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Abstract. We define an ultra LI-ideal of a lattice implication algebra and give equivalent
conditions for an LI-ideal to be ultra. We show that every subset of a lattice implication
algebra which has the finite additive property can be extended to an ultra LI-ideal.
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Introduction

In order to research a logical system whose propositional value is given in a lattice,
Y. Xu [5] proposed the concept of lattice implication algebras, and discussed some
of their properties. Also, in [4], Y. Xu discussed the homomorphisms between lattice
implication algebras. Y. Xu and K.Y. Qin [6] introduced the notion of filters in a
lattice implication algebra, and investigated their properties. In [1], Y. B. Jun et al.
proposed the concept of an LI-ideal of a lattice implication algebra and discussed
the relationship between filters and LI-ideals, and studied how to generate an LI-
ideal by a set. This paper is devoted to the discussion of ultra LI-ideals of lattice
implication algebras. We give equivalent conditions for an LI-ideal to be ultra. We
show that every subset of a lattice implication algebra which has the finite additive
property can be extened to an ultra LI-ideal.
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Preliminaries

By a lattice implication algebra we mean a bounded lattice (L, ∨, ∧, 0, 1) with
order-reversing involution “ ′ ” and a binary operation “→” satisfying the following
axioms:

(I1) x → (y → z) = y → (x → z),
(I2) x → x = 1,
(I3) x → y = y′ → x′,
(I4) x → y = y → x = 1⇒ x = y,
(I5) (x → y)→ y = (y → x)→ x,
(L1) (x ∨ y)→ z = (x → z) ∧ (y → z),
(L2) (x ∧ y)→ z = (x → z) ∨ (y → z)

for all x, y, z ∈ L.
In the sequel the binary operation “→” will be denoted by juxtaposition. We can

define a partial ordering “�” on a lattice implication algebra L by x � y if and only
if xy = 1.
In a lattice implication algebra L, the following relations hold (see [5]):
(1) 0x = 1, 1x = x and x1 = 1,
(2) x′ = x0,
(3) xy � (yz)(xz),
(4) x ∨ y = (xy)y,
(5) x � y implies yz � xz and zx � zy.

In a lattice implication algebra L, if we denote (xy′)′ by x × y and x′y by x+ y,
then the following relations are easily proved:

(6) x+ y = y + x,
(7) (x + y) + z = x+ (y + z),
(8) x+ y � x ∨ y,
(9) x× y = y × x,
(10) (x × y)× z = x× (y × z),
(11) x× y � x ∧ y.
A subset A of a lattice implication algebra L is called an LI-ideal of L (see [1]) if

it satisfies
(LI1) 0 ∈ A,
(LI2) (xy)′ ∈ A and y ∈ A imply x ∈ A for all x, y ∈ L.
An LI-ideal A of a lattice implication algebra L is said to be proper if A �= L.

Theorem 2.1. ([1, Theorem 2.2]) Let A be an LI-ideal of a lattice implication
algebra L and let x ∈ A. If y � x, then y ∈ A for all y ∈ L.

Let A be a subset of a lattice implication algebra L. Then the least LI-ideal
containing A is called the LI-ideal generated by A, denoted by 〈A〉.
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The next statement gives a description of the elements of 〈A〉.

Theorem 2.2. ([1, Theorem 2.9]) If A is a non-empty subset of a lattice impli-
cation algebra L, then

〈A〉 = {x ∈ L | a′n(. . . (a′1x′) . . .) = 1 for some a1, ..., an ∈ A}.

Ultra LI-ideals

We start by providing a characterization of LI-ideals.

Proposition 3.1. Let A be a subset of a lattice implication algebra L. Then A

is an LI-ideal of L if and only if the following implications hold:
(i) x ∈ A and y � x imply y ∈ A,
(ii) x ∈ A and y ∈ A imply x+ y ∈ A.

�����. If A is an LI-ideal of L, then (i) holds by Theorem 2.1. Let x, y ∈ A.
Then

((x + y)y)′ = ((x′y)y)′ = (x′ ∨ y)′ = x ∧ y′ � x.

It follows from Theorem 2.1 that ((x + y)y)′ ∈ A and hence x + y ∈ A by (LI2).
Conversely, let A be a subset of L satisfying the conditions (i) and (ii). Since 0 � x

for all x ∈ L and hence for all x ∈ A, it follows from (i) that 0 ∈ A. Suppose
(xy)′ ∈ A and y ∈ A. Then (xy)′ + y ∈ A by (ii), and

(xy)′ + y = ((xy)′)′y = (xy)y = x ∨ y � x.

