
Czechoslovak Mathematical Journal

Anna Avallone
Modular functions on multilattices

Czechoslovak Mathematical Journal, Vol. 52 (2002), No. 3, 499–512

Persistent URL: http://dml.cz/dmlcz/127738

Terms of use:
© Institute of Mathematics AS CR, 2002

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127738
http://dml.cz


Czechoslovak Mathematical Journal, 52 (127) (2002), 499–512

MODULAR FUNCTIONS ON MULTILATTICES

Anna Avallone, Potenza

(Received June 30, 1999)

Abstract. We prove that every modular function on a multilattice L with values in
a topological Abelian group generates a uniformity on L which makes the multilattice
operations uniformly continuous with respect to the exponential uniformity on the power
set of L.
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Introduction

The foundations of the theory of multilattices were laid in the fifties by M. Benado
in [11], motivated by numerous examples of posets which are multilattices but not

lattices, and the research was carried on many papers (for example, [10], [16], [18],
[19], [20] and many others). In particular, by [10], examples of multilattices are the

intervals of modular interval spaces, which are a common generalization of L1 type
Banach spaces, hyperconvex metric spaces and modular lattices.

The aim of the present paper is to prove that modular functions on multilattices
generate a topological structure analogously as modular functions on lattices. We

recall that in [13] I. Fleischer and T. Traynor, extending a result of K. Birkhoff in [12]
for increasing real-valued modular functions, proved that every modular function on

a lattice L with values in a topological Abelian group generates a lattice uniformity
on L, i.e. a uniformity which makes the lattice operations of L uniformly continuous.

This result allowed to use the theory of lattice uniformities developed in [22], [23],

[27], [7], to extend to modular functions on lattices many results of classical measure
theory, which have applications in particular in non-commutative measure theory
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and in fuzzy measure theory (see, for example, [1], [2], [4], [5], [6], [3], [8], [9], [13],

[14], [15], [21], [23], [24], [25], [27]).

In [19], the results of [12] have been extended to modular functions on multilat-
tices, proving that every increasing real-valued modular function on a multilattice L

generates a pseudometric on L.

In the present paper, extending the results of [13], we prove that every modular
function µ on a multilattice L with values in a topological Abelian group generates

a multilattice uniformity U(µ) on L, i.e. a uniformity which makes the multilattice
operations of L uniformly continuous with respect to the exponential uniformity on

the power set of L, and U(µ) is the weakest multilattice uniformity which makes
µ uniformly continuous (see Theorem 2.2.3). For increasing real-valued modular

functions, U(µ) coincides with the uniformity generated by the pseudometric in [19]
and, if L is a lattice, coincides with the lattice uniformity of [13].

The paper is organized as follows: in Section 1, we study properties of multilattice

uniformities and give a characterization of multilattice uniformities (Theorem 1.4)
which allows to simplify the proof of the main result. In Section 2.1, we study

properties of a set associated to a modular function, which are essential tools for the
proof of the main result. Finally, in Section 2.2, we prove the main result.

Preliminaries

Let (L, �) be a poset. For a, b ∈ L denote by U(a, b) and L(a, b) the sets of all

upper and lower bounds of the set {a, b}, respectively. Further, let a∨ b be the set of
all minimal elements of U(a, b) and a ∧ b the set of all maximal elements of L(a, b).

L is said to be a (directed) multilattice if:

(1) For every a, b ∈ L, U(a, b) �= ∅ and L(a, b) �= ∅.
(2) For every c ∈ U(a, b), there exists d ∈ a ∨ b with d � c.

(3) For every c ∈ L(a, b), there exists d ∈ a ∧ b with d � c.

If G is an Abelian group, a function µ : L → G is calledmodular if, for every a, b ∈ L,
c ∈ a∧ b and d ∈ a∨ b, µ(a)+µ(b) = µ(c)+µ(d). Then, if µ is modular and a, b ∈ L,

we have µ(r) = µ(s) for every r, s ∈ a ∨ b and µ(t) = µ(u) for every t, u ∈ a ∧ b.

A congruence on L is an equivalence relation θ such that (a, b) ∈ θ and (c, d) ∈ θ

imply (a ∨ c, b ∨ d) ∈′ θ and (a ∧ c, b ∧ d) ∈′ θ, where (a ∨ c, b ∨ d) ∈′ θ means that:

(1) For every z ∈ a ∨ c, there exists z′ ∈ b ∨ d with (z′, z) ∈ θ.

(2) For every z′ ∈ b ∨ d, there exists z ∈ a ∨ c with (z, z′) ∈ θ.

The meaning of (a ∧ c, b ∧ d) ∈′ θ is analogous.

The following result holds.
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Theorem ([19], Th. 2.2). Let L be a directed multilattice and θ reflexive binary

relation on L. Then θ is a congruence relation iff the following conditions hold:

(1) (a, b) ∈ θ iff there exists c ∈ a ∧ b and d ∈ a ∨ b such that (c, d) ∈ θ.

