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Abstract. The method of quasilinearization is a well-known technique for obtaining ap-
proximate solutions of nonlinear differential equations. In this paper we apply this technique
to functional differential problems. It is shown that linear iterations converge to the unique
solution and this convergence is superlinear.

Keywords: quasilinearization, monotone iterations, superlinear convergence

MSC 2000 : 34A45

1. Introduction

Consider the functional differential problem

(1)

{
x′(t) = f(t, x(t), xt), t ∈ J = [0, T ],

x0 = Φ0,

where f ∈ C(J × � × C,�), Φ0 ∈ C, C = C(J0,�) with J0 = [−τ, 0] for τ > 0,

and for any t ∈ J , xt ∈ C is defined by xt(s) = x(t + s) for s ∈ J0. According to
the above notation x0 ∈ C and x0(s) = x(s), s ∈ J0. It means that in this case the

initial condition x0 = Φ0 means that x(s) = Φ(s) on J0, where the function Φ is
given and continuous on J0.

The differential equation from problem (1) is of a very general type. It includes
as special cases, for example, ordinary differential equations if τ = 0, differential-

difference equations, and integro-differential equations, too.
The method of quasilinearization gives linear iterations which converge monoton-

ically to the unique solution of the initial value problem. Recently, this method has
been extended so as to be applicable to a much larger class of nonlinear problems
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(see for example [7]). In this paper we extend this method to functional differential

problems of type (1). If f does not depend on the second variable the method of
quasilinearization is considered in [7].

2. Lemmas

A function v ∈ C(J,�) ∩ C1(J,�), J = [−τ, T ] is said to be a lower solution of
problem (1) if {

v′(t) � f(t, v(t), vt), t ∈ J,

v0 � Φ0,

and an upper solution of (1) if the inequalities are reversed.

Lemma 1. Assume that f ∈ C(J × � × C,�) and

10 fx exists and fx(t, u, v) � K, K > 0 for (t, u, v) ∈ Ω0, where

Ω0 = {(t, u, v) : t ∈ J, u ∈ �, v ∈ C and y0(t) � u � z0(t), y0,t � v � z0,t},

20 the Fréchet derivative fΦ exists and is a linear operator satisfying

(a) fΦ(t, u,Φ)Ψ � L
∫ 0
−τ Ψ(s) ds if Ψ > 0 for L > 0, and L+ e−Lτ > 1 +K,

(b) if v1, v2 ∈ C and v1 � v2, then

fΦ(t, u, v)v1 � fΦ(t, u, v)v2 for (t, u, v) ∈ Ω0,

30 p ∈ C(J,�) ∩ C1(J,�), (t, u, v) ∈ Ω0, and
{

p′(t) � fx(t, u, v)p(t) + fΦ(t, u, v)pt, t ∈ J,

p(s) � 0 on J0.

Then p(t) � 0 on J .

�����. For ε > 0 put v(t) = εeLt, t ∈ J . Indeed, vt > 0, t ∈ J . Moreover,

basing on 10 and 20(a) , we obtain

fx(t, u, v)v(t) + fΦ(t, u, v)vt � Kv(t) + L

∫ 0

−τ

v(t+ s) ds

= KεeLt + LεeLt

∫ 0

−τ

eLs ds = εeLt[K + 1− e−Lτ ].
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Note that using the above relation and 20 (a), we get

v′(t) = εLeLt − fx(t, u, v)v(t)− fΦ(t, u, v)vt + fx(t, u, v)v(t) + fΦ(t, u, v)vt

� fx(t, u, v)v(t) + fΦ(t, u, v)vt + εLeLt − εeLt[K + 1− e−Lτ ]

= fx(t, u, v)v(t) + fΦ(t, u, v)vt + εeLt[L−K − 1 + e−Lτ ]

> fx(t, u, v)v(t) + fΦ(t, u, v)vt, t ∈ J.

Note that p(0) � 0 < v(0) and p(s) < v(s), s ∈ J0. We show that p(t) < v(t) on J .

