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1. Introduction

As is well known, a Riemannian manifold (M, g) is said to be (locally) conformally
flat if for any point p ∈ M there exist a neighborhood U of p and a positive smooth

function f : U → �
such that fg is a flat metric. The study of conformally flat

Riemannian manifolds is a classical field of research in Riemannian geometry. In

particular, many authors have been involved in the study of homogeneity and sym-
metry conditions on a conformally flat manifold. The following well-known result of

P.Ryan [8] provided the complete classification of conformally flat locally symmetric
spaces:

Theorem 1.1 [8]. Let M be an n-dimensional conformally flat space with a

parallel Ricci tensor. Then M has as its simply connected Riemannian covering one

of the spaces
� n , Sn(k), � n (−k),

� × Sn−1(k),
� × � n−1 (−k), Sp(k)× � n−p (−k),

where by Sn(k) we denote a Euclidean n-sphere with constant curvature k > 0,
and by � n (−k) we denote an n-dimensional simply connected, connected space with

constant curvature −k < 0.
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As concerns homogeneity, H.Takagi [11] proved that a locally homogeneous con-

formally flat Riemannian manifold (M, g) is locally symmetric and so, it is one of the
spaces given in Ryan’s classification. Indeed, in the proof of his result, Takagi only
used local homogeneity to provide that (M, g) has constant Ricci eigenvalues, which
is equivalent, for conformally flat manifolds, to curvature homogeneity. Therefore,
as already remarked in [3], a conformally flat curvature homogeneous space is locally

symmetric.

Coming back to symmetry conditions, semi-symmetric spaces represent a well-
known and natural generalization of locally symmetric spaces. A semi-symmetric

space is a Riemannian manifold (M, g) such that its curvature tensor R satisfies the
condition

(1.1) R(X, Y ) ·R = 0

for all vector fields X , Y on M , where R(X, Y ) acts as a derivation on R [9]. The
curvature tensor Rp of (M, g) at a point p ∈ M is the same as the curvature tensor of

a symmetric space (which may change with the point p). Locally symmetric spaces
are semi-symmetric, but in any dimension greater than two there exist examples

of semi-symmetric spaces which are not locally symmetric. (The first example was
given by H.Takagi in [10]. We can refer to [1] for a survey.)

In [2], the classification of conformally flat semi-symmetric spaces was obtained
by proving

Theorem 1.2 [2]. A conformally flat semi-symmetric space (of dimension n >

2) is either locally symmetric or it is locally irreducible and isometric to a semi-
symmetric real cone.

We shall come back to the description of semi-symmetric real cones in Section 2.
Such Riemannian manifolds are the only conformally flat semi-symmetric not lo-

cally symmetric spaces. Indeed, they turn out to be also the only conformally flat
not locally symmetric examples in the broader class of pseudo-symmetric spaces of

constant type.
A pseudo-symmetric space of constant type is a Riemannian manifold (M, g) whose

curvature tensor R satisfies

(1.2) R(X, Y ) · R = c̃(X ∧ Y ) · R

for all vector fields X and Y on M , where X ∧ Y is defined by

(X ∧ Y )Z = g(Y, Z)X − g(X, Z)Y

650



and c̃ is a real constant [4], [6]. It is evident from this definition that semi-symmetric

spaces correspond to pseudo-symmetric spaces of constant type with c̃ = 0. So,
pseudo-symmetric spaces of constant type generalize the semi-symmetric ones. In
dimension three, pseudo-symmetric spaces of constant type are characterized by the

property that two of the Ricci eigenvalues coincide and the last one is constant ([1,
Proposition 11.2]).

In dimension three, the problem of classifying conformally flat pseudo-symmetric

spaces of constant type has been already studied and solved by N.Hashimoto and
M. Sekizawa [5]. Taking into account their result and using our classification of semi-

symmetric conformally flat spaces, we can solve completely the problem of classifying
conformally flat pseudo-symmetric spaces of constant type by proving

Main Theorem. A conformally flat pseudo-symmetric space of constant type (of
dimension n > 2) is either locally symmetric or it is locally irreducible and isometric
to a semi-symmetric real cone.

The paper is organized in the following way. In Section 2, we recall some basic
facts and results about conformally flat Riemannian manifolds and describe semi-

symmetric real cones. Then, in Section 3, we prove our main result, combining the
curvature information coming from conformal flatness and pseudo-symmetry.

Acknowledgements. The author expresses his gratitude towards Dr. E.Boeckx
for his help in revising the manuscript.

