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Abstract. A class of functional equations with nonlinear iterates is discussed on the
unit circle T1. By lifting maps on T1 and maps on the torus Tn to Euclidean spaces and
extending their restrictions to a compact interval or cube, we prove existence, uniqueness
and stability for their continuous solutions.
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1. Introduction

Let X be a topological space and let us consider a map f : X → X . The j-th

iterate f j of f is defined by fn(x) = f(fn−1(x)) and f0(x) = id, the identity map.

Founded on the problem of iterative roots, the problem of invariant curves and some

problems from dynamical systems (e.g. in [2], [8]), the iterative equation

(∗) Φ(f(x), f2(x), . . . , fn(x)) = F (x), x ∈ X,

where F and Φ are given functions and f is unknown, was investigated actively ([2],

[21]). When Φ is linear, i.e., Φ(y1, . . . , yn) =
n∑

j=1

λjyj , this equation assumes the

form

(∗∗)
n∑

j=1

λjf
j(x) = F (x)
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and was discussed on X = R. For linear F some results can be found e.g. in [6], [12],

[13], [17] and [19]. For nonlinear F results are given mainly in a compact interval

(see e.g. in [22], [23], [24]). Generalizations to RN are given in [9] and [25]. The case

of nonlinear Φ is considered in [11] and [15].

It is also interesting to study iteration on the unit circle X = T1 (or denoted

by S1), i.e., the set {z ∈ C : z = e2pit, t ∈ R}. Many results have been given for
iterative roots and iteration groups on T1, seen for example in [3], [7], [10], [16], [20],

[26] and some references therein. In those works maps on T1 can be lifted to the

whole real line R so that considered problems are reduced to problems of iteration onR even in some complicated cases, for example, where rotation numbers of considered
maps are irrational. In contrast, because of the more complicated form of (∗), few

published results are found for the more general form (∗) of iterative equations on T1.

In this paper we discuss solutions of the equation (∗) on X = T1, i.e., the equation

(1.1) Φ(f(z), f2(z), . . . , fn(z)) = F (z), z ∈ T1,

in the class of homeomorphisms

H0
1(T1,T1)={f ∈ C0(T1,T1) : f(T1) = T1 homeomorphically and f(1) = 1},

where C0(T1,T1) consists of all continuous maps from T1 into itself and the notation

1 indicates the point (1, 0) in the complex plane C so as to distinguish it from 1 ∈ R.
We will lift F, f from the circle T1 to R and Φ from the n-dimensional torus Tn toRn . Moreover, we apply techniques of restricting and extending to those lifts so that

the reduced problem can be discussed on the compact interval I := [0, 1]. We will

prove existence, uniqueness and stability for solutions of equation (1.1) in the class

H0
1(T1,T1).

2. Maps on T1 and induced maps

Let h : t ∈ R 7→ e2pit ∈ T1 and h∗ := h|[0,1). The map h∗ is a continuous bijection.

If v, w, z ∈ T1, then there exist unique t1, t2 ∈ [0, 1) such that wh∗(t1) = z and

wh∗(t2) = v. As in [1], [3], [4] and [20], define the cyclic order, i.e.,

v ≺ w ≺ z if and only if 0 < t1 < t2

and

v � w � z if and only if t1 6 t2 or t2 = 0.

Obviously, the relations v ≺ w ≺ z, w ≺ z ≺ v and z ≺ v ≺ w are equivalent. More

properties of ≺ and � can be found in [3]. Consider a nonempty set A ⊂ T1.
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A map F : A → T1 is said to be increasing (strictly increasing) if F (v) � F (w) �

F (z) (F (v) ≺ F (w) ≺ F (z), respectively) for every v, w, z ∈ A with v ≺ w ≺ z.

Obviously, if cardA 6 2 then every map is increasing.

If v, z ∈ T1 with v 6= z, there exist tv, tz ∈ R such that tv < tz < tv + 1 and

v = h(tv), z = h(tz). Define the oriented arc

−−−→
(v, z) := {h(t) : t ∈ (tv, tz)}.

This definition does not depend on the choice of tv and tz. Obviously, v ≺ w ≺ z

if and only if w ∈
−−−→
(v, z). The map F is strictly increasing if w ∈

−−−→
(v, z) yields

F (w) ∈
−−−−−−−−→
(F (v), F (z)).

As in [5], [14] and [18], the continuous map F̃ : R → R is referred to as a lift of
F ∈ C0(T1,T1) if

h ◦ F̃ = F ◦ h.

As shown in [5], [14] and [18], we know the following properties:

Lemma 2.1. (i) Every F ∈ C0(T1,T1) has a lift F̃ . (ii) There exists a constant

k ∈ Z such that every lift F̃ of F satisfies F̃ (t + 1) − F̃ (t) = k for all t ∈ R. (iii) If
F̃ is a lift of F then for each j ∈ Z the map F̃ + j is a lift of F and every lift of F

can be expressed in this form.

By Lemma 2.1, the integer k is determined uniquely and independently of the

choice of lifts. It is called the degree of F and denoted by deg F . One can show

that |deg F | = 1 if F is a homeomorphism, and a continuous map F : T1 → T1 is

strictly increasing if and only if deg F = 1 and its lift F̃ is strictly increasing in R.
A homeomorphism F : T1 → T1 is said to be orientation preserving if it is strictly

increasing.

A map F ∈ C0(T1,T1) is said to be Lipschitzian if its lift F̃ satisfies

(2.1) |F̃ (t1) − F̃ (t2)| 6 K|t1 − t2|, ∀t1, t2 ∈ R,

for a constant K > 0. By Lemma 2.1, the constant K is independent of the choice

of lifts and is called a Lipschitz constant of F .

