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Abstract. In this paper we apply the notion of cell of a lattice for dealing with graph
automorphisms of lattices (in connection with a problem proposed by G.Birkhoff).
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A partially ordered set is called discrete if all its bounded chains are finite. All

partially ordered sets which are dealt with in the present paper are assumed to be
discrete.

Inspired by a problem proposed by Birkhoff ([1], Problem 6) the author investi-

gated graph automorphisms of modular lattices [5] and of semimodular lattices [6].

For the references concerning graph isomorphisms of lattices cf. Ratanaprasert [11].

The notion of a cell in a lattice was introduced in the author’s article [4]. It was

applied for studying graph isomorphisms of semimodular lattices by Ratanaprasert
and Davey [12]. Further, this notion was used for investigating graph isomorphisms

of semilattices by Kolibiar [8] and Ratanaprasert [10], [11], and of directed sets by
Tomková [15].

In Section 2 of the present paper we apply the notion of a cell for dealing with graph

automorphisms of lattices (neither modularity nor semimodularity is assumed). We
obtain a generalization of a result of [5].

Some further results (concerning semimodular lattices, graded lattices, balanced

lattices and geometric lattices) are given in Sections 3 and 4.
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1. Preliminaries

Let P be a partially ordered set. For a, b ∈ P with a 6 b, the interval [a, b] is the
set {x ∈ P : a 6 x 6 b}. If [a, b] = {a, b} and a 6= b, then [a, b] is said to be a prime
interval and we express this situation by writing a ≺ b or b � a.

The graph G(P ) is defined to be the unoriented graph whose vertex set is P and
whose edges are pairs (a, b) such that either a ≺ b or b ≺ a.

If P1 and P2 are partially ordered sets and if ϕ is an isomorphism of G(P1) onto
G(P2), then ϕ is called a graph isomorphism of P1 onto P2. For P1 = P2 we obtain,

in particular, a graph automorphism of P1.

Let ϕ be a graph isomorphism of P1 onto P2 and let X ⊆ P1. We say that
X is preserved (reversed) under ϕ if, whenever x1, x2 ∈ X and x1 ≺ x2, then

ϕ(x1) ≺ ϕ(x2) (or ϕ(x1) � ϕ(x2), respectively).
If X is either preserved or reversed under ϕ, then X is called regular under ϕ.

For a partially ordered set P we denote by P d the partially ordered set which is

dual to P .

The direct product P1 × P2 of partially ordered sets P1 and P2 is defined in the
usual way. We will apply also the notion of an internal direct product decomposition

of a partially ordered set (in the same sense as in [7] and [5]).

Let P , P ′ be partially ordered sets and let f be a graph isomorphism of P onto P ′.
Suppose that there exist partially ordered sets A, B and direct product representa-

tions

g : P → A×B, g′ : P ′ → Ad ×B

such that the diagram

P
f−−−−→ P ′

g

y
yg′

A×B i−−−−→ Ad ×B
is commutative (where i is the identity mapping on A×B). Then the graph isomor-
phism f is said to be given by a direct product diagram. (Cf. Kolibiar [8].)

2. Cells in lattices

Let L be a lattice. Assume that x1, x2, . . . , xm, y1, y2, . . . , yn, u and v are distinct

elements of L such that

(i) u ≺ x1 ≺ x2 ≺ . . . ≺ xm ≺ v, u ≺ y1 ≺ y2 ≺ . . . ≺ yn ≺ v,

(ii) either x1 ∨ y1 = v, or xm ∧ yn = u.
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Then the set C = {u, v, x1, x2, . . . , xm, y1, y2, . . . , yn} is called a cell in L. The cell C
is said to be proper if either m > 1 or n > 1.

2.1. Theorem (Cf. [4]). A graph isomorphism f : L → L′ of lattices L and

L′ is given by a direct product diagram iff any proper cell in L or in L′ is regular

under f or f−1, respectively.

