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Abstract. In this paper we prove an existence theorem for the Cauchy problem

x′(t) = f(t, x(t)), x(0) = x0, t ∈ Iα = [0, α]

using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the
function f are not too restrictive: scalar measurability and weak sequential continuity with
respect to the second variable. Moreover, we suppose that the function f satisfies some
conditions expressed in terms of measures of weak noncompactness.
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1. Introduction

The Henstock-Kurzweil integral encompasses the Newton, Riemann and Lebesgue

integrals [16], [17], [24], [27]. A particular feature of this integral is that integrals
of highly oscillating function such as F ′(t), where F (t) = t2 sin t−2 on (0, 1] and
F (0) = 0 can be defined. This integral was introduced by Henstock and Kurzweil
independently in 1957–1958 and has since proved useful in the study of ordinary

differential equations [1], [8], [9], [13]. In the paper [6], Cao defined the Henstock
integral in Banach space, which is a generalization of the Bochner integral.

The Pettis integral is also a generalization of the Bochner integral [14], [29]. This
notion is strictly relative to weak topologies in Banach spaces.

We generalize both concepts of integrals introducing the Henstock-Kurzweil-Pettis
integral.

Let E be a Banach space and let E∗ be a dual space. Moreover, let (C(Iα, E), ω)
denote the space of all continuous functions from Iα to E endowed with the topology
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σ(C(Iα, E), C(Iα, E)∗). Recall that a function f : Iα −→ E is said to be weakly

continuous if it is continuous from Iα to E endowed with its weak topology.
In this paper we will deal with the Cauchy problem:

(1)

{
x′(t) = f(t, x(t)),

x(0) = x0,
t ∈ [0, α] = Iα,

where f is a Henstock-Kurzweil-Pettis integrable function. In fact, our existence

theorem is based on an idea of Kurzweil from [24].
We will consider the problem:

(2) x(t) = x0 +
∫ t

0

f(s, x(s)) ds, t ∈ Iα,

where the integral is taken in the sense of Henstock-Kurzweil-Pettis.

In the sequel we will denote by
∫

f(t) dt the Henstock-Kurzweil-Pettis integral.
When it is necessary to distinguish between different classes of integrals we will use

the prefixes (L) for Lebesgue integrals, (HK) for Henstock-Kurzweil integrals and
(P) for Pettis integrals.

In this paper we use the measure of weak noncompactness developed by De Bla-
si [5].

Let A be a bounded nonempty subset of E.
The measure of weak noncompactness µ(A) is defined by

µ(A) = inf{t > 0: there exists C ∈ K w such that A ⊂ C + tB0},

where K w is the set of weakly compact subsets of E and B0 is the norm unit ball
in E.

For the properties of measure of weak noncompactness µ(A) see [5].
We can construct many other measures of weak noncompactness with suitable sets

of properties, by using the scheme from [4] or [10]. The following lemma is important
in our proof:

Lemma 1 ([26]). Let H ⊂ C(Iα, E) be a family of strongly equicontinuous func-
tions. Then µ(H(Iα)) = sup

t∈Iα

µ(H(t)) and the function t 7→ µ(H(t)) is continuous.

Fix x∗ ∈ E∗ and consider the problem

(1′) (x∗x)′(t) = x∗f(t, x(t)), x(0) = x0, t ∈ Iα.

Let us introduce the following definition:
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Definition 1 ([29]). Let F : [a, b] −→ E and let A ⊂ [a, b]. The function
f : A −→ E is a pseudoderivative of F on A if for each x∗ in E∗ the real-valued
function x∗F is differentiable almost everywhere on A and (x∗F )′ = x∗f almost
everywhere on A.

Regarding the above definition it is clear that the left-hand side of (1′) can be
rewritten in the form x∗(x′(t)) where x′ denotes the pseudoderivative.

Definition 2 ([7]). A family F of functions F is said to be uniformly abso-

lutely continuous in the restricted sense on X or, in short, uniformly AC∗(X) if
for every ε > 0 there is η > 0 such that for every F in F and for every finite or

infinite sequence of non-overlapping intervals {[ai, bi]} with ai, bi ∈ X and satisfying∑
i

|bi − ai| < η, we have
∑
i

ω(F, [ai, bi]) < ε, where ω denotes the oscillation of F

over [ai, bi] (i.e. ω(F, [ai, bi]) = sup{|F (r)− F (s)| : r, s ∈ [ai, bi]}).