For F ∈ H0
1(T1,T1), define F̃∗ = h−1

∗
◦F ◦h∗, which is a self-map on [0, 1). Clearly,

F preserves orientation if and only if F̃∗ is strictly increasing. In order to convert

our problem from the circle T1 to the compact interval I := [0, 1], we extend F̃∗ to

(2.2) G(t) :=

{
F̃∗(t), t ∈ [0, 1),

1, t = 1.

For convenience we call G the induced map of F , which is a self-map on I.
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Lemma 2.2. The induced map G of an orientation-preserving F ∈ H0
1(T1,T1) is

continuous and strictly increasing on I and fixes 0 and 1. It can be extended to a

lift of F , and there is a unique lift F̃ which fixes 0 and 1 and maps I into itself.

P r o o f. Obviously, G is continuous on the interval [0, 1) and G(0) = h−1
∗

◦ F ◦

h∗(0) = h−1
∗

◦F (1) = h−1
∗

(1) = 0. On the other hand, G is well defined on the closed

interval [0, 1] and G(1) = 1.

Concerning continuity at 1, we note that

lim
t→1−

G(t) = lim
t→1−

h−1
∗

◦ F ◦ h∗(t) = lim
ε→0+

h−1
∗

◦ F ◦ h∗(1 − ε)

= lim
ε→0+

h−1
∗

◦ F (e2pi(1−ε)).

By continuity of F at 1 ∈ T1 we have lim
ε→0+

F (e2pi(1−ε)) = F (1) = 1.More concretely,

for every 0 < ε < 1 there exists 0 < δ < 1 such that F (e2pi(1−ε)) = e2pi(1−δ) since

F (e2pi(1−ε)) ∈ T1. Let F̃ be a lift of F such that F̃ (1) = 1. We have F (e2pi(1−ε)) =

e2piF̃ (1−ε), so F̃ (1 − ε) = 1 − δ. Hence ε → 0+ implies that δ → 0+. since F̃ is

increasing. Then lim
ε→0+

F (e2pi(1−ε)) = lim
δ→0+

e2pi(1−δ). Thus

lim
t→1−

G(t) = lim
ε→0+

h−1
∗

◦ F (e2pi(1−ε)) = lim
δ→0+

h−1
∗

(e2pi(1−δ))

= lim
δ→0+

1

2πi
ln(e2pi(1−δ)) = 1,

implying the continuity of G at 1.

Note that F̃∗ is strictly increasing on [0, 1). For t1 ∈ (0, 1) and t2 = 1 we have

0 < G(t1) < 1 = G(t2). Hence G is strictly increasing on [0, 1].

Given t ∈ R, let k be the integer such that t ∈ [k, k+1). Define F̃ (t) := G(t−k)+k.

One can check that h ◦ F̃ = F ◦ h, i.e., F̃ is a lift of F . Assume that F has another

lift F̂ ∈ C0(R,R), mapping [0, 1] into itself, such that F̂ (0) = 0 and F̂ (1) = 1. By

Lemma 2.1, F̂ (t) = F̃ (t) + j for some integer j. Clearly, j = F̂ (0) − F̃ (0) = 0. So

F̂ (t) ≡ F̃ (t) for all t ∈ R. The proof is completed. �

What follows is a converse to Lemma 2.2.

Lemma 2.3. Suppose that G ∈ C0(I, I) is strictly increasing and satisfies G(0) =

0 and G(1) = 1. Then the map F := h∗ ◦ G ◦ h−1
∗
is in the class H0

1(T1,T1) and

preserves orientation. Moreover, G can be extended to a lift of F .

P r o o f. Clearly, F (1) = h∗ ◦ G ◦ h−1
∗

(1) = h∗ ◦ G(0) = h∗(0) = 1. One can

verify that F preserves orientation. Then we only need to show the continuity of F

at 1 ∈ T1. Its continuity at 1 in “clockwise” direction, i.e., continuity of the function
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F |−−→
[1,i]
at 1, is obvious. In “counter-clockwise” direction we shall verify continuity of

F |−−−→
[−i,1]

at 1. Actually, we have

lim
t→1−

F (e2pit) = lim
t→1−

h∗ ◦ G ◦ h−1
∗

(e2pit) = lim
t→1−

h∗ ◦ G(t)

= lim
t→1−

h ◦ G(t) = h ◦ G(1) = 1.

This implies continuity of F at 1 in counter-clockwise direction. Hence F is contin-

uous on T1.

Given t ∈ R let k be the integer such that t ∈ [k, k + 1). Define

(2.3) F̃ (t) := G(t − k) + k.

It is easy to verify continuity of F on R. Note that
(2.4) F ◦ h(t) = h ◦ G(t), ∀t ∈ [0, 1].

In fact, F ◦ h(t) = F ◦ h∗(t) = h∗ ◦ G(x) = h ◦ G(t) for t ∈ [0, 1) and, moreover,

F ◦ h(1) = F (1) = 1 and h ◦ G(1) = h(1) = 1. It follows that

h ◦ F̃ (t) = h(G(t − k) + k) = h(G(t − k)) = F ◦ h(t − k) = F ◦ h(t)

for all t ∈ R. Therefore, F̃ is a lift of F . �

3. Maps on Tn and induced maps

We also need a version similar to that of the last section for the multi-variate

function Φ, but the generalization is much more complicated. For simplicity, letTn :=

n︷ ︸︸ ︷T1 × . . . × T1, 1
n := (

n︷ ︸︸ ︷
1, . . . ,1).

For f ∈ H0
1(T1,T1), let us introduce the notation

(3.5) Hf (z) := (f(z), . . . , fn(z)).

Make the general assumption for the domain and range of Φ that DomΦ ⊂ Tn and

Ran Φ ⊂ T1. Then equation (1.1) can be written in the form

(3.6) Φ ◦ Hf = F.

