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Introduction

One of the most challenging open problems in the local spectral theory of operators
on Banach spaces is the question of the extent to which the sum and product of two

commuting decomposable operators remain decomposable. Since the corresponding
permanence property holds, by Fuglede’s classical theorem, for normal operators

and, by Corollary 4.3.4 of [5], for regular generalized scalar operators, one might
expect a positive answer also in the decomposable case, but so far the problem has

been settled only in certain special cases; see [3], [6], [9] and [13].

Similarly, it is not known if spectral conditions such as the single-valued extension

property (SVEP), Dunford’s property (C), Bishop’s property (�), or the decomposi-
tion property (�) are preserved under sums and products of commuting operators. In

fact, in light of the duality between the properties (�) and (�) from [1], the questions
for (�) and (�) are equivalent. Thus a positive answer in either case would lead to a

positive solution in the case of decomposability, since, as noted in [2], an operator is
decomposable precisely when it has both properties (�) and (�).
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Partial results for commuting operators with SVEP have recently been obtained

in [4], based on the theory of subharmonic functions. Here we pursue the line of ar-
gument initiated by Sun [13] to establish SVEP for sums and products of commuting
operators with property (C). Sun [13] developed a beautiful approach to handle the

case of sums, and then applied a result due to Apostol, Lemma 3.1 of [3], to reduce
the case of products to that of sums. We feel that this reduction step is on shaky

ground, since the proof of Apostol’s lemma contains a serious gap. In fact, this proof
seems to be easily reparable only if SVEP were known to hold for sums of arbitrary

commuting operators with SVEP.
In the present paper, we establish directly SVEP for products of commuting oper-

ators with property (C), and then reduce the case of sums to that of products by a
very simple argument. As a by-product of our approach, we obtain that the product

of a semi-shift and an arbitrary commuting operator always has SVEP. This leads
to new insight into the problem of the preservation of SVEP for sums of commuting

operators. The necessary tools from local spectral theory are collected in the next
section.

1. Preliminaries

Throughout this note, let X be a complex Banach space, and let L(X) denote the

Banach algebra of all bounded linear operators on X . An operator T ∈ L(X) is said
to have the single-valued extension property (SVEP) if, for every open subset U of � ,
the only analytic solution f : U → X of the equation (T −λ)f(λ) = 0 for all λ ∈ U is

the zero function f ≡ 0 on U . For each x ∈ X , let �T (x) denote the set of all λ ∈ �

for which there exists an analytic function f : U → X on some open neighborhood U

of λ such that (T − µ)f(µ) = x for all µ ∈ U . The set σT (x) := � \ �T (x) is called
the local spectrum of T at x. The operator T ∈ L(X) is said to have Dunford’s

property (C) if, for each closed subset F of � , the corresponding local spectral
subspace XT (F ) := {x ∈ X : σT (x) ⊆ F} is closed. These notions date back to the
early days of the theory of spectral operators, and are of fundamental importance in
local theory, as witnessed by the monographs [5], [9] and [14].

By Proposition 1.2 of [10], property (C) implies SVEP, but the converse is far from
being true in general. For instance, all multipliers on a semi-simple commutative

Banach algebra have SVEP, while, as illustrated in [7], property (C) plays quite a
distinguished role in this context.

If an operator T ∈ L(X) has property (C), then, by Proposition 1.3.8 of [5], the
inclusion σ(T |XT (F )) ⊆ F holds for every closed set F ⊆ � . Moreover, it is not

hard to see that, for every T -invariant closed linear subspace Y of X , the restriction
T |Y inherits property (C) from T .
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Both SVEP and property (C) are preserved under the Riesz functional calculus.

More precisely, given an operator T ∈ L(X), let f be an analytic complex-valued
function on an open neighborhood U of the spectrum σ(T ), and suppose that f is
non-constant on each connected component of U . Then, by Theorem 1.1.5 of [5], and

also by Proposition 1.6 of [15], T has SVEP precisely when f(T ) has SVEP. Moreover,
it follows from Proposition 1.2 of [10] and Theorem 1.1.6 of [5] that property (C) is

transferred from T to f(T ), but the converse seems to be an open problem.