Using (i), we have x ∈ A which proves (LI2), completing the proof. �

Theorem 3.2. If A is a subset of a lattice implication algebra L, then

〈A〉 = {x ∈ L | x � a1 + a2 + . . .+ an for some a1, ..., an ∈ A}.

�����. By Theorem 2.2 it is sufficient to show that

(3.1) x � a1 + a2 + . . .+ an ⇐⇒ a′n(. . . (a
′
1x

′) . . .) = 1.

We will prove (3.1) by induction on n. If n = 1, then

x � a1 ⇐⇒ xa1 = 1⇐⇒ a′1x
′ = 1;
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hence (3.1) holds for n = 1. Suppose (3.1) is true for n = k, i.e.,

x � a1 + a2 + . . .+ ak ⇐⇒ a′k(. . . (a
′
1x

′) . . .) = 1.

Then

x � a1 + a2 + . . .+ ak + ak+1 = ak+1 + a1 + a2 + . . .+ ak

⇐⇒ x � a′k+1(a1 + a2 + . . .+ ak) = (a1 + a2 + . . .+ ak)′ak+1

⇐⇒ (a1 + a2 + . . .+ ak)′ � xak+1 = a′k+1x
′

⇐⇒ (a′k+1x′)′ � a1 + a2 + . . .+ ak

⇐⇒ a′k(a
′
k−1(. . . (a

′
1(a

′
k+1x

′)) . . .)) = 1

⇐⇒ a′k+1(a
′
k(. . . (a

′
2(a

′
1x

′)) . . .)) = 1,

which shows that (3.1) holds for n = k + 1. This completes the proof. �

Definition 3.3. A subset A of a lattice implication algebra L is said to have the
finite additive property if a1+ a2+ . . .+ an �= 1 for any finite members a1, a2, . . . , an

of A.

The following corollary is an immediate consequence of Theorem 3.2.

Corollary 3.4. For a subset A of a lattice implication algebra L, 〈A〉 is a proper
LI-ideal of L if and only if A has the finite additive property.

Definition 3.5. An LI-ideal A of a lattice implication algebra L is said to be
ultra if for every x ∈ L, the following equivalence holds:

(3.2) x ∈ A ⇐⇒ x′ �∈ A.

Theorem 3.6. Let A be a subset of a lattice implication algebra L. Then A is
an ultra LI-ideal of L if and only if A is a maximal proper LI-ideal of L.

�����. Suppose that A is an ultra LI-ideal of L. Since 0 ∈ A, we have
1 = 0′ �∈ A, and hence A is proper. If B is an LI-ideal of L and A � B, then there
exists x ∈ L such that x ∈ B and x �∈ A. By (3.2) we have x′ ∈ A � B, and so
1 = x+x′ ∈ B. It follows that B = L and B is not proper. Therefore A is a maximal
proper LI-ideal of L.
Conversely, assume that A is a maximal proper LI-ideal of L. For each x ∈ L,

we claim that (3.2) is true. Assume x′ �∈ A and let B = A ∪ {x}. Then B has the
finite additive property. In fact, suppose y1, . . . , yn ∈ B. If y1, . . . , yn ∈ A, then
y1 + . . . + yn �= 1 because A is proper. Now if there exists i � n such that yi = x,
then

y1 + . . .+ yn = x+ y1 + . . .+ yi−1 + yi+1 + . . .+ yn.
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If y1 + . . . + yn = 1 then x′(y1 + . . . + yi−1 + yi+1 + . . . + yn) = 1, i.e., x′ �
y1+ . . .+ yi−1+ yi+1+ . . .+ yn. Thus x′ ∈ A by Theorem 2.1, a contradiction. This
proves that B has the finite additive property. Using Corollary 3.4, 〈B〉 is a proper
LI-ideal of L. Since A ⊆ 〈B〉 and A is a maximal proper LI-ideal, we have 〈B〉 = A

and hence x ∈ 〈B〉 = A. Suppose x ∈ A. If x′ ∈ A, then 1 = x + x′ ∈ A; hence A

is not a proper LI-ideal. This is a contradiction. Therefore x′ �∈ A and the proof is
complete. �

Theorem 3.7. Let A be a subset of a lattice implication algebra L. If A has
the finite additive property, then there exists an ultra LI-ideal B of L containing A.

�����. Let

Ω = {B | B is a proper LI-ideal of L containing A}.

Then 〈A〉 ∈ Ω and hence Ω �= ∅. Suppose B1 ⊆ B2 ⊆ . . . is a chain of elements of Ω
and let C =

⋃
i

Bi. Then (i) A ⊆ C, (ii) 1 �∈ C (because 1 /∈ Bi for all i), (iii) 0 ∈ C,

and (iv) if (xy)′, y ∈ C then there exists i such that (xy)′, y ∈ Bi and so x ∈ Bi ⊆ C.
This shows that C is a proper LI-ideal of L containing A so that C ∈ Ω. By Zorn’s
lemma, Ω has a maximal element, say D, which is the desired ultra LI-ideal of L. �

Since every proper LI-ideal has the finite additive property, we have the following
corollary.