Suppose that it is not true. Then there exists t1 ∈ (0, T ] such that p(t1) = v(t1) and
p(t) < v(t) on [−τ, t1), so pt < vt on [0, t1). For each h > 0 sufficiently small, we see

that p(t1 − h)− p(t1) < v(t1 − h)− v(t1). Hence p′(t1) � v′(t1).

Moreover,

fx(t1, u, v)p(t1) + fΦ(t1, u, v)pt1 � p′(t1) � v′(t1)

> fx(t1, u, v)v(t1) + fΦ(t1, u, v)vt1

= fx(t1, u, v)p(t1) + fΦ(t1, u, v)vt1

� fx(t1, u, v)p(t1) + fΦ(t1, u, v)pt1 .

It is a contradiction. Hence p(t) < v(t) on J . If now ε → 0, then we obtain p(t) � 0
on J . The proof is complete. �

Lemma 2. Assume that
10 f1, f2 ∈ C(J,�), f ∈ C(J × � × C,�),

20 the Fréchet derivative fΦ exists and is a linear operator satisfying the condition

|fΦ(t, u, v)Ψ| � L

∫ 0

−τ

|Ψ(s)| ds, L > 0 for (t, u, v) ∈ Ω0 and Ψ ∈ C.

Then for (t, u, v) ∈ Ω0, the problem

(2)

{
y′(t) = f1(t)y(t) + fΦ(t, u, v)yt + f2(t), t ∈ J,

y0 = Φ0

has a unique solution y ∈ C(J,�) ∩ C1(J,�).

�����. Note that, for t ∈ J , problem (2) is equivalent to

y(t) = Φ(0) +
∫ t

0
e
∫ t

s
f1(r) dr[fΦ(s, u, v)ys + f2(s)] ds ≡ Ay(t).
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We will show that A is a contraction mapping. Let us define a norm by

|y|∗ = max
t∈J

[
|y(t)|e−Mt

]
with M � N + Lτ,

where |f1(t)| � N . Put

Ω = {y : y ∈ C(J,�) ∩ C1(J,�), y0 = Φ0}.

Then for y, y ∈ Ω we have

|Ay −Ay|∗ = max
t∈J
e−Mt

∫ t

0
e
∫ t

s
f1(r) dr|fΦ(s, u, v)[ys − ys]| ds

� max
t∈J
e−Mt

∫ t

0
eN(t−s)L

∫ 0

−τ

|y(s+ r) − y(s+ r)| dr ds

� L|y − y|∗max
t∈J
e−Mt

∫ t

0
eN(t−s)

∫ 0

−τ

eM(s+r) dr ds

� Lτ |y − y|∗max
t∈J
e−(M−N)t

∫ t

0
e(M−N)s ds

=
Lτ

M −N
|y − y|∗

[
1− e−(M−N)T

]
�

[
1− e−(M−N)T

]
|y − y|∗.

Problem (2) has a unique solution, because b ≡ 1 − e−(M−N)T < 1. The proof is

complete. �

Theorem 1. Assume that f ∈ C(J × � × C,�) and

10 y0, z0 ∈ C(J,�) ∩ C1(J,�) are lower and upper solutions of problem (1) and
y0(t) � z0(t) on J ,

20 fx and fxx exist, are continuous and

(a) fx(t, u, v) � K for (t, u, v) ∈ Ω0,
(b) if v1, v2 ∈ C, and y0,t � v1 � v2 � z0,t, then fx(t, u, v1) � fx(t, u, v2) for

t ∈ J, u ∈ �, y0(t) � u � z0(t),

(c) fxx(t, u, v) � 0 for (t, u, v) ∈ Ω0,
30 the Fréchet derivative fΦ exists and is a linear operator satisfying