(2) (a, b) ∈ θ, (b, c) ∈ θ and a � b � c imply (a, c) ∈ θ.

(3) (a, b) ∈ θ and a � b imply (a ∨ c, b ∨ c) ∈′ θ and (a ∧ c, b ∧ c) ∈′ θ.

Through the paper, L will denote a directed multilattice and G a topological
Abelian group.

We set ∆ = {(a, b) ∈ L × L : a = b}. If a, b ∈ L and a � b, we set [a, b] =
{c ∈ L : a � c � b}. We say that a subset A of L is convex if, for every a, b ∈ A

with a � b, [a, b] ⊆ A. A filter on L is a non-empty family U of non-empty subsets
of L which is closed with respect to the intersections and contains the oversets of its

elements.
We recall that, if (L,U) is a uniform space, the exponential uniformity on the

power set P (L) of L is the uniformity which has as its base the family consisting of
the sets

2U = {(A, B) ∈ P (L)× P (L) : ∀x ∈ A, ∃ y ∈ B : (x, y) ∈ U ;

∀ y ∈ B, ∃x ∈ A : (x, y) ∈ U},

where U ∈ U . For U, V ∈ U and x ∈ L we set U−1 = {(a, b) ∈ L × L : (b, a) ∈ U},
U ◦V = {(a, b) ∈ L×L : ∃ c ∈ L : (a, c) ∈ U, (c, b) ∈ V } and U(x) = {y ∈ L : (x, y) ∈
U}.

1. Multilattice uniformities

In this section we introduce and study multilattice uniformities, since in the next

section we will see that every modular function generates a multilattice uniformity.
A uniformity U on L is called a multilattice uniformity if the maps

∨ : (a, b) ∈ L× L → a ∨ b ∈ P (L), ∧ : (a, b) ∈ L× L → a ∧ b ∈ P (L)

are uniformly continuous with respect to the product uniformity in L × L and the

exponential uniformity in P (L). Then U is a multilattice uniformity iff, for every
U ∈ U , there exists V ∈ U such that (a, b) ∈ V and (c, d) ∈ V imply (a∨c, b∨d) ∈ 2U
and (a ∧ c, b ∧ d) ∈ 2U .

Lemma 1.1. Let U be a uniformity on L. Then U is a multilattice uniformity
iff, for every U ∈ U , there exists V ∈ U such that (a, b) ∈ V and c ∈ L imply

(a ∨ c, b ∨ c) ∈ 2U and (a ∧ c, b ∧ c) ∈ 2U .
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�����. ⇒ is trivial.

⇐ Let U, V ∈ U be such that V ◦V ⊆ U and choose, corresponding to V , V ′ ∈ U
as in the assumption. Let (a, b) ∈ V ′, (c, d) ∈ V ′ and z ∈ a ∨ c. Then we can choose
z′ ∈ b ∨ c such that (z, z′) ∈ V and, corresponding to z′, we can choose z′′ ∈ d ∨ b

such that (z′, z′′) ∈ V . Therefore (z, z′′) ∈ V ◦ V ⊆ U .
In a similar way we obtain the other conditions. �

Proposition 1.2. Let U be a multilattice uniformity. Then, for every U ∈ U ,
there exists V ∈ U with V ⊆ U and the following property: for every (a, b) ∈ V ,

there exist c ∈ a ∧ b and d ∈ a ∨ b such that [c, d]× [c, d] ⊆ V .

�����. Let U ∈ U and

V = {(a, b) ∈ L× L : ∃ c ∈ a ∧ b, d ∈ a ∨ b : [c, d]× [c, d] ⊆ U}.

Trivially V ⊆ U . Let (a, b) ∈ V , c ∈ a∧b and d ∈ a∨b be such that [c, d]× [c, d] ⊆ U .
We prove that [c, d]× [c, d] ⊆ V .
Let x, y ∈ [c, d]. Then we can choose e ∈ x∧ y such that e � c and f ∈ x∨ y such

that f � d. Then [e, f ]× [e, f ] ⊆ [c, d]× [c, d] ⊆ U , hence (x, y) ∈ V .
It remains to prove that V ∈ U . Choose a symmetricW0 ∈ U such thatW0 ◦W0 ⊆

U and, for every i ∈ {1, 2, 3}, Wi ∈ U with the following property: (a, b) ∈ Wi and
(c, d) ∈ Wi imply (a ∨ c, b ∨ d) ∈ 2Wi−1 and (a ∧ c, b ∧ d) ∈ 2Wi−1 . We prove that

W3 ⊆ V . Let (a, b) ∈ W3, c ∈ a ∧ b, d ∈ a ∨ b and x, y ∈ [c, d]. We have to prove
that (x, y) ∈ U . By (a, b) ∈ W3 and (a, a) ∈ W3, we get (a, d) ∈ W2 by the choice

of W3. Moreover, by (a, d) ∈ W2, (x, x) ∈ W2 and x ∧ d = x and by the choice of
W2, we can choose e ∈ x∧a such that (e, x) ∈ W1. Finally, by (a, b) ∈ W3 ⊆ W2 and

(a, a) ∈ W2 we get (a, c) ∈ W1. By (e, x) ∈ W1, (a, c) ∈ W1, c ∨ x = x and e ∨ a = a

we get (a, x) ∈ W0 by the choice of W1. In a similar way we obtain that (a, y) ∈ W0.