2. The results

As usual, the spectral radius of an operator T ∈ L(X) will be denoted by r(T ).

For arbitrary s, t � 0, we introduce the annulus A(s, t) := {λ ∈ � : s � |λ| � t}, and
define A0(s, t) := A(s, t)∪{0}. Finally, for F, G ⊆ � , let F/G consist of all fractions

λ/µ, where λ ∈ F and µ ∈ G \ {0}. The following result will be our main tool.

Lemma 1. Let S, T ∈ L(X) be two commuting operators on a complex Banach
space X , suppose that U is a non-empty, bounded, open, and connected subset of � ,

and let m := inf{|λ| : λ ∈ U} and M := sup{|λ| : λ ∈ U}. Then, for every analytic
function f : U → X for which

(ST − λ)f(λ) = 0 for all λ ∈ U,

the following assertions hold:

(a) if S has Dunford’s property (C), then

f(λ) ∈ XS(A0(M/r(T ), r(S))) for all λ ∈ U ;

(b) if both S and T have Dunford’s property (C), then

f(λ) ∈ XT (A0(M/r(S), (m/M) r(T ))) for all λ ∈ U.

�����. Without loss of generality, we may assume that U does not contain the
origin, since otherwise U may be replaced by U \{0}, and the assertion for f(0) then

follows by continuity.
To establish assertion (a), suppose that S has property (C), and consider an

arbitrary point λ ∈ U . Evidently, the set Vλ := {λ}/�(T ) is an open subset of � ,
and the definition

gλ(µ) :=
1
µ

(λ

µ
− T

)−1
Tf(λ) for all µ ∈ Vλ
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yields an analytic function gλ : Vλ → X . For each µ ∈ Vλ, we obtain from the

identity (ST − λ)f(λ) = 0 that

(S − µ)gλ(µ) =
1
µ

(λ

µ
− T

)−1
(ST − µT )f(λ) =

1
µ

(λ

µ
− T

)−1
(λ − µT )f(λ),

and hence (S − µ)gλ(µ) = f(λ). Since � \ Vλ = {0} ∪ ({λ}/σ(T )), we conclude that

f(λ) ∈ XS

(
{0} ∪ ({λ}/σ(T ))

)
for all λ ∈ U.

Now let µ ∈ U be given, and let ε > 0 be small enough so that the closed disc ∇(µ, ε)
with center µ and radius ε is contained in U . For every λ ∈ ∇(µ, ε), we obtain that

f(λ) ∈ XS

(
{0} ∪ ({λ}/σ(T ))

)
⊆ XS

(
{0} ∪ (∇(µ, ε)/σ(T ))

)
.

Since the latter space is closed and U is connected, the identity principle for analytic

functions, in connection with the Hahn-Banach theorem, then ensures that f(λ) ∈
XS

(
{0} ∪ (∇(µ, ε)/σ(T ))

)
for arbitrary λ ∈ U . Taking the intersection over all

sufficiently small ε > 0, we conclude that

f(λ) ∈ XS

(
{0} ∪ ({µ}/σ(T ))

)
for all λ, µ ∈ U,

and consequently f(λ) ∈ XS(F ) for all λ ∈ U , where

F := σ(S) ∩
⋂

µ∈U

(
{0} ∪ ({µ}/σ(T ))

)
.