(a) |fΦ(t, u,Φ)v| � L
∫ 0
−τ |v(s)| ds, L > 0 for (t, u,Φ) ∈ Ω0, v ∈ C with the

condition L+ e−Lτ > 1 +K,

(b) f(t, u, v2) � f(t, u, v1) + fΦ(t, u, v1)(v2 − v1) for t ∈ J , u ∈ �, v1, v2 ∈ C

and such that y0(t) � u � z0(t), y0,t � v1 � v2 � z0,t,

(c) if v1 � v2, v1, v2 ∈ C then fΦ(t, u, v)v1 � fΦ(t, u, v)v2 for (t, u, v) ∈ Ω0,
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(d) if u, u ∈ �, v, v, V ∈ C, V � 0, then

fΦ(t, u, v)V � fΦ(t, u, v)V for t ∈ J, y0(t) � u � u � z0(t),

y0,t � v � v � z0,t,

40 there exist constants L1, L2, L3 > 0 and α, β ∈ [0, 1] such that the conditions

|fx(t, u, v1)− fx(t, u, v2)| � L1|v1 − v2|α0 ,
|fΦ(t, u1, v1)− fΦ(t, u2, v2)| � L2|u1 − u2|+ L3|v1 − v2|β0

hold for t ∈ J , u, u1, u2 ∈ �, v1, v2 ∈ C with |v|0 = max
s∈[−τ,0]

|v(s)|.
Then there exist monotone sequences {yn}, {zn} which converge uniformly to the

unique solution x of problem (1) on J and that convergence is superlinear.

�����. Let y0(t) � u � u � z0(t), y0,t � v � v � z0,t. Then, by the mean

value theorem and 30 (b), we have

f(t, u, v)− f(t, u, v) = f(t, u, v)− f(t, u, v) + f(t, u, v)− f(t, u, v)

� fx(t, ξ, v)(u − u) + fΦ(t, u, v)(v − v)

with u < ξ < u. Hence, by 20 (b), (c), we have

(3) f(t, u, v)− f(t, u, v) � fx(t, u, v)(u− u) + fΦ(t, u, v)(v − v).

Let yn+1,0 = Φ0, zn+1,0 = Φ0 and

y′n+1(t) = f(t, yn, yn,t) + fx(t, yn, yn,t)[yn+1(t)− yn(t)]

+ fΦ(t, yn, yn,t)[yn+1,t − yn,t],

z′n+1(t) = f(t, zn, zn,t) + fx(t, yn, yn,t)[zn+1(t)− zn(t)]

+ fΦ(t, yn, yn,t)[zn+1,t − zn,t]

for t ∈ J , n = 0, 1, . . .. Note that the elements yn+1, zn+1 are well defined by
Lemma 2.

Indeed, y0(t) � z0(t), t ∈ J , by 10. Now we are going to show that

(4) y0(t) � y1(t) � z1(t) � z0(t), t ∈ J.

Put p = y0 − y1 on J , so p(s) = y0(s)− y1(s) � Φ(s)− Φ(s) = 0, s ∈ J0. Then

p′(t) � f(t, y0, y0,t)− f(t, y0, y0,t)− fx(t, y0, y0,t)[y1(t)− y0(t)]

− fΦ(t, y0, y0,t)[y1,t − y0,t]

= fx(t, y0, y0,t)p(t) + fΦ(t, y0, y0,t)pt.
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By Lemma 1 we have p(t) � 0 on J showing that y0(t) � y1(t) on J . By the same

argument we can show that z1(t) � z0(t) on J . Next, we let p = y1 − z1 on J , so
p(s) = 0 on J0. By relation (3) we have

p′(t) = f(t, y0, y0,t) + fx(t, y0, y0,t)[y1(t)− y0(t)] + fΦ(t, y0, y0,t)[y1,t − y0,t]

− f(t, z0, z0,t)− fx(t, y0, y0,t)[z1(t)− z0(t)] − fΦ(t, y0, y0,t)[z1,t − z0,t]

� − fx(t, y0, y0,t)[z0(t)− y0(t)]− fΦ(t, y0, y0,t)[z0,t − y0,t]

+ fx(t, y0, y0,t)[y1(t)− y0(t)− z1(t) + z0(t)]

+ fΦ(t, y0, y0,t)[y1,t − y0,t − z1,t + z0,t]

= fx(t, y0, y0,t)p(t) + fΦ(t, y0, y0,t)pt.

By Lemma 1, p(t) � 0 on J , so y1(t) � z1(t) on J . It proves that (4) holds.