2. Preliminaries

Let (M, g) be a Riemannian manifold of dimension n > 2 and R its curvature
tensor, taken with the sign convention R(X, Y ) = [∇X ,∇Y ] −∇[X,Y ] for all vector

fields X, Y on M , where ∇ denotes the Levi Civita connection of M . By %, Q

and τ we denote respectively the Ricci tensor, the Ricci operator associated to %

through g and the scalar curvature of M . Let p be a point of M and {e1, . . . , en}
an orthonormal basis of the tangent space TpM . The components of R and % with

respect to {e1, . . . , en} are denoted respectively by Rijkh and %ik. As is well-known,
the curvature tensor of a conformally flat space satisfies

Rijkh =
1

n− 2
(gih%jk + gjk%ih − gik%jh − gjh%ik)(2.1)

− τ

(n− 1)(n− 2)
(gihgjk − gikgjh).
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Moreover, (2.1) characterizes the conformally flat Riemannian manifolds of dimen-

sion n > 4, while it is trivially satisfied by any three-dimensional manifold. Con-
versely, the condition

(2.2) ∇i%jk −∇j%ik =
1

2(n− 1)
(gjk∇iτ − gik∇jτ),

which characterizes three-dimensional conformally flat spaces, is trivially satisfied by

any conformally flat Riemannian manifold of dimension greater than three.
We conclude this Section by a short description of semi-symmetric real cones,

which will provide the only examples of conformally flat pseudo-symmetric spaces of
constant type which are not locally symmetric. We can refer to [1] for more detail.

Let (M, g) be a Riemannian manifold and µ(t) the unique solution of the dif-
ferential equation dµ/dt = −µ2 with an initial condition µ(0) = µ0 > 0, that is,
µ(t) = (t + (1/µ0))−1. Put

�
+ = {x ∈ � ; x > −1/µ0} and on the product manifold�

+ ×M consider the Riemannian metric

g = dx0 ⊗ dx0 + µ(x0)−2π∗g,

where x0 is the natural coordinate on
�

+ and π :
�

+ × M → M the projection
onto the second factor. The manifold (

�
+ ×M, g) is called a Riemannian cone over

(M, g). Let T = ∂/∂x0 denote the unit vector field tangent to
�

+ in
�
+ ×M . The

curvature tensor of M =
�

+ ×M is described by (see [1])

(2.3) R(X, Y )Z = g(B0(Y ), Z)B0(X)− g(B0(X), Z)B0(Y ) + (π∗R)(X, Y )Z

for all tangent vectors X, Y, Z to M , where B0(X) := ∇XT = µ(X − g(X, T )T ).
Any semi-symmetric real cone (M =

�
+ × M, g) is locally isometric to some

maximal cone Mc(M̃, µ0), where (M̃, g̃) is a real space form of constant curvature c

[1]. We include the case when dim M = 2. In [1], this case was excluded, since a three-
dimensional real cone is a special case of three-dimensional Riemannian manifold
foliated by Euclidean leaves of codimension two.

At any point p of a semi-symmetric real cone M , fix an orthonormal basis of
tangent vectors {e0, e1, . . . , er} with e0 = Tp and e1, . . . , er tangent to the real space

form (M̃r, g̃) (r = n − 1). Then, using (2.3) to compute the components of the
curvature tensor, we get

(2.4)

{
Rijkh = 0 if 0 ∈ {i, j, k, h},
Rijkh = µ2(c− 1)(δikδjh − δjkδih) otherwise.

Computing the Ricci components and the scalar curvature of M starting from (2.4),
it is easy to check that (2.1) is satisfied and, if dim M > 4, this implies that M is
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conformally flat. If dim M = 3, one can check that (2.2) holds and so, M is again

conformally flat. Therefore, a semi-symmetric real coneM is a conformally flat (semi-
symmetric) Riemannian manifold, with scalar curvature τ = r(r− 1)(c− 1)µ2. Note
that τ cannot be constant, as µ depends on t and so, M is never locally symmetric.

Taking into account the definition of semi-symmetric real cones, the main result
of [5] can be rewritten in the following way:

Theorem 2.1 [5]. A three-dimensional conformally flat pseudo-symmetric space
of constant type is either locally symmetric or it is locally isometric to a semi-

symmetric real cone.

3. Conformally flat pseudo-symmetric spaces

We first recall the definition of the nullity index at a point of a Riemannian

manifold.