It is easily seen that F is contained in A0(M/r(T ), r(S)). Indeed, given an arbitrary

λ ∈ F , we have |λ| � r(S), since F ⊆ σ(S). Moreover, if λ ∈ F is non-zero, then,
for every µ ∈ U , there exists some non-zero ζ ∈ σ(T ) for which µ = λζ. This implies

that |µ| � |λ| r(T ) for all µ ∈ U , and hence M � |λ| r(T ). If r(T ) > 0, we thus
obtain that F ⊆ A0(M/r(T ), r(S)). Finally, if r(T ) = 0, then the definition of F

shows that F ⊆ {0}, again as desired. Assertion (a) is now immediate.
To prove assertion (b), suppose that both S and T have property (C). Since the

space Y := XS(A0(M/r(T ), r(S))) is closed and invariant under S and T , we may
consider the restrictions Ŝ := T |Y and T̂ := S|Y as operators on Y . Evidently,

Ŝ and T̂ commute, and property (C) for S entails that σ(T̂ ) ⊆ A0(M/r(T ), r(S)).
Moreover, Ŝ has property (C), since this property is inherited by restrictions to

arbitrary closed invariant subspaces. By the preceding part of the proof, we obtain
that f(λ) ∈ YŜ(F̂ ) ⊆ XT (F̂ ) for all λ ∈ U , where

F̂ := σ(Ŝ) ∩
⋂

µ∈U

(
{0} ∪ ({µ}/σ(T̂ ))

)
.
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This establishes assertion (b), since F̂ is contained in A0(M/r(S), (m/M) r(T )).

Indeed, given an arbitrary non-zero λ ∈ F̂ , we obtain, for every µ ∈ U , a non-zero
element ζ ∈ σ(T̂ ) for which µ = λζ. Because σ(T̂ ) ⊆ A0(M/r(T ), r(S)), this implies
that |λ|M/r(T ) � |µ| � |λ| r(S) for all µ ∈ U , and therefore

M/r(S) � |λ| � (m/M)r(T ).

Thus λ ∈ A0(M/r(S), (m/M)r(T )), as desired. �

As a first application, we shall put the validity of Sun’s result, Theorem 5 of [13],

beyond doubt. We mention that this result is quite useful, for instance, in the
local spectral theory of multipliers. In fact, as shown in Theorem 7 of [8], Sun’s

theorem leads to an elementary proof of the fact that the decomposable multipliers
on a commutative Banach algebra with a bounded approximate identity form a
subalgebra of the multiplier algebra.

Theorem 2. Suppose that S, T ∈ L(X) are two commuting operators with Dun-

ford’s property (C) on a Banach space X . Then both ST and S + T have SVEP.

�����. To establish SVEP for ST , it suffices to show that, for every open disc
U ⊆ � and every analytic function f : U → X for which (ST − λ)f(λ) = 0 for all

λ ∈ U , it follows that f ≡ 0 on U . With the notation of Lemma 1, let

Y := XT (A0(M/r(S), (m/M)r(T ))).

Then part (b) ensures that f(λ) ∈ Y for all λ ∈ U . Moreover, the restrictions S|Y
and T |Y are commuting operators with property (C) on Y and we have r(S|Y ) �
r(S) and r(T |Y ) � (m/M)r(T ). Thus, again by part (b) of Lemma 1, we obtain

that
f(λ) ∈ XT

(
A0(M/r(S), (m/M)2r(T ))

)
for all λ ∈ U.

Because m/M < 1, a finite number of repetitions of this argument then shows that

f(λ) ∈ XT ({0}) for all λ ∈ U . Let Ŝ and T̂ denote the restrictions of S and T ,
respectively, to the closed invariant subspace XT ({0}). Since property (C) for T

ensures that σ(T̂ ) ⊆ {0}, the operator T̂ is quasi-nilpotent. Moreover, since S and T

commute, we obtain that r(ŜT̂ ) � r(Ŝ)r(T̂ ), and hence that ŜT̂ is quasi-nilpotent.