A familyF of functions F is said to be uniformly generalized absolutely continuous
in the restricted sense on [a, b] or uniformly ACG∗ on [a, b] if [a, b] is the union of a
sequence of closed sets Ei such that on each Ei the family F is uniformly AC∗(Ei).
Now, let us present an important lemma (the uniform integrability of a family of

functions means that the function δ(·) in Definition 5 is common to all functions
from this family) (cf. [7], [17]).

Lemma 2. Let fn, f : Iα −→ � and assume that fn : Iα −→ � are (HK) inte-
grable on Iα. Let Fn be a primitive of fn. If we assume that:

(i) fn(t) → f(t) a.e. on Iα,

(ii) the family G = {Fn : n ∈ � } is uniformly ACG∗ on Iα,

(iii) G is equicontinuous on Iα,

then (fn) is uniformly (HK) integrable on Iα.

� ��!"!$#
. This is a simple consequence of Theorems 13.26 and 13.29 in the book

of Gordon [17]. Similar result for ACG functions is well known (cf. [7, Lemma 2,

p. 48]). �

Now we are able to introduce the definition of pseudo-solution which we will use
in the sequel.

Definition 3 (cf. [10], [11], [21], [24]). A function x : Iα −→ E is said to be a
pseudo-solution of the Cauchy problem (1) if it satisfies the following conditions:

(i) x(·) is ACG∗,

(ii) x(0) = x0,
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(iii) for each x∗ ∈ E∗ there exists a set A(x∗), with a Lebesgue measure zero, such
that for each t 6∈ A(x∗)

x∗(x′(t)) = x∗(f(t, x(t))).

Here “ ′ ” denotes the pseudoderivative (see [29]).

A function g : E −→ E1, where E and E1 are Banach spaces, is said to be weakly-
weakly sequentially continuous if for each weakly convergent sequence (xn) ⊂ E, the

sequence (g(xn)) is weakly convergent in E1.

A very interesting discussion (including examples) about different types of conti-
nuity can be found in [2] and [3]. The notion of weak sequential continuity seems to

be the most convenient in use. It is not always possible to show that a given operator
between Banach spaces is weakly continuous, quite often its weak sequential conti-

nuity presents no problem. This follows from the fact that the Lebesgue dominated
convergence theorem is valid for sequences but not for nets.

The fact that a sequence xn tends weakly to x0 in E will be denoted by xn
ω−→ x0.

2. Henstock-Kurzweil-Pettis integral in Banach spaces

In this part we define the Henstock-Kurzweil-Pettis integral and we give properties
of this integral. For basic definitions we refer the reader to [17] or [20].

Definition 5 ([6]). A function f : [a, b] −→ E is Henstock-Kurzweil integrable

on [a, b] if there exists A ∈ E with the following property: for every ε > 0 there
exists a positive function δ(·) on [a, b] such that for every division D of [a, b] given
by a = x0 < x1 < . . . < xn = b and {ξ1, ξ2, . . . , ξn} satisfying ξi ∈ [cxi−1, xi] ⊂
(ξi − δ(ξi), ξi + δ(ξi)) for i = 1, 2, . . . , n, we have

∥∥∥∥
n∑

i=1

f(ξi)(xi − xi−1)−A

∥∥∥∥ < ε.

We write (HK)
∫ b

a
f(t) dt = A. We say that D is δ-fine and we can write D =

{[u, v]; ξ} with ξ ∈ [u, v] ⊂ (ξ − δ(ξ), ξ + δ(ξ)).
We will write f ∈ HK([a, b], E) if f is Henstock-Kurzweil integrable on [a, b].
This definition includes the generalized Riemann integral defined by Gordon ([18]).

Definition 6 ([6]). A function f : [a, b] −→ E is (HL) integrable on [a, b] (f ∈
HL([a, b], E)) if there exists a function F : [a, b] −→ E, defined on the subinter-
vals of [a, b], satisfying the following property: given ε > 0 there exists a positive
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function δ(·) on [a, b] such that if D = {[u, v], ξ} is a δ-fine division of [a, b], we have
∑

D

∥∥f(ξ)(v − u)− (F (v)− F (u))]
∥∥ < ε.

