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Abstract. We observe that a separable Banach space X is reflexive iff each of its quotients
with Schauder basis is reflexive. Similarly if L (X, Y ) is not reflexive for reflexive X and Y
then L (X1, Y ) is is not reflexive for some X1 ⊂ X, X1 having a basis.
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Pe lczyński [10] proved that Banach space X is reflexive if each subspace with
Schauder basis is reflexive. Actually this result stems from the work of [13] which in

turn was inspired by the work of [11]. Here we add simple statements which may be
considered as natural complements to the results of [11], [13] and [10]. The first one
is a statement similar to that of Pe lczyński for separable X and quotients instead

of subspaces. Namely we observe that a separable Banach space X is reflexive if
each of its quotients with Schauder basis is reflexive. From [7] we know that duals of

quotient spaces with basis correspond to subspaces of the dual X∗ spanned by w∗-
basic sequences. Thus our statement reads: A separable Banach space is reflexive if

every w∗-basic sequence in X∗ spans a reflexive subspace. We may proceed similarly
as in [10] but we use the tools of w∗-basic sequences which were not at hand for the

authors of [11], [13] and [10]. Similarly we will consider also reflexivity of spaces of
bounded operators or equivalently of π-tensor products of reflexive Banach spaces.

This work was supported by the grants No. 201/03/0041 and No. 201/04/0090 of the
Grant Agency of the Czech Republic and by the grant No. A1019801 of the Academy of
Sciences of the Czech Republic.
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Following [7] we will denote by [A] the norm closed linear span of a set A and by Ã

its w∗ closed linear span if A ⊂ X∗. By A◦ we denote the polar set in X of a set
A ⊂ X∗. By a space having a basis we mean a Banach space with a Schauder basis.

A sequence {x∗n} is called w∗ basic [7], [8], [2] or [3] provided that there is a

sequence {xn} ⊂ X so that {xn, x∗n} is biorthogonal and for each x∗ ∈ [̃x∗n] we have
n∑

i=1

x∗(xi)x∗i
w∗
−→ x∗.

From [7] we shall use the following two facts:

A) If {x∗n} is w∗ basic sequence then the factor space X/[x∗n]◦ has a basis and [̃x∗n]
can be identified with (X/[x∗n]◦)∗.

B) If X is separable then every w∗ null sequence {x∗n} ⊂ X∗ which is not norm
null has a w∗ basic subsequence {xnk

}.
Finally we recall two results of Holub and Heinrich [4], [5] (and slightly more

restrictive [12]) on the reflexivity of the space L (X, Y ):
C) The space of bounded linear operators L (X, Y ) is reflexive if L (X, Y ) =

K (X, Y ) and if X and Y are reflexive Banach spaces.
Conversely,

D) If L (X, Y ) is reflexive and if X or Y has the approximation property then
L (X, Y ) = K (X, Y ). Of course X and Y are then reflexive spaces.

The statement C) was proved under more restrictive assumptions by Ruckle [12]
and in the approximation property free form by [4], [5]. This approximation property

free form seems not to be generally known as e.g. the recent paper [9] shows.

Proposition 1. Let X be a separable Banach space. Then X is reflexive iff each

of its quotients which has a basis is reflexive.
���������

. Only the if part of the proposition is to be established. Thus we
shall suppose that X∗ is not reflexive i.e. that the closed unit ball BX∗ is not weakly

compact. The Eberlein-Šmulian theorem yields a sequence {x∗n} in the unit ball BX∗

no subsequence of which is weakly converging. Due to the separability of X the closed

unit ball BX∗ is metrizable in the w∗ topology and thus the sequence {x∗n} ⊂ BX∗

has a w∗ converging subsequence. For simplicity we will denote this subsequence

by {x∗n} again. We may suppose that x∗n
w∗
−→ 0 (otherwise we take x∗n − w∗ lim x∗n).

By our assumptions the sequence {x∗n} is not norm converging (to zero). The above
mentioned result B) of [7] yields a w∗ basic subsequence which we shall call {x∗n}
again. Having in mind the identification mentioned in A) we see that {x∗n} is in the
unit ball of (X/[x∗n]◦)∗ = [̃x∗n]. Because {x∗n} has no weakly convergent subsequence

we conclude that the dual unit ball of X/[x∗n]◦ is not weakly compact and thus
X/[x∗n]◦ is not reflexive. From A) we also know that X/[x∗n]◦ has a basis. �

Remark 1. Note that actually we have proved slightly more, namely:
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Let X be a separable Banach space. Then X is reflexive iff every w∗ basic se-

quence {x∗n} spans a normed closed reflexive subspace [x∗n] ⊂ X∗.

Remark 2. We do not know if Proposition 1 holds also without the separability
assumption. This general statement would then imply (similarly as also the state-

ment mentioned in A) and B) does) a positive answer to the following question which
is still not settled: Has every Banach space a separable quotient space?