Corollary 3.8. Every proper LI-ideal of a lattice implication algebra can be
extended to an ultra LI-ideal.

Theorem 3.9. Let A be a proper LI-ideal of a lattice implication algebra L.
Then A is ultra if and only if for every a, b ∈ L, whenever a× b ∈ A then a ∈ A or
b ∈ A.

�����. Suppose A is ultra and let a, b ∈ L. If a × b ∈ A, then (a × b)′ /∈ A.
Since (a × b)′ = ((ab′)′)′ = ab′ = a′ + b′, it follows that a′ /∈ A or b′ /∈ A so that
a ∈ A or b ∈ A. Conversely, assume that for every a, b ∈ L, a ∈ A or b ∈ A whenever
a× b ∈ A. Then for each x ∈ L, if x′ /∈ A then x′ × x = (x′x′)′ = 1′ = 0 ∈ A, which
implies that x ∈ A. Clearly if x ∈ A, then x′ /∈ A. This completes the proof. �

Theorem 3.10. Let f : L → M be an implication homomorphism of lattice
implication algebras satisfying f(0) = 0.
(i) If B is an ultra LI-ideal of M , then f−1(B) is an ultra LI-ideal of L.
(ii) If f is an isomorphism and if A is an ultra LI-ideal of L, then f(A) is an ultra

LI-ideal of M .
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�����. (i) Clearly 0 ∈ f−1(B). Let x, y ∈ L be such that (xy)′ ∈ f−1(B) and
y ∈ f−1(B). Then f(y) ∈ B and (f(x)f(y))′ = (f(xy))′ = f((xy)′) ∈ B. Since B is
an LI-ideal of M , it follows from (LI2) that f(x) ∈ B so that x ∈ f−1(B). Hence
f−1(B) is an LI-ideal of L. For each x ∈ L, we have

x ∈ f−1(B)⇐⇒ f(x) ∈ B ⇐⇒ f(x′) = (f(x))′ /∈ B ⇐⇒ x′ /∈ f−1(B).

Hence f−1(B) is an ultra LI-ideal of L.
(ii) Note that 0 = f(0) ∈ f(A). Let x, y ∈ M be such that (xy)′ ∈ f(A) and

y ∈ f(A). Then there exist u ∈ L and v ∈ A such that f(u) = x and f(v) = y. It
follows that

f((uv)′) = (f(uv))′ = (f(u)f(v))′ = (xy)′ ∈ f(A)

so that (uv)′ ∈ A. Using v ∈ A, we know that u ∈ A and so x = f(u) ∈ f(A). Thus
f(A) is an LI-ideal of M . For each y ∈ M , let x ∈ L be such that f(x) = y. Then

y ∈ f(A)⇔ x = f−1(y) ∈ A ⇔ x′ /∈ A ⇔ y′ = (f(x))′ = f(x′) /∈ f(A).

Therefore f(A) is an ultra LI-ideal of M . This completes the proof. �

Acknowledgements

The authors would like to thank the referees for their valuable suggestions.

References

[1] Y.B. Jun, E.H. Roh and Y. Xu: LI-ideals in lattice implication algebras. Bull. Korean
Math. Soc. 35 (1998), 13–24.

[2] Y.B. Jun and Y. Xu: Fuzzy LI-ideals in lattice implication algebras. J. Fuzzy Math. 7
(1999), 997–1003.

[3] Y.B. Jun, Y. Xu and K.Y. Qin: Positive implicative and associative filters of lattice
implication algebras. Bull. Korean Math. Soc. 35(1) (1998), 53–61.

[4] Y. Xu: Homomorphisms in lattice implication algebras. Proc. of 5th Many-Valued Log-
ical Congress of China (1992), 206–211.

[5] Y. Xu: Lattice implication algebras. J. Southwest Jiaotong University 1 (1993), 20–27.
[6] Y. Xu and K.Y. Qin: On filters of lattice implication algebras. J. Fuzzy Math. 1 (1993),
251–260.

Authors’ addresses: �� �� and�� ���, Department of Applied Mathematics, South-
west Jiaotong University, Chengdu, Sichuan 610031, P.R. China, e-mail: yxu@center2.
swjtu.edu.cn; ���� 	��, Department of Mathematics Education, Gyeongsang National
University, Chinju 660-701, Korea, e-mail: ybjun@nongae.gsnu.ac.kr.

468


		webmaster@dml.cz
	2020-07-03T13:38:17+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