Remark 1. We note that by the triangle inequality: f ∈ HL([a, b], E) implies
f ∈ HK([a, b], E). In general, the converse is not true. For real-valued functions, the
two integrals are equivalent.

Definition 7 ([29]). The function f : Iα −→ E is Pettis integrable ((P) inte-

grable for short) if
(i) ∀x∗ ∈ E∗ x∗f is Lebesgue integrable on Iα,

(ii) ∀A ⊂ Iα, A measurable ∃ g ∈ E ∀x∗ ∈ E∗ x∗g = (L)
∫

A x∗f(s) ds.

Now we present a definition of the integral which is a generalization of both Pettis

and Henstock-Kurzweil integrals.

Definition 8. A function f : Iα −→ E is Henstock-Kurzweil-Pettis integrable

((HKP) integrable for short) if there exists a function g : Iα −→ E with the following
properties:

(i) ∀x∗ ∈ E∗x∗ f is Henstock-Kurzweil integrable on Iα,
(ii) ∀ t ∈ Iα ∀x∗ ∈ E∗ x∗g(t) = (HK)

∫ t

0
x∗f(s) ds.

This function g will be called a primitive of f and by g(α) =
∫ α

0 f(t) dt we will
denote the Henstock-Kurzweil-Pettis integral of f on the interval Iα.

Remark 2. Each function which is (HL) integrable is integrable in the sense of
the Henstock-Kurzweil-Pettis. Our notion of integral is essentially more general than

the previous ones (in Banach spaces):
(1◦) Pettis integral: by the definition of the Pettis integral and since each Lebesgue

integrable function is (HK) integrable we can put the Lebesgue integral in con-
dition (i) and as a consequence we obtain that any (P) integrable function is

(HKP) integrable.
(2◦) Bochner, Riemann and Riemann-Pettis integrals (cf. [18]).
(3◦) McShane integral (cf. [19] or [27]).
(4◦) Henstock-Kurzweil (HL) integral: we present below an example.

Example. We present an example of function which is (HKP) integrable and
neither (HL) integrable nor (P) integrable.

Let f : [0, 1] −→ (L∞[0, 1], ‖ · ‖∞) and let f(t) = χ[0,t] + A(t) · F ′(t), where

F (t) = t2 sin t−2, χ[0,t](τ) =

{
1, τ ∈ [0, t],

0, τ 6∈ [0, t],
t, τ ∈ [0, 1],

F (0) = 0 and A(t)(τ) = 1 for τ, t ∈ [0, 1].
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Put f1(t) = χ[0,t], f2(t) = A(t) · F ′(t).
We will show that a function f(t) = f1(t) + f2(t) is integrable in the sense of

Henstock-Kurzweil-Pettis.
Observe that

x∗f(t) = x∗(f1(t) + f2(t)) = x∗(f1(t)) + x∗(f2(t)).

Moreover, the function x∗(f1(t)) is Lebesgue integrable (in fact f1 is Pettis in-

tegrable [15]), so is Henstock-Kurzweil integrable, and the function x∗(f2(t)) is
Henstock-Kurzweil integrable by Definition 8.

The function f is not Lebesgue integrable because x∗f2 is not Lebesgue integrable
so f is not Pettis integrable. Moreover, the function f1 is not strongly measurable

(cf. [15]), so by Theorem 9 from [6] this function is not (HL) integrable. Hence, the
function f is not integrable in the sense of Pettis and moreover this function is not

(HL) integrable.
In the sequel we will investigate some properties of the (HKP) integral which are

important in the next part of our paper.

Theorem 1. Let f : [a, b] −→ E be (HKP) integrable on [a, b] and let F (x) =∫ x

a f(s) ds.