Before defining the lift of Φ and its induced map, we need to know more about

DomΦ and Ran Φ.
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Remark 1. Hf maps T1 into (T1\{1})n∪{1n}. In fact, if there exists an x0 ∈ T1

such that fk(x0) = 1 for a certain k ∈ {1, . . . , n}, then f j+k(x0) = f j(1) = 1 for all

j ∈ Z. In particular, for j = 1 − k, . . . , n − k we get f(x0) = . . . = fn(x0) = 1. So

Hf (x0) = 1
n.

Remark 2. If equation (3.6) has a solution in H0
1(T1,T1) and F ∈ H0

1(T1,T1),

then Ran Φ = T1 and Φ(1n) = 1. The former assertion is observed from the

fact that Φ(Hf (T1)) = F (T1) = T1. The latter comes from (3.6) and the fact that

Hf (1) = 1
n.

In contrast to Remark 2, we also want to know DomΦ. For this purpose, we

first discuss degree of Φ and give a result of nonexistence of solutions for (3.6) in

Corollary 3.1. Then we answer to DomΦ after Corollary 3.1. As an immediate

consequence of Lemma 2.1, we have its generalization in a multi-variate version:

Lemma 3.1. If Φ: Tn → T1 is continuous and Φ(1n) = 1, then there exists a

unique continuous function Φ̃ : Rn → R such that
(3.7) Φ(h(t1), . . . , h(tn)) = e2piΦ̃(t1,...,tn), Φ̃(0, . . . , 0) = 0.

Moreover, for each k ∈ {1, . . . , n}, there exists an mk ∈ Z such that
(3.8) Φ̃(t1, . . . , tk + 1, . . . , tn) = Φ̃(t1, . . . , tk, . . . , tn) + mk, ∀t1, . . . , tn ∈ R.

P r o o f. Put

(3.9) Υ(t1, . . . , tn) := Φ(h(t1), . . . , h(tn)).

Then Υ: Rn → T1 is continuous and periodic and satisfies

(3.10) Υ(t1, . . . , tk + 1, . . . , tn) = Υ(t1, . . . , tk, . . . , tn), k = 1, . . . , n,

and Υ(0, . . . , 0) = 1. By the continuity of Υ, for every x ∈ In there exists an open

neighborhood Sx ⊂ Rn of x such that Υ(Sx) 6= T1. Actually, the image Υ(Sx) is

an open arc in T1. Hence, for every x ∈ In we can define on Υ(Sx) the branches of

complex logarithm. Let

(3.11) ςx(t1, . . . , tn) :=
1

2πi
ln Υ(t1, . . . , tn), (t1, . . . , tn) ∈ Sx,

where ln denotes one of the branches of logarithm. The function ςx has the following

property: If Sx ∩ Sy 6= ∅ then there exists a constant k ∈ Z such that
(3.12) ςx(t1, . . . , tn) = ςy(t1, . . . , tn) + k ∀(t1, . . . , tn) ∈ Sx ∩ Sy.
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In fact, for (t1, . . . , tn) ∈ Sx ∩ Sy we have

e2piςx(t1,...,tn) = e2piςy(t1,...,tn) = Ψ(t1, . . . , tn),

that is, e2pi[ςx(t1,...,tn)−ςy(t1,...,tn)] = 1. So

(3.13) k(t1, . . . , tn) := ςx(t1, . . . , tn) − ςy(t1, . . . , tn) ∈ Z.

On the other hand, being a difference of two continuous functions, k(t1, . . . , tn) is

also continuous, implying together with (3.13) that k(t1, . . . , tn) is a constant k ∈ Z,
i.e., (3.12) is proved. The result (3.12) also implies that ςx is determined uniquely

up to an integer.

Obviously, In ⊂
⋃

x∈In

Sx. By the compactness of I
n,

(3.14) In ⊂

p⋃

j=0

Sxj

for some positive integer p. Without loss of generality, we can put x0 = (0, . . . , 0)

and arrange the sequence (xj) in (3.14) such that

Sxj
∩ Sxj+1

6= ∅, j = 0, . . . , p − 1.

Now, for each xj , we exactly define ςxj
by choosing an appropriate branch of loga-

rithm in (3.11) inductively, so that

(3.15) ςxj
(t1, . . . , tn) = ςxj+1

(t1, . . . , tn) ∀(t1, . . . , tn) ∈ Sxj
∩ Sxj+1

for j = 0, . . . , p − 1. First, for x0 = (0, . . . , 0) we choose such a branch that

ςx0
(0, . . . , 0) = 0 because Υ(0, . . . , 0) = 1. Assume that functions ςxj

(j = 0, . . . , ι)

are defined exactly such that (3.15) holds for j = 0, . . . , ι − 1. Let ς̃xι+1
be defined

as in (3.11) for an arbitrarily fixed branch of logarithm. By the property of (3.12),

there exists an integer k ∈ Z such that
ςxι

(t1, . . . , tn) = ς̃xι+1
(t1, . . . , tn) + k.

Then we define ςxι+1
(t1, . . . , tn) := ς̃xι+1

(t1, . . . , tn) + k and, therefore, the extended

sequence of functions ςxj
(j = 0, . . . , ι+1) also satisfies (3.15). Thus, the full sequence

(ςxj
: j = 0, . . . , p) that satisfies (3.15) is well defined inductively. By (3.14) and

(3.15), it is reasonable to define

(3.16) ϕ(t1, . . . , tn) := ςxj
(t1, . . . , tn) for (t1, . . . , tn) ∈ Sxj

, j = 0, . . . , p.

815



Obviously, ϕ is continuous on In and e2piϕ(t1,...,tn) = Υ(t1, . . . , tn). It follows from

(3.9) that

e2piϕ(t1,...,tn) = Φ(h(t1), . . . , h(tn)).

Let vl := (0, . . . , 1, . . . , 0), the vector in Rn whose components except for the l-th

one being 1 are all equal to 0. Let ml := ϕ(vl), l = 1, . . . , n. Since

Φ(h(0), . . . , h(1), . . . , h(0)) = Φ(1n) = 1

as assumed, where h(1) appears at the l-th variable, we have e2piϕ(vl) = 1. it implies

that ϕ(vl) ∈ Z, i.e., ml ∈ Z.
We further extend function ϕ on the whole Rn . Consider (t1, . . . , tn) ∈ Rn .