Similarly we may consider quotients of the space X by subspaces A ⊂ X such that
A has a basis and the quotient space X/A is not reflexive:

Proposition 2. Let X be a nonreflexive Banach space. Then there is a subspace

A ⊂ X such that A has a basis and the quotient space X/A is not reflexive.
���������

is contained in the proof of Lemma 2 in [1] and for the sake of com-
pleteness we will list it here: Suppose that X is not reflexive. From the results of

Singer [13] and from the above cited result of Pe lczyński we conclude that there is

a basic sequence {xn} ⊂ X with ‖xn‖ > 1 such that
{ p∑

1
xn

}
p

is bounded. We

put A = [x2n−1] and let P be the quotient map of X onto X/A. Then evidently
{x2n−1} and {P (x2n)} are basic sequences, {P (x2n)} is not a norm null sequence

and
{ p∑

1
P (x2n)

}
p

=
{ 2p∑

1
P (xn)

}
p

is bounded (in p). We conclude [13] that the

sequence {P (x2n)} spans a non reflexive subspace of X/A. �

Next we will consider the reflexivity of the space of bounded operators L (X, Y ):

Proposition 3. Let X , Y be reflexive Banach spaces and suppose that L (X, Y )
is not reflexive. Then there is a subspace X1 ⊂ X such that X1 has Schauder basis

and such that L (X1, Y ) is not reflexive.
���������

. Suppose that L (X, Y ) is not reflexive. The result C) mentioned in the
introduction yields a noncompact operator f ∈ L (X, Y ). Let {xn} be a bounded

sequence in L (X, Y ) such that {f(xn)} has no norm convergent subsequence. Then
{xn} also has no norm convergent subsequence. The reflexivity of the space X implies

that there is a subsequence of the sequence {xn} weakly converging to x ∈ X . Let
us denote this subsequence again by {xn} and put zn = xn − x. Then zn

w−→ 0.

The classical theorem of Pe lczyński mentioned in the introduction yields a basic
subsequence of the sequence {zn}. As above we call this subsequence again {zn}
and put X1 = [{{zn} ∪ {x}}]. Then X1 has a basis. Indeed, if x ∈ [zn] then
[xn] = [zn] and {zn} is a basis of X1. If x /∈ [zn] then X1 is the direct sum of [zn]
and the one dimensional subspace spanned by x and thus X1 again has a basis.
In any case {xn} ⊂ X1. This last inclusion evidently implies that the restriction
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f |X1 ∈ L (X1, Y ) is not a compact operator. We note that X1 has the approximation

property. Again by the result D) of [4] and [5] mentioned in the introduction we
conclude that L (X1, Y ) is not reflexive. �

Remark 3. Note that we have actually observed the following:
Let X , Y be any Banach spaces and suppose that there is noncompact operator

f : X −→ Y . Then there is a subspace X1 ⊂ X such that X1 has Schauder basis

and such that the restriction f |X1 is a noncompact operator.

Remark 4. Dually Proposition 3 can be formulated as follows:
Let X , Y be reflexive Banach spaces and suppose that L (X, Y ) is not reflexive.

Then there is a subspace Y1 ⊂ Y such that the quotient space Y/Y1 has Schauder

basis and such that L (X, Y/Y1) is not reflexive.

Indeed, if there is noncompact operator f : X −→ Y then f ∗ ∈ L (Y ∗, X∗) is
also noncompact and thus L (Y ∗, X∗) is nonreflexive. Using now Proposition 3 for

L (Y ∗, X∗) we get a subspace Z ⊂ Y ∗ having a basis such that L (Z, X∗) is not
reflexive. We put now Y1 = Z◦. Evidently Y/Y1 = Z∗ has a basis. Proceeding as

above and using now the duality of subspaces and quotients we get our claim.

Remark 5. A slightly more general result then stated in the above remark may

also be formulated:
Let X , Y be Banach spaces, let Y be separable and suppose that L (X, Y ) 6=

K (X, Y ). Then there is a subspace Y1 ⊂ Y such that the factor space Y/Y1 has

Schauder basis and such that L (X, Y/Y1) 6= K (X, Y/Y1).
Indeed, let f : X −→ Y be a noncompact operator. Proceeding as in the proofs of

Propositions 3 and 1 we find a w∗ basic sequence {y∗n} ⊂ Y ∗ such that the restriction

f∗|[y∗n] is noncompact. Let now Y1 = [y∗n]◦ and let P be the projection of Y onto Y/Y1.
Then evidently Pf : X −→ Y/Y1 is a noncompact operator whose dual is f ∗|[yn∗ ].

Remark 6. Having in mind the basic relation of L (X, Y ) to tensor products,

namely (X⊗̃πY )∗ = L (X, Y ) we can reformulate Proposition 3:
Let X , Y be reflexive Banach spaces and suppose that X⊗̃πY is not reflexive.

Then there is a subspace X1 ⊂ X such that X1 has Schauder basis and such that

X1⊗̃πY is not reflexive.

Question. The statement listed in Remark 5 suggests the following question:

Suppose that there is a noncompact operator f : X −→ Y . Does there exist a

noncompact operator g : X −→ Y1 and a subspace Y1 ⊂ Y , Y1 having a basis?

Acknowledgement. The author is indebted to Ondřej Kalenda for simplification
of the proof of Proposition 1.
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