For a lattice L we denote by

A(L)—the set of all graph automorphisms of L;
Ac(L)—the set of all ϕ ∈ A(L) such that each proper cell of L is regular under ϕ

and under ϕ−1.

Further, let C and C0 be the classes of lattices L such that, whenever ϕ ∈ A(L)
(or ϕ ∈ Ac(L), respectively), then ϕ is a lattice automorphism on L.

2.2. Theorem (Cf. [5]). Let L be a modular lattice. Then the following

conditions are equivalent:

(i) L belongs to C.
(ii) No direct factor of L having more than one element is self-dual.

In the present paper we prove

2.3. Theorem. Let L be a lattice. Then the condition (ii) from 2.2 is equivalent
with the condition

(i1) L belongs to C0.

If L is a modular lattice then no proper cell exists in L; thus A(L) = Ac(L) and

L ∈ C ⇔ L ∈ C0.

Hence 2.3 is a generalization of 2.2.

We prove 2.3 by means of some lemmas.

2.4. Lemma (Cf. [5]). Let ψ be an isomorphism of L onto the direct product
A×B. Further, suppose that χ is an isomorphism of B onto Bd. For each x ∈ L we
put ϕ(x) = y, where

ψ(x) = (a, b), y = ψ−1((a, χ(b))).

Then ϕ is a graph automorphism of L.

By a similar argument as in the proof of Lemma 2.1 of [4] we obtain
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2.5. Lemma. Let the assumptions of 2.4 be satisfied. Then each proper cell of L
is regular under the graph automorphism ϕ and under ϕ−1; consequently, ϕ ∈ Ac(L).

2.6. Lemma. If L belongs to C0, then no direct factor of L having more than

one element is self-dual.

���
�
��

. Suppose that L belongs to C0. Suppose that B is a self-dual direct factor
of L. There is a direct factor A of L such that the direct product decomposition

ψ : L→ A×B

is valid. Let ϕ be as in 2.4. In view of 2.5, ϕ belongs to Ac(L). By way of contra-
diction, assume that B has more than one element. According to Lemma 1.2 in [4],

ϕ fails to be a lattice automorphism of L. Hence L /∈ C0 and we have arrived at a
contradiction. �

2.7. Lemma. Let the condition (ii) of 2.2 be valid. Then L belongs to C0.

���
�
��

. Let f be an arbitrary element of Ac(L). Put L′ = L. Hence f is a

graph isomorphism of L onto L; moreover, all proper cells in L or in L′ are regular
under f or f−1, respectively. Thus according to 2.1, f is given by a direct product

diagram. We can apply the notation as in Section 1 (taking L instead of P ).
Without loss of generality we can suppose that g and g′ are internal direct product

decompositions of L = L′ with the same central element. Then from [4], Lemma 2.1
(cf. also [7], Lemma 2.4) we obtain A = Ad. Therefore A is a one-element set. �

From 2.6 and 2.7 we conclude that 2.3 holds.

3. Semimodular lattices

In this section we assume that L is a semimodular lattice.

3.1. Definition. Let X be a sublattice of L which is isomorphic to the lattice
on Fig. 1 and let X be the convex hull of X in L. Then X is said to be an interval

of type (C0).

Fig. 1
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If A is a direct factor of L and y ∈ L, then the component of y in the direct

factor A will be denoted by y(A).
Let Y ⊆ L. Suppose that y1(A) = y2(A) for each y1, y2 ∈ Y . Then the direct

factor A is said to be orthogonal to Y .

We denote by A1(L) the set of all ϕ ∈ A(L) such that, whenever X is an interval
of type (C0) in L, then X is preserved under ϕ.

3.2. Theorem (Cf. [6]). The following conditions are equivalent:
(i) If ϕ ∈ A1(L), then ϕ is a lattice automorphism of L.
(ii) If A is a self-dual direct factor of L such that A is orthogonal to each interval
of type (C0) in L, then A is a one-element set.