Clearly,

(t1, . . . , tn) = (s1, . . . , sn) + (k1, . . . , kn)

for some sj ∈ [0, 1) and kj ∈ Z, j = 1, . . . , n. Let

Φ̃(t1, . . . , tn) = ϕ(s1, . . . , sn) + k1m1 + . . . + knmn,

which is obviously a continuous map on Rn . One can check (3.8) by (3.10). Moreover,

we can also verify that

e2piΦ̃(t1,...,tn) = e2piϕ(s1,...,sn) = Φ(h(s1), . . . , h(sn)) = Φ(h(t1), . . . , h(tn)),

i.e., (3.7) is proved.

Uniqueness of Φ̃ is obtained from the restriction Φ̃(0, . . . , 0) = 0. �

By this lemma, it is reasonable to call Φ̃ the lift of Φ and define the degree of Φ

by deg Φ := (m1, . . . , mn).

Lemma 3.2. Let F̃ be the lift of F such that F̃ (0) = 0 and let Φ̃ be the lift of Φ

such that Φ̃(0, . . . , 0) = 0. Let f ∈ H0
1(T1,T1) be a solution of (1.1) and let f̃ be its

lift such that f̃(0) = 0. Then equation (1.1) is equivalent to

(3.17) Φ̃(f̃(t), . . . , f̃n(t)) = F̃ (t), t ∈ R.

P r o o f. In fact, f j(h(t)) = h(f̃ j(t)) for t ∈ R. For z = e2pit ∈ T1, equation

(1.1) is equivalent to

Φ(e2pif̃(t), . . . , e2pif̃n(t)) = e2piF̃ (t).
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By Lemma 3.1, e2piΦ̃(f̃(t),...,f̃n(t)) = e2piF̃ (t), that is, for each t ∈ R we have
(3.18) Φ̃(f̃(t), . . . , f̃n(t)) = F̃ (t) + k(t),

where k(t) ∈ Z. Since F̃ (0) = 0, f̃(0) = 0 and Φ̃(0, . . . , 0) = 0, from (3.18) we get

k(0) = 0. By the continuity of F̃ , f̃ and Φ̃, the function k(t) is continuous in t ∈ R.
This implies that k(t) ≡ 0 and the result of this lemma is proved. �

Theorem 3.1. Suppose that Φ: Tn → T1 is continuous, Φ(1n) = 1, F : T1 →T1 is continuous, F (1) = 1 and equation (3.6) has a solution in H0
1(T1,T1). Let

deg Φ = (m1, . . . , mn). Then deg F = m1 + . . . + mn.

P r o o f. Let F̃ be the lift of F such that F̃ (0) = 0 and Φ̃ the lift of Φ such

that Φ̃(0, . . . , 0) = 0. Let f ∈ H0
1(T1,T1) be a solution of (3.6) and let f̃ be its lift

such that f̃(0) = 0. By Lemma 3.2, equation (3.6) is equivalent to (3.17). Note that

f̃ : R → R is an increasing homeomorphism such that
f̃(t + 1) = f̃(t) + 1, t ∈ R.

As in (3.5), put H̃(t) := (f̃(t), . . . , f̃n(t)). Then equation (3.17) can be written as

(3.19) Φ̃ ◦ H̃ = F̃ .

Since deg Φ = (m1, . . . , mn), we have, by (3.19),

Φ̃(1, . . . , 1) = Φ̃(0, . . . , 0) + m1 + . . . + mn = m1 + . . . + mn.

Moreover, by (3.19),

F̃ (t + 1) = Φ̃(H̃(t + 1)) = Φ̃(H̃(t) + (1, . . . , 1))(3.20)

= Φ̃(H̃(t)) + m1 + . . . + mn

= F̃ (t) + m1 + . . . + mn.

This means that deg F = m1 + . . . + mn. �

817



Corollary 3.1. Suppose that Φ: Tn → T1 (n > 2) such that Φ(1n) = 1 and Φ

is increasing with respect to each variable and nonconstant in at least two variables.

If F ∈ H0
1(T1,T1), then equation (3.6) has no solution in H0

1(T1,T1).

P r o o f. Since F is a homeomorphism, we have |deg F | = 1. Let deg Φ =

(m1, . . . , mn). If Φ is increasing with respect to each variable then its lift is also

increasing with respect to each variable. This follows by Theorem 1 in [4] and

formula (3.7) where all t1, . . . , tn except a variable tk are fixed. Hence, by (3.8),

m1 > 0, . . . , mn > 0 and mk = 0 if and only if Φ is constant with respect to tk.

Thus, by (3.20), deg(Φ ◦Hf ) = m1 + . . . + mn > 2 since Φ is nonconstant in at least

two variables. By (3.6) we have deg(Φ ◦ Hf ) = deg F . This implies that deg F > 2,

a contradiction. �

In view of Remark 1 and Corollary 3.1 it is natural to assume that DomΦ =

(T1 \ {1})n ∪ {1n} and it is not possible to extend it continuously on Tn. Therefore,

we make the following general assumptions:

(H1) Φ: (T1\{1})n∪{1n} → T1 is continuous, Φ(1n) = 1, Φ((T1\{1})n) = T1\{1},

and

(A) there exists a constant δ > 0 such that if 0 < tk < δ, k = 1, . . . , n, then

Φ(h∗(t1), . . . , h∗(tn)) ∈
−−→
(1, i) and for 1 − δ < tk < 1, k = 1, . . . , n, we have

Φ(h∗(t1), . . . , h∗(tn)) ∈
−−−−→
(−i, 1).