Now we prove that y1, z1 are lower and upper solutions, respectively, of prob-
lem (1). Relation (3) and conditions 20 (b), (c) and 30 (d) yield

y′1(t) = f(t, y0, y0,t) + fx(t, y0, y0,t)[y1(t)− y0(t)] + fΦ(t, y0, y0,t)[y1,t − y0,t]

� f(t, y1, y1,t)− fx(t, y0, y0,t)[y1(t)− y0(t)]− fΦ(t, y0, y0,t)[y1,t − y0,t]

+ fx(t, y0, y0,t)[y1(t)− y0(t)] + fΦ(t, y0, y0,t)[y1,t − y0,t]

= f(t, y1, y1,t)

and

z′1(t) = f(t, z0, z0,t) + fx(t, y0, y0,t)[z1(t)− z0(t)] + fΦ(t, y0, y0,t)[z1,t − z0,t]

� f(t, z1, z1,t) + fx(t, z1, z1,t)[z0(t)− z1(t)] + fΦ(t, z1, z1,t)[z0,t − z1,t]

+ fx(t, y0, y0,t)[z1(t)− z0(t)] + fΦ(t, y0, y0,t)[z1,t − z0,t]

= f(t, z1, z1,t) + [fx(t, z1, z1,t)− fx(t, y0, y0,t)][z0(t)− z1(t)]

+ [fΦ(t, z1, z1,t)− fΦ(t, y0, y0,t)][z0,t − z1,t]

� f(t, z1, z1,t).

The above proves that y1, z1 are lower and upper solutions of (1).
Let us assume that

y0(t) � y1(t) � . . . � yk−1(t) � yk(t) � zk(t) � zk−1(t) � . . . � z1(t) � z0(t),

t ∈ J,

and let yk, zk be lower and upper solutions of problem (1) for some k � 1. We shall
prove that:

(5) yk(t) � yk+1(t) � zk+1(t) � zk(t), t ∈ J.
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Let p = yk − yk+1 on J . Then p(s) = 0 on J0. Using the mean value theorem and

the fact that yk is a lower solution of problem (1), we obtain

p′(t) � f(t, yk, yk,t)− f(t, yk, yk,t)− fx(t, yk, yk,t)[yk+1(t)− yk(t)]

− fΦ(t, yk, yk,t)[yk+1,t − yk,t]

= fx(t, yk, yk,t)p(t) + fΦ(t, yk, yk,t)pt.

Lemma 1 yields p(t) � 0, so yk(t) � yk+1(t) on J . Similarly, we can show that

zk+1(t) � zk(t) on J .
Now, if p = yk+1− zk+1 on J , then p(s) = 0, s ∈ J0, and using relation (3) we get

p′(t) = f(t, yk, yk,t) + fx(t, yk, yk,t)[yk+1(t)− yk(t)] + fΦ(t, yk, yk,t)[yk+1,t − yk,t]

− f(t, zk, zk,t)− fx(t, yk, yk,t)[zk+1(t)− zk(t)]− fΦ(t, yk, yk,t)[zk+1,t − zk,t]

� − fx(t, yk, yk,t)[zk(t)− yk(t)]− fΦ(t, yk, yk,t)[zk,t − yk,t]

+ fx(t, yk, yk,t)[yk+1(t)− yk(t)− zk+1(t) + zk(t)]

+ fΦ(t, yk, yk,t)[yk+1,t − yk,t − zk+1,t + zk,t]

= fx(t, yk, yk,t)p(t) + fΦ(t, yk, yk,t)pt.

This yields yk+1(t) � zk+1(t), t ∈ J , so inequality (5) holds.

Hence, by induction, we have

y0(t) � y1(t) � . . . � yn(t) � zn(t) � . . . � z1(t) � z0(t), t ∈ J

for all n. Employing the standard techniques, it can be shown that the sequences

{yn}, {zn} converge uniformly and monotonically to solutions y and z of problem (1).
Now, we are going to show that problem (1) has a unique solution. To prove it we

assume that it has two solutions u and v. Set p = u− v. Then p(0) = 0, and

p(t) = f(t, u, ut)− f(t, v, ut) + f(t, v, ut)− f(t, v, vt)(6)

= fx(t, ξ, ut)p(t) +
∫ 1

0
fΦ(t, v, sut + (1− s)vt) ds pt, t ∈ J,

where ξ is between u and v. By Lemma 2, equation (6) has a unique solution. Since

p(t) = 0, t ∈ J is a solution of (6), hence u = v on J . This proves that the sequences
{yn}, {zn} converge to the unique solution x of problem (1).