Therefore (x, y) ∈ W−1
0 ◦W0 =W0 ◦W0 ⊆ U . �

Proposition 1.3. Let U be a multilattice uniformity. Then:
(1) For every U ∈ U there exists V ∈ U such that V ⊆ U and, for every x ∈ L,

V (x) is convex.
(2) The topology generated by U is locally convex, i.e. every x ∈ L has a base of

convex neighbourhoods.

�����. (2) follows by (1).

(1) The proof is similar to the proof of 1.1.6 of [22] for lattice uniformities. We
repeat the proof for completeness.

For A ⊆ L, set c(A) = {x ∈ L : ∃ a, b ∈ A : a � x � b}. It is easy to see that
c(A) is the smallest convex set which contains A. Let U ∈ U . By (1.2), we can choose
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V1 ∈ U such that V1 ◦V1 ⊆ U and, for every (a, b) ∈ V1 with a � b, [a, b]× [a, b] ⊆ V1.

Choose a symmetric V2 ∈ U such that V2 ◦ V2 ⊆ V1 and set

V = {(x, y) ∈ L× L : y ∈ c(V2(x))}.

Then V ∈ U since V2 ⊆ V and, for every x ∈ L, V (x) is convex since V (x) = c(V2(x)).
We prove that V ⊆ U . Let (x, y) ∈ V and a, b ∈ V2(x) be such that a � y � b.
Since (x, a) ∈ V2, (x, b) ∈ V2 and V2 is symmetric, we get (a, b) ∈ V1. By the choice

of V1, since a, y ∈ [a, b], we get (a, y) ∈ V1. Since (x, a) ∈ V2 ⊆ V1, we obtain
(x, y) ∈ V1 ◦ V1 ⊆ U . �

The following result gives a characterization of multilattice uniformities which

allows to simplify the proof of the main result of the next section. It is similar to a
characterization of lattice uniformities contained in a manuscript of Hans Weber.

Theorem 1.4. Let U be a filter on L×L. Then U is a multilattice uniformity iff
the following conditions hold:

(1) For every U ∈ U , ∆ ⊆ U .

(2) For every U ∈ U , there exists V ∈ U such that (a, b) ∈ V implies that there

exist c ∈ a ∧ b and d ∈ a ∨ b with (c, d) ∈ U .

(3) For every U ∈ U , there exists V ∈ U such that (c, d) ∈ V , c ∈ a∧b and d ∈ a∨b

imply (a, b) ∈ U .

(4) For every U ∈ U , there exists V ∈ U such that (a, b) ∈ V , (b, c) ∈ V and

a � b � c imply (a, c) ∈ U .

(5) For every U ∈ U , there exists V ∈ U such that (a, b) ∈ V , a � b and c ∈ L

imply (a ∨ c, b ∨ c) ∈ 2U and (a ∧ c, b ∧ c) ∈ 2U .

�����. ⇒ If U is a multilattice uniformity, then (1), (4) and (5) hold by
definition and (2), (3) follow by (1.2).

⇐ (i) We first prove that, for every U ∈ U , there exists V ∈ U such that V −1 ⊆ U .

Let U ∈ U . By (3) we can choose V ∈ U such that (c, d) ∈ V , c ∈ a ∧ b and
d ∈ a ∨ b imply (a, b) ∈ U . Moreover, by (2) we can choose V ′ ∈ U such that
(a, b) ∈ V ′ implies that there exist c ∈ a ∧ b and d ∈ a ∨ b such that (c, d) ∈ V . Let
(a, b) ∈ (V ′)−1. Then, since (b, a) ∈ V ′, we can find c ∈ a∧ b and d ∈ a∨ b such that

(c, d) ∈ V . Therefore (a, b) ∈ U .

(ii) We prove that, for every U ∈ U , there exists V ∈ U such that (a, b) ∈ V and
a � b imply [a, b]× [a, b] ⊆ U .