Definition 3.1. The nullity vector space of the curvature tensor at a point p of

a Riemannian manifold (M, g) is given by

E0p = {X ∈ TpM ; R(X, Y )Z = 0 for all Y, Z ∈ TpM}.

The index of nullity at p is the number ν(p) = dim E0p. The index of conullity at p

is the number u(p) = dim M − v(p).

The nullity and conullity indices are exactly the tools used by Szabó [9] in order

to distinguish various locally irreducible semi-symmetric spaces, which appear in the
local structure of any semi-symmetric space. When we consider a conformally flat

Riemannian manifold, the nullity index can only attain some special values, as the
author proved in [2]:

Theorem 3.2 [2]. Let (M, g) be a Riemannian manifold satisfying (2.1), of di-
mension n > 3 (that is, dim M = 3 or M is conformally flat). Then, at each point p

of M , the index of nullity is either ν(p) = 0, 1 or n.

Theorem 3.2 restricts the research of conformally flat pseudo-symmetric spaces of

constant type to the ones having index of nullity equal to 0, 1 or n. We are now
ready to give
�������	�
�	�
����
�������������
�����
��

. Let (M, g) be a conformally flat pseudo-
symmetric space of constant type, with constant c̃. Taking into account Theorem 2.1
by Hashimoto and Sekizawa, we can assume that the dimension of M is n > 4. Our
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purpose is to show that necessarily c̃ = 0. Thus, (M, g) must be conformally flat and
semi-symmetric and the conclusion follows from our Theorem 1.2.
Since (M, g) is conformally flat, there exists, at any point p ∈ M , an orthonormal

basis {ei} of the tangent space TpM , such that the curvature components Rijkh

vanish whenever at least three indices are distinct (taking into account (2.1), it
suffices to consider an orthonormal basis of eigenvectors of the Ricci operator).

Rewriting (1.2) in a more extended and explicit way, we have that (1.2) is equiv-
alent to

R(X, Y )R(U, V )W −R(R(X, Y )U, V )W −R(U, R(X, Y )V )W(3.1)

−R(U, V )R(X, Y )W

= c̃{g(Y, R(U, V )W )X − g(X, R(U, V )W )Y

−R(g(Y, U)X − g(X, U)Y, V )W −R(U, g(Y, V )X − g(X, V )Y )W

−R(U, V )(g(Y, W )X − g(X, W )Y }

for all vector fields X , Y , U , V , W on M . We now apply (3.1) taking X = V = ei,
Y = W = ej and U = ek for all i, j, k = 1, . . . , n such that i 6= j 6= k 6= i. After some

standard calculations, we get

(3.2) (Rijij + c̃)(Rjkjk −Rikik) = 0 whenever i, j and k are all distinct.

Next, let W be a dense open subset of M such that the multiplicities of the Ricci

eigenvalues remain constant on a connected neighborhood V of any point p ∈ W .
According to Theorem 3.2, at each point of M the nullity index is either 0, 1 or
n. If p ∈ W and V is a connected neighborhood of p, where the Ricci eigenvalues
have constant multiplicities, then the nullity index will be ν(q) = 0, 1 or n for all

q ∈ V . So, we have to deal with three different cases, according to the three different
possible values of ν on V . If, in all these cases, we can conclude that c̃ = 0 on V ,

then c̃ = 0 on M , since it is a constant, and this will complete the proof.
a) If ν = n on V , then V is flat. In particular, V is semi-symmetric and so, c̃ = 0.
b) If ν = 1 on V , let q be a point of V and e1 a unit vector of the nullity space E0q .

By the definition of the nullity space it follows at once that %(e1, ·) = 0. Therefore,
we can consider an orthonormal basis {ei} of TqM of Ricci eigenvectors, including
e1. Taking i = 1 in (3.2), since R1j1j = 0 for all j, we then get

(3.3) c̃Rjkjk = 0 for all j 6= k > 1.

Since ν(q) = 1, ej and ek can never belong to the nullity space when j, k > 1. So,
Rjkjk cannot identically vanish for all j and k and (3.3) implies that c̃ = 0.
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c) If ν = 0 on V , we first note that if Rijij 6= −c̃ holds for all i 6= j, then by (3.2)

it follows that Rjkjk = Rikik whenever i, j and k are all distinct. So, V would have
constant sectional curvature. In particular, V is semi-symmetric, that is, c̃ = 0. In
the sequel, we shall treat the case when there exist some indices i 6= j such that

Rijij = −c̃.
Without loss of generality we can assume R1212 = −c̃. Then, applying (3.2) with

j = 1 and k = 2, we get

(R1i1i + c̃)(R2i2i + c̃) = 0 for all i > 2.