Under assumptions (H1) and (A), we define

(3.21) Ψ(t1, . . . , tn) := h−1
∗

(Φ(h∗(t1), . . . , h∗(tn))), tj ∈ (0, 1), j = 1, . . . , n,

and

(3.22) Ψ(0, . . . , 0) = 0, Ψ(1, . . . , 1) = 1.

The function Ψ defined by (3.21) and (3.22) on (0, 1)n ∪ {(0, . . . , 0), (1, . . . , 1)} is

called the induced map of Φ. Let us note that

lim
tj→0, j=1,...,n

Ψ(t1, . . . , tn) = lim
tj→0, j=1,...,n

h−1
∗

(Φ(h∗(t1), . . . , h∗(tn)) = 0,

lim
tj→1, j=1,...,n

Ψ(t1, . . . , tn) = lim
tj→1, j=1,...,n

h−1
∗

(Φ(h∗(t1), . . . , h∗(tn)) = 1.

Thus we get

818



Lemma 3.3. Under assumptions (H1) and (A), the induced map of Φ is contin-

uous.

For further considerations it is sufficient that

DomΨ = (0, 1)n ∪ {(0, . . . , 0), (1, . . . , 1)}.

In particular, if Ψ is increasing with respect to each variable, then we can extend Ψ

continuously on [0, 1]n.

Remark 3. It is obvious that if Ψ: [0, 1]n → [0, 1] is continuous, strictly in-

creasing with respect to each variable, Ψ(0, . . . , 0) = 0 and Ψ(1, . . . , 1) = 1 then the

function Φ defined by

Φ(z1, . . . , zn) := h(Ψ(h−1
∗

(z1), . . . , h
−1
∗

(zn))), zi ∈ T1 \ {1}, i = 1, . . . , n,

Φ(1, . . . ,1) := 1

satisfies assumptions (H1), (A) and Φ is increasing with respect to each variable.

Remark 4. It is also obvious that if Φ satisfies (H1) and is strictly increasing

with respect to each variable then Φ satisfies (A).

(0, 0) 7→ 0 t1

(1, 1) 7→ 1

t2
λ1

λ2

Fig. 1 Plane of Ψ(t1, t2) = λ1t1 + λ2t2
with λj > 0, j = 1, 2, λ1 + λ2 = 1

(0, 0) 7→ 0 t1

(1, 1) 7→ 1

t2

Fig. 2 Surface of nonlinear Ψ(t1, t2) for
understanding the limits at 1 ∈ T1

One can understand the induced map Ψ at 1 in limit with the example of

Φ(z1, z2) = zλ1

1 zλ2

2 for the special form

(3.23) (f(z))λ1(f2(z))λ2 . . . (fn(z))λn = F (z), z ∈ T1

of equation (1.1), where n = 2, λ1 > 0, λ2 > 0 and λ1 + λ2 = 1. A comparison of a

linear Ψ and a nonlinear Ψ is shown by Figures 1 and 2.
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Besides hypothesis (H1), we need the Lipschitzian property of Φ. Similar to (2.1),

such a property on the circle T1 can be defined directly for the induced map Ψ. Let

us introduce the following hypotheses:

(H2) There are nonnegative real constants αj , βj (j = 2, . . . , n) with β1 > α1 > 0,

βj > αj > 0 such that

n∑

j=1

αj(tj − sj) 6 Ψ(t1, . . . , tn) − Ψ(s1, . . . , sn) 6

n∑

j=1

βj(tj − sj)

for all tj > sj in I (j = 1, . . . , n).

(H3) For every k ∈ {1, . . . , n} there exist αk, βk > 0 with β1 > α1 > 0 such that

(3.24) αk(tk − sk) 6 Ψ(t1, . . . , tk, . . . , tn) − Ψ(t1, . . . , sk, . . . , tn) 6 βk(tk − sk)

for all sj , tj ∈ (0, 1), j = 1, . . . , n and tk > sk.

Remark 5. Hypotheses (H2) and (H3) are equivalent. In fact, (H2) implies (H3)

obviously since putting ti = si, i 6= k, in (H2) we get (H3). Conversely, having (H3),

observe that

Ψ(t1, t2, . . . , tn) − Ψ(s1, s2, . . . , sn)

= (Ψ(t1, t2, . . . , tn) − Ψ(s1, t2, . . . , tn))

+ (Ψ(s1, t2, t3, . . . , tn) − Ψ(s1, s2, t3, . . . , tn))

+ (Ψ(s1, s2, t3, . . . , tn) − Ψ(s1, s2, s3, . . . , tn)) + . . .

+ (Ψ(s1, s2, . . . , sn−1, tn) − Ψ(s1, s2, . . . , , sn−1, sn).

In view of (3.24), we obtain

n∑

k=0

αk(tk − sk) 6 Ψ(t1, . . . , tn) − Ψ(s1, . . . , sn) 6

n∑

k=0

βk(tk − sk).

Remark 6. It is clear that if Ψ satisfies (H2) then Ψ is increasing with respect

to each variable and strictly increasing with respect to those variables tj that αj is

positive. Moreover, if Ψ(0, . . . , 0) = 0 and Ψ(1, . . . , 1) = 1, then

n∑

k=1

αk 6 1 6

n∑

k=1

βk.

Therefore, under (H1) and (H2) equation (1.1) includes (3.23) as a special case.
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Lemma 3.4. If Ψ: (0, 1)n → R is differentiable with respect to each variable and
for every k there exist αk, βk such that α1 > 0, 0 6 αk 6 ∂Ψ/∂tk 6 βk, then Ψ

satisfies (H2).