Let U ∈ U . By (3), let V1 ∈ U be such that (c, d) ∈ V1, c ∈ a ∧ b and d ∈ a ∨ b

imply (a, b) ∈ U . By (5), let V2 ∈ U be such that (a, b) ∈ V2, a � b and c ∈ L imply
(a∧ c, b∧ c) ∈ 2V1 . Again by (5), let V3 ∈ U be such that (a, b) ∈ V3, a � b and c ∈ L
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imply (a∨ c, b∨ c) ∈ 2V2 . Let (x, y) ∈ V3 with x � y, and a, b ∈ [x, y]. We prove that

(a, b) ∈ U . Since x � a, b and y � a, b, we can choose c ∈ a∧b and d ∈ a∨b such that
c � x and d � y. Hence x � c � d � y. Since (x, y) ∈ V3, c ∨ x = c and c ∨ y = y,
by the choice of V3 we get (c, y) ∈ V2. Moreover, since c ∧ d = c and y ∧ d = d, by

the choice of V2 we get (c, d) ∈ V1. Then, by the choice of V1, we get (a, b) ∈ U .

(iii) We prove that, for every U ∈ U , there exists V ∈ U such that V ◦ V ⊆ U .

Let U ∈ U . By (ii), let V1 ∈ U be such that (a, b) ∈ V1 and a � b imply
[a, b] × [a, b] ⊆ U . By (4), we can choose V2 ∈ U such that (a, b) ∈ V2, (b, c) ∈ V2

and (c, d) ∈ V2 with a � b � c � d, imply (a, d) ∈ V1. By (5), we can choose V3 ∈ U
with V3 ⊆ V2 such that (a, b) ∈ V3, a � b and c ∈ L imply (a ∨ c, b ∨ c) ∈ 2V2 and
(a∧ c, b∧ c) ∈ 2V2 . Finally, by (2) we can choose V4 ∈ U such that (a, b) ∈ V4 implies
that there exist c ∈ a ∧ b and d ∈ a ∨ b such that (c, d) ∈ V3.

We prove that V4 ◦ V4 ⊆ U . Let (x, y) ∈ V4 and (y, z) ∈ V4. By the choice of V4
we can find c ∈ x ∧ y, d ∈ x ∨ y, e ∈ y ∧ z and f ∈ y ∨ z such that (c, d) ∈ V3 and
(e, f) ∈ V3 ⊆ V2. Since (c, d) ∈ V3 with c � d and c ∨ f = f by f � y � c, then

by the choice of V3 we can find w1 ∈ d ∨ f such that (f, w1) ∈ V2. In a similar way,
since d ∧ e = e by e � y � d, we can find w2 ∈ c ∧ e such that (w2, e) ∈ V2.

By (w2, e) ∈ V2, (e, f) ∈ V2 and (f, w1) ∈ V2 with w2 � e � f � w1 we get

by the choice of V2 that (w2, w1) ∈ V1. Since w2 � w1, by the choise of V1 we
obtain [w2, w1] × [w2, w1] ⊆ U . Now observe that x, z ∈ [w2, w1], since x � c � w2,

x � d � w1, z � e � w2 and z � f � w1. Then (x, z) ∈ U.

(iv) We prove that, for every U ∈ U , there exists V ∈ U such that (a, b) ∈ V and
c ∈ L imply (a ∨ c, b ∨ c) ∈ 2U and (a ∧ c, b ∧ c) ∈ 2U .
Let U ∈ U . By (iii), let V1 ∈ U be symmetric and such that V1 ◦ V1 ◦ V1 ⊆ U .

By (5), choose V2 ∈ U such that (a, b) ∈ V2, a � b and c ∈ L imply (a∨ c, b∨ c) ∈ 2V1
and (a ∧ c, b ∧ c) ∈ 2V1 . By (ii), let V3 ∈ U be such that (a, b) ∈ V3 and a � b imply
[a, b]× [a, b] ⊆ V2. Moreover, by (2), let V4 ∈ U be such that (a, b) ∈ V4 implies that

there exist c ∈ a ∧ b and d ∈ a ∨ b such that (c, d) ∈ V3.

Let (a, b) ∈ V4, c ∈ L and z ∈ a ∨ c. We prove that there exists z′ ∈ b ∨ c such
that (z, z′) ∈ U . The other conditions can be proved in a similar way.

Since (a, b) ∈ V4, we can find r ∈ a ∧ b and s ∈ a ∨ b such that (r, s) ∈ V3. Then

[r, s]× [r, s] ⊆ V2. Since r � a � s and r � b � s, we get (r, a) ∈ V2 and (b, s) ∈ V2.
Since (r, a) ∈ V2 with r � a, and z ∈ a∨ c, we can find t ∈ r∨ c such that (t, z) ∈ V1.

Since (r, s) ∈ [r, s] × [r, s] ⊆ V2 and t ∈ r ∨ c, we can find u ∈ s ∨ c such that
(t, u) ∈ V1. Finally, since (b, s) ∈ V2 with b � s and u ∈ s ∨ c, we can find z′ ∈ b ∨ c

such that (z′, u) ∈ V1. Then (z, z′) ∈ V1 ◦ V1 ◦ V1 ⊆ U by the symmetry of V1.