3.3. Lemma. Let C be a proper cell in L. Then (under the notation as in

Section 2) we have
(i1) xm ∧ yn = u;

(ii1) C is a subset of an interval of type (C0) in L.

���
�
��

of (i1). By way of contradiction, suppose that (i1) fails to hold. Then,

in view of the definition of a cell, the relation x1∨y1 = v is valid. Since either m > 1
or n > 1, we have a contradiction with the semimodularity of L. �

���
�
���
��

(ii1). Put z = x1 ∨ y1. If z 6 xm, then we would have xm ∧
yn > y1, which is impossible in view of (i1). Similarly, z

�
ym. Hence, in view of

semimodularity of L, the element z is incomparable with both xm and yn. Since
x1 ≺ z, y1 ≺ z, xm ≺ v and yn ≺ v, we obtain

xm ∧ z = x1, xm ∨ z = v,

yn ∧ z = y1, yn ∨ z = v.

Thus X = {u, v, x1, xm, y1, yn} is a sublattice of L which is isomorphic to the lattice
in Fig. 1 and X is an interval of type (C0) in L. Moreover, C ⊆ X . �

3.4.1. Lemma. Let ϕ ∈ A1(L), u, v, x1, x2, . . . , xm, y1, y2, . . . , yn ∈ L be such

that u ≺ x1 ≺ x2 ≺ . . . ≺ xm ≺ v, u ≺ y1 ≺ y2 ≺ . . . ≺ yn ≺ v. Suppose that

(a) ϕ(u) ≺ ϕ(x1) ≺ ϕ(x2) ≺ . . . ≺ ϕ(xm) ≺ ϕ(v).

Then ϕ(u) ≺ ϕ(y1) ≺ ϕ(y2) ≺ . . . ≺ ϕ(yn) ≺ ϕ(v).

���
�
��

. It suffices to apply an analogous argument as in the proof of Lemma 2.3
in [4]. �
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Analogously we have

3.4.2. Lemma. Let the same assumptions as in 3.4.1 be satisfied with the
distinction that instead of (a) the relation

(b) ϕ(u) � ϕ(x1) � ϕ(x2) � . . . � ϕ(xm) � ϕ(v)

holds. Then ϕ(u) � ϕ(y1) � ϕ(y2) � . . . � ϕ(yn) � ϕ(v).

3.5. Lemma. Let C be a proper cell in L and ϕ ∈ A(L). Then C cannot be
reversed under ϕ.

���
�
��

. For the cell C we apply the same notation as in the proof of 3.3. By way
of contradiction, suppose that C is reversed under ϕ. Then the mapping ϕ (reduced

to the set [u, v]) is a dual lattice isomorphism of the interval [u, v] onto the interval
[ϕ(v), ϕ(u)] of L. Then according to 3.3 we have

ϕ(xm) ∧ ϕ(yn) = ϕ(v),

ϕ(xm) ∨ ϕ(yn) = ϕ(u),

ϕ(xn) � ϕ(v), ϕ(yn) � ϕ(v)

and some of the relations ϕ(xm) ≺ ϕ(u), ϕ(yn) ≺ ϕ(u) fails to hold. This contradicts
the semimodularity of L. �

3.6. Lemma. A1(L) = Ac(L).

���
�
��

. The relation Ac(L) ⊆ A1(L) is a consequence of 3.3. Let X be a
sublattice of L isomorphic to the lattice in Fig. 1; let u and v be the least element
and the greatest element of X , respectively. Then there exists a proper cell C with

elements denoted as in Section 2. Let ϕ ∈ A1(L). Thus C is regular under ϕ. Hence
C is either preserved or reversed under ϕ.

In view of 3.4.1 and 3.4.2, the interval [u, v] of L is either preserved or reversed
under ϕ. Then according to 3.5, the first possibility must occur. Thus [u, v] = X is

preserved under ϕ. Hence Ac(L) ⊆ A1(L). �

The following theorem sharpens the implication (i)⇒ (ii) from 3.2.