In other words, either R1i1i = −c̃ or R2i2i = −c̃, for all i > 2.
Next, we start from (3.2) and take the sum over k 6= i, j. Recalling that the Ricci

eigenvalues %i = %(ei, ei) are given by %i = − ∑
k 6=i

Rikik , one can easily get

(3.4) (Rijij + c̃)(%i − %j) = 0 for all i 6= j.

In particular, it follows from (3.4) that %i = %j if and only if Rijij 6= −c̃.
We will also make use of the following classical characterization of conformally flat

manifolds, proved by R. S.Kulkarni:

Theorem 3.3 [7]. A Riemannian manifold (M, g) of dimension n > 4 is confor-
mally flat if and only if for any point p ∈ M and for any four orthonormal vectors

e1, e2, e3 and e4 tangent to M at p, we have

(3.5) R1212 + R3434 = R1313 + R2424 = R1414 + R2323.

Next, fix an index k > 2. As we have already remarked, either R1k1k = −c̃ or

R2k2k = −c̃. Assume for example R1k1k = −c̃. Then, by (3.5), taking into account
that R1212 = R1k1k = −c̃, we get at once

(3.6) Rkjkj = R2j2j for all j 6= 1, 2, k.

We now sum over j 6= 1, 2, k in (3.6). Since

∑

j 6=1,2,k

Rkjkj = %i −Rk1k1 −Rk2k2 and
∑

j 6=1,2,k

R2j2j = %2 −R1212 −Rk2k2,

recalling that R1212 = R1k1k = −c̃, we get at once %k = %2.

In the same way, assuming R2k2k = −c̃, we can conclude that %k = %1. Therefore,
for all k > 2, either %k = %1 or %k = %2. Note that %1 6= %2, otherwise, by (2.1), V
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should have constant sectional curvature and this can not occur, as we have already

noted. Thus, on V we have two distinct Ricci eigenvalues %1 6= %2. By reordering
the Ricci eigenvectors of the orthonormal basis {ei} we can assume, without loss of
generality, that the Ricci eigenvalues in V are

(3.7) %1 = . . . = %r = a 6= b = %r+1 = . . . = %n

for some integer r greater than 1 and lesser than n. If we prove that both a and b

are constant on V , then V will be conformally flat and curvature homogeneous (by
(2.1)). So, V will be locally symmetric [3]. In particular, c̃ = 0 and this completes
the proof.
Note that it follows from (3.7) that the scalar curvature τ can be expressed in V

in the following way:

(3.8) τ = ra + (n− r)b.

We now get a different expression for the scalar curvature. Using (3.7) in (2.1), one

can easily obtain

(3.9) Rijij = − a + b

n− 2
+

τ

(n− 1)(n− 2)
if i 6 r and j > r or conversely.

If i 6 r and j > r, then %i 6= %j . So, by (3.4) it follows that Rijij = −c̃ and (3.9)

implies

(3.10) τ = (n− 1)(a + b)− (n− 1)(n− 2)c̃.

In order to conclude that a and b are constant on V , we shall prove that ei(a) =
ei(b) = 0 for all i = 1, . . . , n. We differentiate both (3.8) and (3.10) with respect to
ei for any i = 1, . . . , r. We get respectively

(3.11) ei(τ) = rei(a) + (n− r)ei(b)

and

(3.12) ei(τ) = (n− 1)(ei(a) + ei(b)).

Finally, since (M, g) is conformally flat, (2.2) holds. We apply (2.2) taking k = j

with i 6= j 6 r. Taking into account that {ei} is an orthonormal basis of eigenvectors
of the Ricci operator, after some standard calculations we obtain

∇i%jj = ei(%jj) = ei(a) and ∇j%ij = 0
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and so, by (2.2),

ei(τ) = 2(n− 1)ei(a) for all i 6 r.

Comparing the expressions of ei(τ) given by (3.11), (3.12) and (3.13), it is easy to
show that ei(a) = ei(b) = 0 for all i 6 r. In the same way, taking k = j with
i 6= j > r in (2.2), we get

ei(τ) = 2(n− 1)ei(b) for all i > r

and, comparing (3.11), (3.12) and (3.14) we can conclude that ei(a) = ei(b) = 0 also
holds for all i > r. Thus, a and b are constant on V and this completes the proof. �
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