By (i)–(iv), (1.1) and the assumptions, we conclude that U is a multilattice uni-
formity. �
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2. Modular functions

In this section, µ : L → G will denote a modular function.
If a, b ∈ L and a � b, we set

µ(a, b) = {µ(d)− µ(c) : a � c � d � b}.

The aim of this section is to prove that µ generates a multilattice uniformity which
has as its base the family consisting of the sets

{(a, b) ∈ L× L : ∃ c ∈ a ∧ b, d ∈ a ∨ b : µ(c, d) ⊆ W},

where W is a 0-neighbourhood in G (Theorem 2.2.3).
The essential steps to prove this result are contained in the following subsection.

2.1. We shall study the properties of the set µ(a, b).

Proposition 2.1.1. Let a, b ∈ L, c ∈ a∧b and d ∈ a∨b. Then, for every c′ ∈ a∧b

and d′ ∈ a ∨ b, we have µ(c, d) ⊆ µ(c′, d′) + µ(c′, d′).

�����. Let e, f ∈ L be such that c � e � f � d.
(i) First suppose that a � e � f � d. Then d ∈ e∨b and d ∈ f∨b. Since c′ � a � e

and c′ � b, we can find t ∈ e ∧ b such that t � c′. Moreover, since t � e � f and
t � b, we can find t′ ∈ f ∧ b such that t′ � t. Then, since µ is modular, we get

µ(f)− µ(e) = µ(t′)− µ(t) ∈ µ(c′, d′),

since c′ � t � t′ � b � d′.
(ii) Now suppose c � e � f � a. Then c ∈ e ∧ b and c ∈ f ∧ b. By d′ � a � f

and d′ � b, we can find t ∈ f ∨ b such that t � d′. Moreover, by t � e, b, we can find
t′ ∈ e ∨ b such that t′ � t. Then we get

µ(f)− µ(e) = µ(t)− µ(t′) ∈ µ(c′, d′),

since c′ � b � t′ � t � d′.
(iii) Now we consider the general case. Since c � e, a, we can find z ∈ e ∧ a such

that z � c. Since z � f, a, we can find z′ ∈ f ∧ a such that z′ � z. Moreover, since
d � f, a, we can find t ∈ f ∨ a such that t � d. Finally, since t � e, a, we can find

t′ ∈ e ∨ a such that t′ � t. Then

µ(f)− µ(e) = µ(z′)− µ(z) + µ(t)− µ(t′).

Since c � z � z′ � a and a � t′ � t � d, we have µ(z′) − µ(z) ∈ µ(c, a) ⊆ µ(c′, d′)

by (ii) and µ(t)−µ(t′) ∈ µ(a, d) ⊆ µ(c′, d′) by (i). Therefore µ(f)−µ(e) ∈ µ(c′, d′)+
µ(c′, d′). �
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Proposition 2.1.2. Let a, b ∈ L, c ∈ a ∨ b and d ∈ a ∧ b. Then µ(a, c) = µ(d, b).

�����. Let a � e � f � c. Then c ∈ e ∨ b and c ∈ f ∨ b. Since d � b and

d � a � e, we can find t ∈ e ∧ b such that t � d. Moreover, since e � f , we can find
t′ ∈ f ∧ b such that t′ � t. Then d � t � t′ � b. Therefore

µ(f)− µ(e) = µ(t′)− µ(t) ∈ µ(d, b).

Now let d � e � f � b. Then d ∈ a∧ e and d ∈ a∧ f . Since c � a and c � b � f , we
can choose t ∈ a∨ f such that t � c. Moreover, since e � f , we can choose t′ ∈ a∨ e

such that t′ � t. Then a � t′ � t � c. Therefore

µ(f)− µ(e) = µ(t)− µ(t′) ∈ µ(a, c).

�

Corollary 2.1.3.
(1) If a � b, c, then µ(c, d) ⊆ µ(a, b) for every d ∈ b ∨ c.

(2) If a � b, c, then µ(d, c) ⊆ µ(b, a) for every d ∈ b ∧ c.

�����. (1) Let d ∈ b ∨ c. Since a � b, c, we can find x ∈ b ∧ c such that x � a.

By (2.1.2), µ(c, d) = µ(x, b) ⊆ µ(a, b), since x, b ∈ [a, b].
(2) Let d ∈ b∧ c. Since a � b, c, we can find x ∈ b∨ c such that x � a. By (2.1.2),

µ(d, c) = µ(b, x) ⊆ µ(b, a), since x, b ∈ [b, a]. �

Proposition 2.1.4. If a � b and c, d ∈ [a, b], then there exist z ∈ c ∧ d and

z′ ∈ c ∨ d such that µ(z, z′) ⊆ µ(a, b).