We shall next show that the convergence of yn, zn to the unique solution x of
problem (1) is superlinear. For this purpose, we consider

pn+1 = x− yn+1 � 0, qn+1 = zn+1 − x � 0 t ∈ J.
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Note that pn+1(s) = qn+1(s) = 0 for s ∈ J0. Using the mean value theorem, 20 (c),

30 (a) and 40, we get

p′n+1(t) = f(t, x, xt)− f(t, yn, xt) + f(t, yn, xt)− f(t, yn, yn,t)

− fx(t, yn, yn,t)[yn+1(t)− yn(t)]− fΦ(t, yn, yn,t)[yn+1,t − yn,t]

= fx(t, ξ1, xt)pn(t) +
∫ 1

0
fΦ(t, yn, sxt + (1− s)yn,t)pn,t ds

− fx(t, yn, yn,t)[pn(t)− pn+1(t)] − fΦ(t, yn, yn,t)[pn,t − pn+1,t]

� [fx(t, x, xt)− fx(t, yn, xt) + fx(t, yn, xt)− fx(t, yn, yn,t)]pn(t)

+
∫ 1

0
[fΦ(t, yn, sxt + (1− s)yn,t)− fΦ(t, yn, yn,t)]pn,t ds

+ fx(t, yn, yn,t)pn+1(t) + fΦ(t, yn, yn,t)pn+1,t

� [fxx(t, ξ2, xt)pn(t) + L1|pn,t|α0 ] pn(t) + fx(t, yn, yn,t)pn+1(t)

+ L3

∫ 1

0
sβ|pn,t|β+10 ds+ L

∫ 0

−τ

pn+1,t(s) ds

� [A1pn(t) + L1|pn,t|α0 ] pn(t) +A2pn+1(t) + L3|pn,t|β+10

+ L

∫ 0

−τ

pn+1,t(s) ds,

where

yn(t) < ξ1, ξ2 < x(t), t ∈ J, and |fxx| � A1, |fx| � A2 on Ω0.

Put

w′(t) = [A1pn(t) + L1|pn,t|α0 ] pn(t) +A2pn+1(t) + L3|pn,t|β+10

+ L

∫ 0

−τ

pn+1,t(s) ds, t ∈ J,

and w(0) = 0. Note that w′(t) � 0 on J . Since pn+1(t) � w(t), t ∈ J , and w is
nondecreasing in t, we obtain

w(t) =
∫ t

0

[
A1p

2
n(s) + L1|pn,s|α0 pn(s) + L3|pn,s|β+10

]
ds

+A2

∫ t

0
pn+1(s) ds+ L

∫ t

0

∫ 0

−τ

pn+1,s(r) dr ds

� Dt+A2

∫ t

0
w(s) ds+ L

∫ t

0

∫ 0

−τ

pn+1(s+ r) dr ds

� Dt+A2

∫ t

0
w(s) ds+ L

∫ t

0

∫ 0

−τ

w(s) dr ds = Dt+ (A2 + Lτ)
∫ t

0
w(s) ds
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where

D = max
t∈J

[
A1|p2n(t)|+ L1|pn,t|α0 |pn(t)|+ L3|pn,t|β+10

]
.

Putting u(t) =
∫ t

0 w(s) ds we see that u′(t) = w(t), t ∈ J , and u(0) = 0. By
Gronwall’s inequality for

u′(t) � Dt+ (A2 + Lτ)u(t), u(0) = 0,

we have

u(t) � D

∫ t

0
se(A2+Lτ)(t−s) ds, t ∈ J.

Hence

pn+1(t) � w(t) � Dt+ (A2 + Lτ)u(t)

� Dt+ (A2 + Lτ)D
∫ t

0
se(A2+Lτ)(t−s) ds

= Dt+ (A2 + Lτ)De(A2+Lτ)t
∫ t

0
se−(A2+Lτ)s ds � BD,

where
B =

1
A2 + Lτ

e(A2+Lτ)T .