3.7. Theorem. Let the condition (i) from 3.2 be valid. Then we have
(ii2) if A is a self-dual direct factor of L, then A is a one-element set.

���
�
��

. This is a consequence of 3.6 and 2.3. �
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3.8. Theorem. Let the condition (ii) from 3.2 be valid. Then the condition (ii2)
from 3.7 holds.

���
�
��

. In view of 3.2, the condition (i) from 3.2 holds. Then 3.7 yields that

(ii2) is valid. �

4. Graded, balanced and geometric lattices

The remarks contained in this section can be considered as an addendum to the
author’s paper [5]. All lattices dealt with in the present section are assumed to be

of finite length.
In A), B) and D) we apply the results of Duffus and Rival [2], of Lee [9], or of

Stern [14], respectively, concerning graph isomorphisms of some types of lattices.
We will say that a pair of lattices (L,L′) satisfies the condition (α) if each graph

isomorphism of L onto L′ is given by a direct product diagram.
A) A lattice L will be said to be of type (DR) if
(i) L is graded,

(ii) every element of L is a join of atoms and a meet of coatoms.
Lattices of such type were studied by Duffus and Rival [2].

4.1. Theorem (Cf. [2]). Let L and L′ be graded lattices and let L be of

type (RD). Then the pair (L,L′) satisfies the condition (α).

By the same method as in [5] (with the only distinction that instead of [3] we now
apply 4.1) we conclude

4.2. Theorem. Let L be a graded lattice of type (DR). Then the following

conditions are equivalent:

(i) Each graph automorphism of L is a lattice automorphism.

(ii) No direct factor of L having more than one element is self-dual.

B) A semimodular lattice of finite length is called geometric if every element of L
is a join of atoms (cf. [9]).

4.3. Theorem (Cf. [9]). Let L and L′ be lattices with isomorphic graphs. If

L is geometric, then the pair (L,L′) satisfies the condition (α).

Analogously as in A) (by applying 4.3) we obtain

4.4. Theorem. Let L be a geometric lattice and let the conditions (i) and (ii)
be as in 4.2. Then (i) and (ii) are equivalent.
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4.5. Corollary (Cf. [9]). Let L be a geometric lattice. Suppose that L is directly
indecomposable and that it is not self-dual. Then every graph automorphism of L is

a lattice automorphism.

C) From 2.2 we immediately obtain

4.6. Corollary (Cf. [9]). Let L be a non-self-dual, directly indecomposable

modular lattice. Then every graph automorphism of L is a lattice automorphism.

D) For a lattice L we denote by

J (L)—the set of all elements x of L such that x fails to be the least element of L
and x is join-irreducible;

M(L)—the set of all elements y of L such that y fails to be the greatest element
of L and y is meet-irreducible.

Let j ∈ J (L) and m ∈M(L). We denote by j ′ the unique element of L such that
j′ ≺ j; further, let m∗ be the unique element of L with m ≺ m∗.

Assume that j
�
m. The arrow-relations between J (L) and M(L) are defined by

j ↗ m⇔ j ∨m = m∗, j ↙ m⇔ j ∧m = j′.

(Cf. Wille [16].)

The lattice L is called balanced if for all j ∈ J (L) and M(L) we have

j ↗ m⇔ j ↙ m.

(Cf. Reuter [13].)

4.7. Theorem (Cf. [14]). Let L and L′ be lattices which are graded and

balanced. Then the pair (L,L′) satisfies the condition (α).

If L is a modular lattice or if it is of type (RD), then L is gradded and balanced

(cf. [14]). Hence 4.7 is a generalization of the author’s result from [3], and of the
result of Duffus and Rival (cf. 4.1).

Similarly as in A), from 4.7 we conclude

4.8. Theorem. Let L be a balanced lattice. Let (i) and (ii) be as in 4.3. Then
the conditions (i) and (ii) are equivalent.

This generalizes 4.2 and also the result (∗) from [5].
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