�����. Since a � c, d, we can find z ∈ c ∧ d such that z � a. Since b � c, d, we
can find z′ ∈ c ∨ d such that z′ � b. Hence, if z � e � f � z′, then e, f ∈ [a, b]. �

Proposition 2.1.5. If a � c � b, then µ(a, b) ⊆ µ(a, c) + µ(c, b).

�����. Let a � e � f � b. Since a � e, c, we can find t ∈ e∧ c such that t � a.
Since t � f, c, we can find t′ ∈ f ∧ c such that t′ � t. Moreover, since b � c, f , we

can choose z ∈ f ∨ c such that z � b and, since z � c, e, we can choose z′ ∈ c ∨ e

such that z′ � z. Then

µ(f)− µ(e) = µ(t′)− µ(t) + µ(z)− µ(z′).

Since a � t � t′ � c and c � z′ � z � b, we have µ(t′) − µ(t) ∈ µ(a, c) and
µ(z)− µ(z′) ∈ µ(c, b). �
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Corollary 2.1.6. If a � b, d, c � b, d, z ∈ a ∧ c and z′ ∈ b ∨ d, then µ(z, z′) ⊆
µ(a, b) + µ(a, b) + µ(c, d).

�����. Since a � b, d, by (2.1.3) µ(d, z′) ⊆ µ(a, b). Since b � a, c, we can find
t ∈ a ∨ c such that t � b. By (2.1.2), µ(z, c) = µ(a, t) ⊆ µ(a, b), since a, t ∈ [a, b].

Moreover, since z � c � d � z′, by (2.1.5) we get

µ(z, z′) ⊆ µ(z, c) + µ(c, d) + µ(d, z′) ⊆ µ(a, b) + µ(a, b) + µ(c, d).

�

Proposition 2.1.7. Let a, b ∈ L with a � b, and c ∈ L. Then:

(1) For every z ∈ b∨ c there exists z′ ∈ a∨ c such that z′ � z and µ(z′, z) ⊆ µ(a, b).

(2) For every z ∈ a ∨ c there exist z′ ∈ b ∨ c, z1 ∈ z ∧ z′ and z2 ∈ z ∨ z′ such that

µ(z1, z2) ⊆ µ(a, b) + µ(a, b).

�����. (1) Let z ∈ b∨ c. Since z � b � a and z � c, we can find z′ ∈ a∨ c such
that z′ � z. Let z′ � e � f � z. Since evidently z ∈ b ∨ z′, by (2.1.3) (1) we have

µ(z′, z) ⊆ µ(a, b).

(2) Let z ∈ a ∨ c and z ∈ b ∨ z. Since z � b, c, we can find z′ ∈ b ∨ c such that
z′ � z. Since a � b, z, we can find p ∈ b ∧ z such that p � a. Since p � z, z′, we
can find q ∈ z ∧ z′ such that q � p. Moreover, since z ∈ b ∨ z and z′ � z, we have

z ∈ z ∨ z′. We prove that µ(q, z) ⊆ µ(a, b) + µ(a, b). Since q � z � z, by (2.1.5) we
obtain

µ(q, z) ⊆ µ(q, z) + µ(z, z).

Let u ∈ q ∧ c. Since z ∈ q ∨ c, using (2.1.2) and (2.1.3) we obtain

µ(q, z) = µ(u, c) ⊆ µ(q, z′) = µ(z, z).

Further, µ(z, z) = µ(p, b) ⊆ µ(a, b), so that µ(q, z) ⊆ µ(a, b) + µ(a, b). �

In a similar way we obtain the following dual statement of (2.1.7).

Proposition 2.1.8. Let a, b ∈ L with a � b, and c ∈ L. Then:

(1) For every z ∈ a∧ c there exists z′ ∈ b∧ c such that z′ � z and µ(z, z′) ⊆ µ(a, b).

(2) For every z ∈ b ∧ c there exist z′ ∈ a ∧ c, z1 ∈ z ∧ z′ and z2 ∈ z ∨ z′ such that

µ(z1, z2) ⊆ µ(a, b) + µ(a, b).

2.2. Now, using the results of Sections 1 and 2.1, we prove that µ generates a
multilattice uniformity.
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For every 0-neighbourhood W in G we set

UW = {(a, b) ∈ L× L : ∃ c ∈ a ∧ b, d ∈ a ∨ b : µ(c, d) ⊆ W}

and denote by U(µ) the family of all oversets of the sets UW .

Lemma 2.2.1. UW has the following properties:

(1) If a � b, then (a, b) ∈ UW iff µ(a, b) ⊆ W .

(2) (a, b) ∈ UW iff there exist c ∈ a ∧ b and d ∈ a ∨ b such that (c, d) ∈ UW .

(3) If (a, b) ∈ UW and a � b, then [a, b]× [a, b] ⊆ UW .

�����. (1) is trivial.
(2) follows by (1).

