions on R and G the following holds:
S(RG) or Up(RG) has a countable basic subgroup⇐⇒ both R and G are countable.
An easy reformulation is given by the following

Corollary 12. If either R or G is uncountable, then S(RG) and Up(RG) contain
uncountable basic subgroups.

Remark. When the set of all basic subgroups of the abelian p-primary group G
is finite, then N. Nachev in [11] proved that not every basic subgroup of S(RG) is of
the above kind provided R is perfect.

Now we will give a further supplement to this result, namely

Claim 13. Assume that G and R are as in Proposition 10. If Gp or G contains

an infinite number of different basic subgroups, then the set of all different basic sub-

groups of S(RG) or Up(RG), respectively, has cardinality max(|R|, |G|)max(|R|,|G|).
In particular, there are basic subgroups of S(RG) and Up(RG) that are not of these
kinds.

�����. By virtue of the second theorem from Section 2, S(RG;Bp) is basic
in S(RG) for all choices of the basic Bp. Moreover, S(RG;Bp) = S(RG;B′

p) ⇐⇒
Bp = B′

p for other basic B
′
p in Gp. Hence S(RG) has an infinite set of distinguished

basic subgroups. Applying [10, 7] or [6, p. 178, Exercise 3], the power of the last
set is |S(RG)||S(RG;Bp)| = [max(|R|, |G|)]max(|R|,|G|), owing to Proposition 10 and
[9] as well. On the other hand the cardinality of the set of all distinguished basic
subgroups of Gp is |Gp||Bp| [10, 7, 6]. Therefore there is a real possibility to have
[max(|R|, |G|)]max(|R|,|G|) > |Gp||Bp|. Indeed, take |R| > |G| to be a strong limit
cardinal, whence |R||R| > |R| > |Gp||Bp|, which verifies the claim. The conclusions
for the other case are identical. This is the end of the proof. �
Remark. If G is p-torsion infinite reduced with a basic subgroup B and |R| � |G|,

then we have |G||G| = |G||B| if and only if |G| = |B| provided the generalized CH
holds. In fact, if |G| = ℵ0, then |G| = |B|. Let now |G| = ℵα+1 = 2ℵα for some
ordinal α, then |G||G| = 2|G| and |G||B| = 2max(|B|,ℵα). Thus 2|G| = 2max(|B|,ℵα)

yields |G| = |B| as desired. We mention that such groups G with |G| = |B| are
known to be starred.

In the conclusion we note that [6], |G| � |B|ℵ0 .
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5. Open problems

Here are two actual questions which immediately arise. First, what is the situation
for B∗ when N(Rpi

) �= 0. The second question is what is the basic subgroup of
Up(RG) (or of S(RG)) in the general case whenR is not even weakly perfect, i.e. when
Rpi

= Rpi+1
and i is a non-natural ordinal.

Of some interest and importance is the problem of the calculation of lower and
upper basic subgroups in Up(RG) and S(RG). The same is valid also for Up(RG)/Gp

and S(RG)/Gp for a large modular coefficient ring R. And finally, what is the basic
(lower and upper) subgroup of S(KG) and S(KG)/G when G is p-primary and K is
the first kind field with respect to p (charK �= p)?
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