(a) For each x∗ in E∗ the function x∗f is (HK) integrable on [a, b] and (HK)∫ x

a x∗f(s) ds = x∗F (x).
(b) The function F is weakly continuous on [a, b] and f is a pseudoderivative of F

on [a, b].
� ��!"!$#

. (a) See Definition 8.
(b) The function x∗f is a real valued and (HK) integrable, and x∗F (x) =

(HK)
∫ x

a x∗f(s) ds (by part (a)), thus G(x) =
∫ x

a x∗f(s) ds is continuous (by Theo-
rem 1(a)) i.e., F is a weakly continuous function.

By Theorem 1(a) there exists a set A(x∗), mes A(x∗) = 0, A(x∗) ⊂ [a, b], such
that G′(x) = x∗f(x), but G′(x) = (x∗F )′(x). �

Theorem 2 ([12]). Let fn, f : Iα −→ E and assume that fn : Iα −→ E are

(HKP) integrable on Iα. Let Fn be a primitive of fn. If we assume that:

(i) ∀x∗ ∈ E∗ x∗fn(t) −→ x∗f(t) a.e. on Iα,

(ii) for each x∗ ∈ E∗ the family G = {x∗Fn : n = 1, 2, 3, . . .} is uniformly ACG∗
on Iα (i.e. weakly uniformly ACG∗ on Iα),

(iii) for each x∗ ∈ E∗ the set G is equicontinuous on Iα,

then f is (HKP) integrable on Iα and
∫ t

0 fn(s) ds tends weakly in E to
∫ t

0 f(s) ds for

each t ∈ Iα.
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Theorem 3 (Mean value theorem for the (HKP) integral). If the function
f : Iα −→ E is (HKP) integrable, then:

∫

I

f(t) dt ∈ |I | · convf(I),

where I is an arbitrary subinterval of Iα and |I | is the lenght of I .
� ��!"!$#

. Taking an arbitrary x∗ ∈ E∗ by the mean value theorem for (HK) in-

tegral we have:

∫

I

x∗(f(t)) dt ∈ |I | · convx∗f(I) = x∗(|I | · convf(I)).

But, by the definition of Henstock-Kurzweil-Pettis integral, there exists
∫

I f(t) dt

such that
∫

I
x∗f(t) dt = x∗

∫
I
f(t) dt.

So x∗
(∫

I f(t) dt
)
∈ x∗(|I |·convf(I)) for each x∗ ∈ E∗. Because the set |I |·convf(I)

is a closed convex set, this implies
∫

I
f(t) dt ∈ |I | · convf(I). �

3. Main result

Now we prove an existence theorem for the problem (1) under the weakest as-
sumptions on f , as it is known. We will use the following results.

Theorem 4 ([22]). Let E be a metrizable locally convex topological vector space.
Let D be a closed convex subset of E, and let F be a weakly sequentially continuous

map of D into itself. If for some x ∈ D the implication

(3) V = conv({x} ∪ F (V )) =⇒ V is relatively weakly compact

holds for every subset V of D , then F has a fixed point.

Let

C(x0, α) = {x ∈ C(Iα, E) : x(0) = x0, ‖x‖ 6 ‖x0‖+ b}

(α, b are some positive numbers). This set is closed and convex.

Let Fx be defined by (Fx)(t) = x0 +
∫ t

0
f(s, x(s)) ds, for t ∈ Iα and x ∈ C(x0, α),

G = {Fx : x ∈ C(x0, α)}.

285



Theorem 5. Assume that for each ACG∗ function x : Iα −→ E, f(·, x(·)) is
(HKP) integrable, f(t, ·) is weakly-weakly sequentially continuous and

(4) µ(f(I ×X)) 6 c · µ(X), 0 6 cα < 1,

for each bounded subset X ⊂ E and for each subinterval I of Iα.

Suppose that the set G is strongly equicontinuous and weakly uniformly ACG∗
on Iα. Then there exists at least one pseudo-solution of the problem (1) on Iβ , for

some number 0 < β 6 α.

� ��!"!$#
. We will prove, in fact, the existence of a solution for the problem (2).

By Theorem 1(a) each solution of the problem (2) is a solution of the problem (1).
Fix an arbitrary b > 0. By the equicontinuity of G, there exists a number β, 0 <

β 6 α, such that
∥∥∥∥
∫ t

0

f(s, x(s)) ds

∥∥∥∥ 6 b,

for t ∈ Iβ and x ∈ C(x0, α).