(3) Let c, d ∈ [a, b]. By (2.1.4), we can find z ∈ c ∧ d and z′ ∈ c ∨ d such that
µ(z, z′) ⊆ µ(a, b) ⊆ W . Then (c, d) ∈ UW . �

Lemma 2.2.2. For a, b ∈ L with a � b, let µ∗(a, b) = {µ(d)− µ(c) : c, d ∈ [a, b]}.
Then µ(a, b) ⊆ µ∗(a, b) ⊆ µ(a, b)− µ(a, b).

�����. The first inclusion is clear. Now let c, d ∈ [a, b]. Then µ(d) − µ(c) =
µ(d)− µ(a)− (µ(c)− µ(a)) ∈ µ(a, b)− µ(a, b). �

Theorem 2.2.3. Let L be a directed multilattice, G a topological Abelian group

and µ : L → G a modular function. Then U(µ) is the weakest multilattice uniformity
which makes µ uniformly continuous. Further, U(µ) has the following properties:
(1) For every U ∈ U(µ) there exists V ∈ U(µ) with V ⊆ U such that (a, b) ∈ V ,

c ∈ a ∧ b and d ∈ a ∨ b imply [c, d]× [c, d] ⊆ U .

(2) For every U ∈ U(µ) there exists V ∈ U(µ) with V ⊆ U such that (a, b) ∈ V ,

a � b, c � a, e � b, d ∈ b ∨ c and f ∈ a ∧ e imply (c, d) ∈ U and (e, f) ∈ U .

�����. (i) It is clear that U(µ) is closed with respect to the intersections. To
prove that U(µ) is a multilattice uniformity, we prove that U(µ) satisfies the following
conditions of (1.4):
(a) For every U ∈ U(µ), ∆ ⊆ U .

(b) For every U ∈ U there exists V ∈ U such that (a, b) ∈ V implies that there
exists c ∈ a ∧ b and d ∈ a ∨ b with (c, d) ∈ U .

(c) For every U ∈ U(µ) there exists V ∈ U(µ) such that (c, d) ∈ V , c ∈ a ∧ b and
d ∈ a ∨ b imply (a, b) ∈ U .

(d) For every U ∈ U there exists V ∈ U such that (a, b) ∈ V , (b, c) ∈ V and
a � b � c imply (a, c) ∈ U .

(e) For every U ∈ U(µ), there exists V ∈ U(µ) such that (a, b) ∈ V , a � b and
c ∈ L imply (a ∨ c, b ∨ c) ∈ 2U and (a ∧ c, b ∧ c) ∈ 2U .
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(a) is trivial since, for every a ∈ L, µ(a, a) = {0}.
(b) follows by (2.2.1) (2).
(c) Let U ∈ U(µ) and let W be a 0-neighbourhood in G such that UW ⊆ U .

By (2.2.1) (3), (c) is satisfied with V = UW .

(d) Choose U and V as in the proof of (c) and let W ′ be a 0-neighbourhood in G

such that W ′ +W ′ ⊆ W . By (2.1.5), if a � b � c, then µ(a, c) ⊆ µ(a, b) + µ(b, c).

Therefore (d) is satisfied with V = UW ′ .
In a similar way we obtain (e) by (2.1.7) and (2.1.8).

By (1.4), U(µ) is a multilattice uniformity.
(ii) To prove (1), let U ∈ U(µ) and let W be a 0-neighbourhood in G such that

UW ⊆ U . LetW ′ be a 0-neighbourhood inG such thatW ′+W ′ ⊆ W . If (a, b) ∈ UW ′ ,
by (2.2.1) (2) we can choose c ∈ a ∧ b and d ∈ a ∨ b such that (c, d) ∈ UW ′ . Let

r ∈ a ∧ b and s ∈ a ∨ b. By (2.1.1), µ(r, s) ⊆ µ(c, d) + µ(c, d) ⊆ W ′ +W ′ ⊆ W , from
which (r, s) ∈ UW . Since r � s, by (2.2.1) (3) we get [r, s]× [r, s] ⊆ UW ⊆ U .

In a similar way we obtain (2) by (2.1.3).
(iii) Now we prove that µ is uniformly continuous with respect to U(µ).
Let W , W ′ be 0-neighbourhoods in G such that W ′ −W ′ ⊆ W . Let (a, b) ∈ UW ′ ,

c ∈ a∧ b and d ∈ a∨ b be such that µ(c, d) ⊆ W ′. Since a, b ∈ [c, d], hence by (2.2.2)
µ(a)− µ(b) ∈ µ∗(c, d) ⊆ W ′ −W ′ ⊆ W .
(iv) Now let U be a multilattice uniformity which makes µ uniformly continuous.

We prove that U(µ) � U .
Let W be a 0-neighbourhood in G. Since µ is U-uniformly continuous, we can

choose V ∈ U such that

(∗) (a, b) ∈ V ⇒ µ(a)− µ(b) ∈ W.