P r o o f. Let us note that (3.24) is equivalent to the inequalities

αktk − Ψ(t1, . . . , tk, . . . , tn) 6 αksk − Ψ(t1, . . . , sk, . . . , tn),

βktk − Ψ(t1, . . . , tk, . . . , tn) > βksk − Ψ(t1, . . . , sk, . . . , tn)

for tk > sk, ti ∈ (0, 1), i = 1, . . . , n. This means that the maps

tk 7−→ αktk − Ψ(t1, . . . , tk, . . . , tn)

are decreasing and

tk 7−→ βktk − Ψ(t1, . . . , tk, . . . , tn)

are increasing. This is equivalent to

αk 6
∂Ψ(t1, . . . , tn)

∂tk
6 βk, t1, . . . , tn ∈ (0, 1)

for k = 1, . . . , n. �

4. Existence of solutions

Theorem 4.1. Assume that F ∈ H0
1(T1,T1) preserves orientation with a Lip-

schitz constant M > 0 and that (H1) and (H2) hold. Then equation (1.1) has

a solution f ∈ H0
1(T1,T1) which preserves orientation with a Lipschitz constant

M/α1.

P r o o f. Let G and Ψ be the induced maps of F and Φ, defined as in Sections 2

and 3, respectively. Since we want to find solutions f in H0
1(T1,T1), let g be the

induced map of f . Similarly to Lemma 3.2, the problem of (1.1) is reduced to that

of the continuous and strictly increasing solutions g of the equation

(4.1) Ψ(g(t), g2(t), . . . , gn(t)) = G(t), t ∈ I.

In the sequel, we use the method given in [22] and [23], applying Schauder’s fixed

point theorem, to show the existence of a solution g. Although such a procedure

was given in [15], we still need the procedure with a simpler statement to show

that the solution g found in a compact subset of C0(I), which cannot require strict

monotonicity of g, is actually strictly increasing.
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By Lemma 2.2, G ∈ C0(I, I) is strictly increasing and G(0) = 0, G(1) = 1.

Lemma 2.2 also implies that G can be extended to a lift of F . Thus

|G(x2) − G(x1)| 6 M |x2 − x1|, ∀x1, x2 ∈ I,

because F is Lipschitzian with a Lipschitz constant M . Concerning Ψ, besides

(H2) we know that Ψ: (0, 1)n ∪ {(0, . . . , 0), (1, . . . , 1)} → [0, 1] is continuous. In

what follows, Lemma 3.2 in [25] is useful and its proof can be found in [23]. For

convenience, we state it as

Lemma 4.1. Let i = 1, 2 and suppose that gi is a self-homeomorphism of I such

that |gi(x) − gi(y)| 6 M |x − y| for all x, y ∈ I, where M > 0 is a constant. Then

(i) ‖gn
1 − gn

2 ‖ 6

(n−1∑
i=0

M i
)
‖g1 − g2‖ for all n = 1, 2 . . ., and

(ii) ‖g1 − g2‖ 6 M‖g−1
1 − g−1

2 ‖.

For 0 6 m 6 M , let

F (I; m, M) = {g ∈ C0(I) : g(0) = 0, g(1) = 1,(4.2)

m(t − s) 6 g(t) − g(s) 6 M(t − s), ∀s 6 t ∈ I}.

As in [22] and [25], this subset is compact and convex in the Banach space C0(I),

equipped with the supremum norm ‖g‖ = max{|g(t)| : t ∈ I}. Define an operator

L : F (I; 0, α−1
1 M) → C0(I) by g 7→ Lg, where

(4.3) Lg(t) := Ψ(t, g(t), . . . , gn−1(t)), t ∈ I,

where g ∈ F (I; 0, α−1
1 M). Let M0 :=

n∑
j=1

βj(α
−1
1 M)j−1. Then Lg ∈ F (I; α1, M0)

because for any t > s ∈ I,

Lg(t) − Lg(s) = Ψ(t, g(t), . . . , gn−1(t)) − Ψ(s, g(s), . . . , gn−1(s))

> α1(t − s) +

n∑

j=2

αj(g
j−1(t) − gj−1(s))

> α1(t − s),

Lg(t) − Lg(s) = Ψ(t, g(t), . . . , gn−1(t)) − Ψ(s, g(s), . . . , gn−1(s))

6 β1(t − s) +
n∑

j=2

βj(g
j−1(t) − gj−1(s))

6 β1(t − s) +

n∑

j=2

βj(α
−1
1 M)j−1(t − s)

= M0(t − s),
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where (H2) is applied. In particular, Lg is an orientation-preserving homeomorphism

on I since α1 > 0. Thus L−1
g ∈ F (I; M−1

0 , α−1
1 ).

Define T : F (I; 0, α−1
1 M) → C0(I) by

(4.4) T g(t) = L−1
g ◦ G(t), t ∈ I.

Then T maps F (I; 0, α−1
1 M) into itself because T g(0) = 0, T g(1) = 1 and

0 6 T g(t) − T g(s) = L−1
g ◦ G(t) − L−1

g ◦ G(s)(4.5)

6 α−1
1 (G(t) − G(s)) 6 α−1

1 M(t − s)

for all t, s ∈ I with t > s. Furthermore, for any g1, g2 ∈ F (I; 0, M),

‖T g1 − T g2‖ = ‖L−1
g1

◦ G − L−1
g2

◦ G‖(4.6)

= ‖L−1
g1

− L−1
g2

‖ 6 α−1
1 ‖Lg1

− Lg2
‖

6 α−1
1 max

t∈I
|Ψ(t, g1(t), . . . , g

n−1
1 (t)) − Ψ(t, g2(t), . . . , g

n−1
2 (t))|

6 α−1
1

n∑

j=2

βj‖g
j−1
1 − gj−1

2 ‖

6 α−1
1

n∑

j=2

βj

j−1∑

k=1

(α−1
1 M)k−1‖g1 − g2‖,

where Lemma 4.1 and (H2) are applied. Hence T maps F (I; 0, α−1
1 M) contin-

uously into itself. By Schauder’s fixed point theorem T has a fixed point g in

F (I; 0, α−1
1 M), that is, Lg ◦ g(t) = G(t). Therefore, g is a continuous solution of

equation (4.1). In consequence the map f defined by f(e2pit) = e2pig(t) on T1 belongs

to H0
1(T1,T1) and is a solution of equation (1.1).