Consequently, from

(ŜT̂ − λ)f(λ) = (ST − λ)f(λ) = 0 for all λ ∈ U

we infer that f(λ) = 0 for all non-zero λ ∈ U , and therefore that f ≡ 0 on U . This
shows that ST has SVEP.
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To settle the case of sums, we first observe that exp(S) and exp(T ) have prop-

erty (C), since, as noted earlier, this property is invariant under the analytic func-
tional calculus. Because S and T commute, the first part of the proof then confirms
that exp(S + T ) has SVEP. By Theorem 1.1.5 of [5] or Proposition 1.6 of [5], this

implies that S + T has SVEP. �

It would be interesting to know if, in the preceding result, the hypothesis can
be weakened from property (C) to SVEP. Similarly, it remains open if the conclu-

sion can be strengthened from SVEP to property (C). Since Bishop’s property (�)
implies property (C), the latter question may be viewed as a weakened version of

the decomposability problem for sums and products of commuting decomposable
operators.

We conclude with another application of Lemma 1. Recall from [12] that an

operator T ∈ L(X) on a Banach space X is said to have fat local spectra provided
that σT (x) = σ(T ) for all non-zero x ∈ X . Trivial examples are given by operators

for which the spectrum is a singleton, but, as noted in [12], there are also many more
substantial examples.

For instance, by Proposition 4.2 of [12], an isometry T ∈ L(X) has fat local spec-

tra if and only if
⋂{T n(X) : n ∈ �} = {0}. Isometries with the latter property

are known as semi-shifts. Natural examples include, for arbitrary 1 � p � ∞, the
unilateral right shifts of arbitrary multiplicity on �p(�), and the right translation
operators on Lp([0,∞)). Moreover, it follows easily from the von Neumann-Wold
decomposition that, on Hilbert spaces, the semi-shifts are precisely the pure isome-
tries.

Theorem 3. Let S ∈ L(X) be a non-invertible operator with fat local spectra.
Then, for every operator T ∈ L(X) commuting with S, the product ST has SVEP.

�����. Since S has fat local spectra, its local spectral subspaces are trivial,

in the sense that XS(F ) = {0} for every closed set F ⊆ � that does not contain
σ(S), while XS(F ) = X otherwise. In particular, it follows that S has property (C).

Moreover, a simple application of the Riesz projections corresponding to the clopen
subsets of the spectrum shows that σ(S) is connected.

Now let T ∈ L(X) commute with S and let f : U → X be an analytic function

on an open disc U in � for which (ST − λ)f(λ) = 0 for all λ ∈ U . Then part (a)
of Lemma 1 ensures that f(λ) ∈ XS(A0(M/r(T ), r(S))) for all λ ∈ U . If σ(S) is

not contained in A0(M/r(T ), r(S)), then it follows that f ≡ 0 on U , as desired.
But if σ(S) ⊆ A0(M/r(T ), r(S)), then 0 is an isolated point of σ(S). Since σ(S) is

connected, this implies that S is quasi-nilpotent. Since S and T commute, we infer
that ST is quasi-nilpotent, and hence that f ≡ 0 on U , again as desired. �
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Evidently, Theorem 3 is bound to fail without the condition of non-invertibility.

The following simple consequence suggests the investigation of the commutant for
specific operators with fat local spectra. Natural test cases arise in the theory of uni-
lateral weighted right shifts on �2(�). However, at least in the examples considered

in [11] and [12], it turns out that every operator in the commutant has SVEP. Thus
it remains open if the following result leads to a counter-example to the preservation

of SVEP under sums.

Corollary 4. Let S ∈ L(X) be an operator with fat local spectra on a Banach
space X , and suppose that σ(S) is not a singleton. If there exists an operator

T ∈ L(X) without SVEP that commutes with S, then there exist two commuting

operators with SVEP for which the sum fails to have SVEP.

�����. We choose two distinct points λ, µ ∈ σ(S), and observe that each of the
operators λ−S and S−µ is non-invertible and has fat local spectra. By Theorem 3,

it follows that (λ−S)T and (S −µ)T both have SVEP. But, by the condition on T ,
the sum of these operators does not have SVEP. �
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