Since U is a multilattice uniformity, by (1.2) we can choose V ′ ∈ U such that
(a, b) ∈ V ′ implies that there exist c ∈ a∧ b and d ∈ a∨ b with [c, d]× [c, d] ⊆ V . We
prove that V ′ ⊆ UW .

Let (a, b) ∈ V ′ and let c ∈ a ∧ b, d ∈ a ∨ b be such that [c, d] × [c, d] ⊆ V . If
e, f ∈ [c, d] and e � f , then (e, f) ∈ V . By (∗), we get µ(f) − µ(e) ∈ W . Then

µ(c, d) ⊆ W , from which (a, b) ∈ UW . �

Corollary 2.2.4. Another base of U(µ) is the family consisting of the sets

U ′
W = {(a, b) ∈ L× L : µ(c, d) ⊆ W ∀ c ∈ a ∧ b, ∀ d ∈ a ∨ b},

where W is a 0-neighbourhood in G.

�����. LetW be a 0-neighbourhood in G. It is clear that U ′
W ⊆ UW . Moreover,

by (1) of (2.2.3), we can choose V ∈ U(µ) such that (a, b) ∈ V , c ∈ a∧b and d ∈ a∨b
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imply (c, d) ∈ UW . Choose a 0-neighbourhood W ′ in G such that UW ′ ⊆ V . Then

UW ′ ⊆ U ′
W . �

Proposition 2.2.5. Let τ(µ) be the topology generated by U(µ). Then τ(µ) has
the following properties:

(1) Every a ∈ L has a base of convex neighbourhoods in τ(µ).

(2) For every a ∈ L and every neighbourhood U0 of a in τ(µ), there exists a neigh-
bourhood V0 of a in τ(µ) with V0 ⊆ U0 such that b ∈ V0 implies [c, d] ⊆ U0 for

every c ∈ a ∧ b and d ∈ a ∨ b.

�����. (1) follows by (1.3) and (2.2.3).

(2) Let a ∈ L and U ∈ U(µ). By (2) of (2.2.3), we can choose V ∈ U(µ) such that
(x, y) ∈ V implies [c, d] × [c, d] ⊆ U for every c ∈ x ∧ y and every d ∈ x ∨ y. Then
V (a) ⊆ U(a). Moreover, if b ∈ V (a), c ∈ a ∧ b and d ∈ a ∨ b, then (a, x) ∈ U for

every x ∈ [c, d], since a ∈ [c, d]. Then [c, d] ⊆ U(a). �

Using (2.2.5), with the same proof as in 3.2 of [24] we get the following result.

Corollary 2.2.6. The topology τ(µ) generated by U(µ) is the weakest topology
with the properties (1) and (2) of (2.2.5) which makes µ continuous.

Now we prove that µ generates a congruence relation. We set

N(µ) = {(a, b) ∈ L× L : ∃ c ∈ a ∧ b, d ∈ a ∨ b : µ is constant on [c, d]}.

By (2.1.1), it is easy to see that (a, b) ∈ N(µ) iff µ is constant on [c, d] for every

c ∈ a∧ b and every d ∈ a∨ b. Moreover, if the topology of G is Hausdorff, by (2.2.4)
we get N(µ) =

⋂{U : U ∈ U(µ)}.

Proposition 2.2.7. N(µ) is a congruence relation.

�����. It is clear that N(µ) is reflexive and symmetric.

We prove that N(µ) verifies the conditions of Theorem 2.2 of [19] cited in the
Preliminaries.

The equivalence (a, b) ∈ N(µ) iff there exists c ∈ a ∧ b and d ∈ a ∨ b such that

(c, d) ∈ N(µ) is trivial.

The condition that (a, b) ∈ N(µ), (b, c) ∈ N(µ) and a � b � c imply (a, c) ∈ N(µ)

follows by (2.1.5).

The condition that (a, b) ∈ N(µ) and a � b imply (a ∨ c, b ∨ c) ∈′ N(µ) and
(a ∧ c, b ∧ c) ∈′ N(µ) follows by (2.1.7) and (2.1.8). �
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Remark. In [19] it has been proved that, if µ is an increasing real-valued modular
function on a multilattice, the function defined by

d(a, b) = µ(d) − µ(c), a, b ∈ L, c ∈ a ∧ b, d ∈ a ∨ b,

is a pseudometric. Hence, in this case, U(µ) coincides with the uniformity generated
by d.

If L is a lattice and µ is a G-valued modular function, in [13] it has been proved
that µ generates a lattice uniformity Uµ which has as its base the family consisting

of the sets

{(a, b) ∈ L× L : µ(d) − µ(c) ∈ W ∀ c, d ∈ [a ∧ b, a ∨ b], c � d},

where W is a 0-neighbourhood in G. Then, if L is a lattice, U(µ) = Uµ.
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