Because |pn(t)| � |pn,t|0, we finally obtain

max
t∈J

|pn+1(t)| � BA1max
t∈J

|pn,t|20 +BL1max
t∈J

|pn,t|α+10 +BL3max
t∈J

|pn,t|β+10 .

Similarly,

q′n+1(t) = f(t, zn, zn,t)− f(t, x, zn,t) + f(t, x, zn,t)− f(t, x, xt)

+ fx(t, yn, yn,t)[zn+1(t)− x(t) + x(t)− zn(t)]

+ fΦ(t, yn, yn,t)[zn+1,t − xt + xt − zn,t]

= fx(t, σ1, zn,t)qn(t) +
∫ 1

0
fΦ(t, x, szn,t + (1− s)xt)qn,t ds

+ fx(t, yn, yn,t)[qn+1(t)− qn(t)] + fΦ(t, yn, yn,t)[qn+1,t − qn,t]

� [fx(t, zn, zn,t)− fx(t, yn, zn,t) + fx(t, yn, zn,t)− fx(t, yn, xt)

+ fx(t, yn, xt)− fx(t, yn, yn,t)]qn(t)

+
∫ 1

0
[fΦ(t, x, szn,t + (1− s)xt)− fΦ(t, yn, szn,t + (1− s)xt)

+ fΦ(t, yn, szn,t + (1− s)xt)− fΦ(t, yn, xt) + fΦ(t, yn, xt)

− fΦ(t, yn, yn,t)]qn,t ds

+ fx(t, yn, yn,t)qn+1(t) + fΦ(t, yn, yn,t)qn+1,t,
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q′n+1(t) � [fxx(t, σ2, zn,t)[qn(t) + pn(t)] + L1|qn,t|α0 + L1|pn,t|α0 ]qn(t)

+ fx(t, yn, yn,t)qn+1(t)

+
∫ 1

0

[
L2|pn(t)|+ L3s

β |qn,t|β0 + L3|pn,t|β0
]
qn,t ds+ L

∫ 0

−τ

qn+1,t(s) ds

� A1q
2
n(t) +

1
2A1[q

2
n(t) + p2n(t)] + L1|qn,t|α+10 + L1|pn,t|α0 |qn,t|0 +A2qn+1(t)

+ L2|pn,t|0| qn,t|0 + L3|qn,t|β+10 + L3|pn,t|β0 |qn,t|0 + L

∫ 0

−τ

qn+1,t(s) ds

� P +A2qn+1(t) + L

∫ 0

−τ

qn+1,t(s) ds,

where x(t) < σ1 < zn(t), yn(t) < σ2 < zn(t) and

P = max
t∈J

[(
3
2A1 +

1
2L2

)
|qn,t|20 + 12 (A1 + L2)|pn,t|20 + L1| qn,t|α+10

+ L1|pn,t|α0 |qn,t|0 + L3|qn,t|β+10 + L3|pn,t|β0 |qn,t|0
]
.

Put

w′(t) = P +A2qn+1(t) + L

∫ 0

−τ

qn+1,t(s) ds, w(0) = 0.

Note that qn+1(t) � w(t) on J and w is nondecreasing in t. Hence we get

w(t) = Pt+A2

∫ t

0
qn+1(s) ds+ L

∫ t

0

∫ 0

−τ

qn+1,s(r) dr ds

� Pt+ (A2 + Lτ)
∫ t

0
w(s) ds.

By Gronwall’s inequality we have w(t) � BP , t ∈ J , and hence

max
t∈J

|qn+1(t)| � 1
2B(3A1 + L2)max

t∈J
|qn,t|20 + 12B(A1 + L2)max

t∈J
|pn,t|20

+BL1max
t∈J

|pn,t|α0 |qn,t|0 +BL1max
t∈J

|qn,t|α+10

+BL3max
t∈J

|qn,t|β+10 +BL3max
t∈J

(
|pn,t|β0 | qn,t|0

)
.

The proof is complete. �

Remark 1. If α = β = 1, then the convergence of sequences {yn}, {zn} is
quadratic.
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