The definition of F (I; 0, α−1
1 M) does not guarantee strict monotonicity of the

obtained g, but g actually is strictly increasing. In fact, both G and L−1
g are proved

to be strictly increasing. So is the function g(t) = L−1
g ◦ G(t) by (4.4). Thus, it

follows from (4.5) that

(4.7) 0 < g(t) − g(s) 6
M

α1
(t − s), ∀t > s ∈ I.

Let

(4.8) f(z) := h∗ ◦ g ◦ h−1
∗

(z), ∀z ∈ T1.

By Lemma 2.3 and (4.7), f ∈ C0(T1,T1) preserves orientation and f(1) = 1. Thus

Φ(f(z), . . . , fn(z)) = F (z) for z ∈ T1, i.e., f is a solution of equation (1.1) in the

class H0
1(T1,T1).
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Further, by Lemma 2.3, g can be extended to a lift f̃ of f . From Lemma 2.1 we

have f̃(t+1) = f̃(t)+1 for all t ∈ R. For any t, s in R with t < s there exists an integer

k and a nonnegative integer m such that t ∈ [k, k + 1) and s ∈ [k + m, k + m + 1).

Note that f̃(t) = g(t) for t ∈ I. It follows from (4.7) that

|f̃(t) − f̃(s)|(4.9)

6 |f̃(t) − f̃(k + 1)| +
m−1∑

j=1

|f̃(k + j) − f̃(k + 1 + j)| + |f̃(s) − f̃(k + m)|

6 |f̃(t − k) − f̃(1)| + (m − 1)|f̃(0) − f̃(1)| + |f̃(s − k − m) − f̃(0)|

6
M

α1
[1 − (t − k) + m − 1 + s − k − m] =

M

α1
(s − t)

since t − k, s − k − m ∈ [0, 1) and f̃(t) = f̃(t − k) + k. This implies that f̃(t)

is Lipschitzian and thus f is Lipschitzian with the Lipschitz constant M/α1. This

completes the proof. �

Remark 7. If we assume that Φ: Tn → T1 is a continuous map satisfying (H2),

F is continuous, a lift of F is Lipschitz strictly increasing and deg F = m1+m2+. . .+

mn, where deg Φ = (m1, m2, . . . , mn), then we get the same result as in Theorem 4.1.

The proof is almost the same except the assumption that Ψ(1, . . . , 1) = 1. However

we have Ψ(1, . . . , 1) = m1 + . . . + mn.

5. Uniqueness and stability

As in [14] (p. 75), let F1, F2 ∈ C0(T1,T1) and F̃1, F̃2 be their lifts respectively. For

a given small constant ε > 0, we say that F1 is ε C0-close to F2 if

(5.10) ‖F̃1 − F̃2‖ = sup
t∈R |F̃1(t) − F̃2(t)| < ε.

As usual, we say equation (1.1) is stable if for arbitrarly ε > 0 there exists σ >

0 such that, provided F ∈ C0(T1,T1) being σ C0-close to F0 ∈ C0(T1,T1), the

corresponding solutions f, f0 are ε C0-close to each other.

Theorem 5.1. Suppose that the conditions in Theorem 4.1 hold and

(5.11)

n∑

j=2

βj

j−1∑

k=1

α−k
1 Mk−1 < 1.

Then equation (1.1) has a unique solution f ∈ H0
1(T1,T1) which preserves orientation

with the Lipschitz constant M/α1. Moreover, equation (1.1) is stable.
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P r o o f. Since (1.1) satisfies the conditions of Theorem 4.1, the existence of

solutions for equation (4.1) is given in the proof of Theorem 4.1. As in [22] and

[23], condition (5.11) guarantees that Banach’s Contraction Theorem is applicable.

Hence, equation (4.1) has a unique solution g on I. This implies uniqueness of the

solution f given in Theorem 4.1.

Suppose that F1, F2 ∈ H0
1(T1,T1) both satisfy conditions in Theorem 4.1 and that

fj are the unique solutions of equation (1.1) corresponding to the given Fj and Φj ,

j = 1, 2, where Φj ’s satisfy conditions (H1) and (H2). Assume that F̃j , f̃j are lifts of

Fj and fj, respectively. Let F̃∗j and f̃∗j be restrictions of F̃j and f̃j on I, respectively.

Correspondingly we introduce the restrictions Φ̃∗j for the lifts of Φj . Under condition

(5.11), by the uniqueness as proved above, the corresponding continuations Gj and

gj of F̃∗j and f̃∗j as in (2.2) must satisfy

gj(x) = L−1
gj ,Ψj

◦ Gj(x), j = 1, 2,

where Ψj is the continuation of Φ̃∗j as in (3.21) and Lgj ,Ψj
is defined as in (4.3)

with an emphasis on the dependence on Ψj . In the sequel, let ‖ · ‖ denote the norm

‖ϕ‖ = max
t∈I

|ϕ(t)| for ϕ ∈ C0(I). Since

‖L−1
g1,Ψ1

− L−1
g2,Ψ2

‖ 6 α−1
1 ‖Lg1,Ψ1

− Lg2,Ψ2
‖,

‖L−1
g2,Ψ2

◦ G1 − L−1
g2,Ψ2

◦ G2‖ 6 α−1
1 ‖G1 − G2‖,

similarly to (4.6) we obtain

‖g1 − g2‖ = ‖L−1
g1,Ψ1

◦ G1 − L−1
g2,Ψ2

◦ G2‖

6 ‖L−1
g1,Ψ1

◦ G1 − L−1
g2,Ψ2

◦ G1‖ + ‖L−1
g2,Ψ2

◦ G1 − L−1
g2,Ψ2

◦ G2‖

6 α−1
1 (‖Lg1,Ψ1

− Lg2,Ψ2
‖ + ‖G1 − G2‖)