By our assumptions the operator F is well defined and maps C(x0, β) into C(x0, β).

We will show that the operator F is sequentially continuous. By Lemma 9 of [26]

a sequence xn(·) is weakly convergent in C(Iβ , E) to x(·) iff xn(t) tends weakly to x(t)
for each t ∈ Iβ , so if xn

ω−→ x in C(Iβ , E) then f(t, xn(t)) ω−→ f(t, x(t)) in E for

t ∈ Iβ , and by Theorem 2 we have

lim
n→∞

∫ t

0

f(s, xn(s)) ds =
∫ t

0

f(s, x(s)) ds

weakly in E, for each t ∈ Iβ .

We see that Fxn(t) −→ Fx(t) weakly in E for each t ∈ Iβ so Fxn −→ Fx in
(C(Iβ , E), ω).

Suppose that V ⊂ C(x0, β) satisfies the condition V = conv(F (V )∪{x}) for some
x ∈ C(x0, β). We will prove that V is relatively weakly compact in C(x0, β), thus
(3) is satisfied. Theorem 4 will ensure, that F has a fixed point (cf. [11]).

Let

F (V (t)) = {Fx(t) : x ∈ V } =
{

x0 +
∫ t

0

f(s, x(s)) ds : x ∈ V

}
.
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By properties of the measure of weak noncompactness and the assumption (4) we

have

µ(F (V (t))) = µ

{
x0 +

∫ t

0

f(s, x(s)) ds : x ∈ V

}

6 µ

{(∫ t

0

f(s, x(s)) ds : x ∈ V

)}

6 µ(t · convf([0, t]× V ([0, t])))

6 t · µ(f([0, t]× V ([0, t])))

6 β · µ(f(Iβ × V (Iβ))) 6 β · c · µ(V (Iβ)).

Hence µ(F (V (t))) 6 β · c · µ(V (Iβ)) for each t ∈ Iβ .

Because V = conv(F (V ) ∪ {x}) then

µ(V (t)) = µ(conv(F (V (t)) ∪ {x})) 6 µ(F (V (t))) 6 β · c · µ(V (Iβ)).

By Lemma 1 we have

µ(V (Iβ)) 6 β · c · µ(V (Iβ)) 6 α · c · µ(V (Iβ)).

So µ(V (Iβ)) = 0 and µ(V (t)) = 0 for each t ∈ Iβ . By the Arzelà-Ascoli theo-
rem V is relatively weakly compact in C(Iβ , E). Using Theorem 4 there exists a
fixed point of the operator F which is a pseudo-solution of (1). �

Remark 4. The condition (4) in our Theorem 6 can be also generalized to the
Sadovskii condition: µ(F (I × X)) < µ(X), whenever µ(X) > 0, where µ can be

replaced by some axiomatic measure of weak noncompactness (cf. [10]).

As we generalize both Pettis and Henstock-Kurzweil integrals our existence the-

orem is an extension of previous results; for example Chew and Flordelija [8], Ci-
choń [10], Cichoń, Kubiaczyk [11], Congxin, Baolin and Lee [13], Knight [21], Ku-

biaczyk [23], Kurzweil [24], Mitchell, Smith [26], O’Regan [28].
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[4] J. Banaś and K. Goebel: Measures of Noncompactness in Banach Spaces. Lecture Notes
in Pure and Appl. Math. Vol 60. Marcel Dekker, New York-Basel, 1980.

[5] F. S. DeBlasi: On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci.
Math. R.S. Roumanie 21 (1977), 259–262.

[6] S. S. Cao: The Henstock integral for Banach valued functions. SEA Bull. Math. 16
(1992), 35–40.

[7] V.G. Celidze and A.G. Dzvarsheishvili: Theory of Denjoy Integral and Some of Its
Applications. Tbilisi, 1987. (In Russian.)

[8] T.S. Chew: On Kurzweil generalized ordinary differential equations. J. Differential
Equations 76 (1988), 286–293.

[9] T.S. Chew and F. Flordelija: On x′ = f(t, x) and Henstock-Kurzweil integrals. Differ-
ential Integral Equations 4 (1991), 861–868.
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289


		webmaster@dml.cz
	2020-07-03T14:39:03+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