6 α−1
1 {maxt∈I |Ψ1(t, g1(t), . . . , g

n−1
1 (t)) − Ψ2(t, g

2
2(t), . . . , g

n−1
2 (t))|

+ ‖G1 − G2‖}

6 α−1
1 {maxt∈I |Ψ1(t, g1(t), . . . , g

n−1
1 (t)) − Ψ1(t, g2(t), . . . , g

n−1
2 (t))|

+ maxt∈I |Ψ1(t, g2(t), . . . , g
n−1
2 (t)) − Ψ2(t, g2(t), . . . , g

n−1
2 (t))|

+ ‖G1 − G2‖}

6 α−1
1

{ n∑

j=2

βj‖g
j−1
1 − gj−1

2 ‖ + ‖Ψ1 − Ψ2‖ + ‖G1 − G2‖

}

6 α−1
1

{ n∑

j=2

βj

j−1∑

k=1

(α−1
1 M)k−1‖g1 − g2‖ + ‖Ψ1 − Ψ2‖ + ‖G1 − G2‖

}

6 r‖g1 − g2‖ + α−1
1 (‖Ψ1 − Ψ2‖ + ‖G1 − G2‖),
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where r := α−1
1

n∑
j=2

βj

j−1∑
k=1

(α−1
1 M)k−1 < 1 by (5.11). Therefore,

(5.12) ‖g1 − g2‖ 6
‖G1 − G2‖ + ‖Ψ1 − Ψ2‖

α1 −
n∑

j=2

βj

j−1∑
k=1

(α−1
1 M)k−1

,

which implies the continuous dependence of the solution g on functions G and Ψ.

Now we partially focus at the dependence on the function F in (1.1). Then (5.12)

implies

(5.13) ‖f̃∗1 − f̃∗2‖ 6 µ‖F̃∗1 − F̃∗2‖

for some constant µ > 0. For t ∈ R let k be an appropriate integer such that

t ∈ [k, k + 1). As in (2.3),

|f̃1(t) − f̃2(t)| = |f̃∗1(t − k) + k − f̃∗2(t − k) − k| = |f̃∗1(t − k) − f̃∗2(t − k)|.

Thus ‖f̃1 − f̃2‖ = ‖f̃∗1 − f̃∗2‖. Similarly we also have ‖F̃1 − F̃2|| = ‖F̃∗1 − F̃∗2‖.

Hence by (5.13),

‖f̃1 − f̃2‖ 6 µ‖F̃1 − F̃2||,

implying that f1 is ε ; C0-close to f2 if F1 is ε/µ ; C0-close to F2. This proves

stability in the C0 sense. �

The proof of Theorem 5.1 also implies continuous dependence on Φ.

6. Examples

Consider equation (3.23), where F ∈ H0
1(T1,T1) preserves orientation with a

Lipschitz constant M > 0 and
n∑

j=1

λj = 1, where λ1 > 0, λj > 0, j = 2, 3, . . . , n. As

stated at the end of Section 2, the map

(6.1) Φ(z1, . . . , zn) = zλ1

1 zλ2

2 . . . zλn

n

satisfies (H1) and has the induced map

Ψ(t1, . . . , tn) = λ1t1 + λ2t2 + . . . + λntn

on I = [0, 1]. Obviously Ψ satisfies (H2) with αj = βj = λj , j = 1, 2, . . . , n.

By Theorem 4.1, equation (3.23) has a solution f ∈ H0
1(T1,T1) which preserves
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orientation with the Lipschitz constant M/λ1. Further, by Theorem 5.1, we can see

the results on uniqueness and stability under the additional condition

n∑

j=2

λj

j−1∑

k=1

λ−k
1 Mk−1 < 1.

For another example of no expression in (6.1), consider the equation

(6.2) (f(z))6/7(f2(z))(1/14pi) ln f2(z) = exp
(2πi(z1/2pi − 1)

e − 1

)
, z ∈ T1.

Let F (z) = exp(2πi(z1/2pi − 1)/(e − 1)) and Φ(z1, z2) = z
6/7
1 z

(1/14pi) ln z2

2 . Clearly,

F ∈ H0
1(T1,T1) and has a lift F̃ (t) := (et − 1)/(e − 1). It obviously is strictly

increasing on [0, 1], so F preserves orientation. Moreover,

|F̃ (t) − F̃ (s)| =
∣∣∣
et − 1

e − 1
−

es − 1

e − 1

∣∣∣ =
∣∣∣

eξ

e − 1
(t − s)

∣∣∣ 6 M |t − s|, ∀t, s ∈ [0, 1],

where M := e/(e − 1) > 1. Using the same arguments as in (4.9), we obtain

(6.3) |F̃ (t) − F̃ (s)| 6 M |t − s| ∀t, s ∈ R,

i.e., F is Lipschitzian on T1 with the Lipschitz constant M . On the other hand,

concerning Φ we see that Φ(1,1) = 1. Consider its induced map

Ψ(t1, t2) = h−1
∗

(Φ(h∗(t1), h∗(t2))) =
6

7
t1 +

1

7
t22, 0 < tj < 1, j = 1, 2.

It is easy to check (H2) with constants α1 = β1 = 6/7, α2 = 0, β2 = 2/7. Moreover,

Ψ can be extended continuously to I2 so that Ψ(0, 0) = 0, Ψ(1, 1) = 1. Therefore

both (H1) and (H2) are satisfied. By Theorem 4.1, equation (6.2) has a continuous

solution f : T1 → T1 such that f(1) = 1. Moreover, f has a Lipschitz constant

7e/(6(e − 1)) and preserves orientation on T1.

Since α1 > β2, condition (5.11) is also satisfied. By Theorem 5.1, the solution

of equation (6.2) is unique in the class of orientation-preserving maps in H0
1(T1,T1)

with the Lipschitz constant 7e/(6(e − 1)) and continuously dependent on the given F .
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