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A CHARACTERIZATION OF ARITHMETICAL VARIETIES 

BY TWO-ELEMENT SUBSETS 

IVAN CHAJDA, Olomouc 

(Received October 5, 1992) 

An algebra A is aiithmetical if the congruence lattice Con A is distributive and A 
is congruence permutable, i.e. 0 • <£ = $ • 0 for each two 0, $ G Con A. A variety Y 
is arithmetical if every A of Y has this property. Denote by Fv(x\,... ,xn) the free 
algebra of a variety Y with n free generators Xi, . . . , xn. A. F. Pixley [1] establishes 
the following Mal'cev type characterization of arithmetical varieties. 

Theorem 1 (Pixley). For a variety Y the following conditions are equivalent: 

(a) Y is arithmetical; 

(b) Fv(x,y,z) is arithmetical; 

(c) there exists a ternary term p(x,y,z) such that 

p(x, x, y) = p(y, x, y) = p(y, x, x) = y. 

A term p satisfying the identities of (c) is called the Pixley term. The aim of 
this short note is to give another characterization of arithmetical varieties based on 
properties of two-element subsets of algebras of Y. This enables us to characterize 
arithmetical varieties by free algebras with two generators only. 

Definition. An ?i-ary algebraic function <p(x\,...,xn) over an algebra A is said 
to be derived by a € A if there exists an (n -f- l)-ary term t(xi,... ,xn+i) with 
V?(T!,. .. ,xn) = t(xi,.. .,xn,a). 

Theorem 2. For a variety Y, the following conditions are equivalent: 
(1) Y is arithmetical; 
(2) for every A of Y and each a, b 6 A, there exist algebraic functions V, A, ' on 

A such that D = ({a, b}; V, A/ , a, b) is a Doolean algebra and V is derived by the 
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least element a of B; 
(3) for every A of y and each a, b G A, there exists an algebraic function V 

derived by a and such that S = ({a, b}; V) is a V-semilattice with the least element 
a; 

(4) for Fv(x,y) there exists a binary term V such that ({x,H};V) is the V-
seinilattice with the least element x. 

P r o o f . (1) =[> (2): Let p(x, y, z) be the Pixley term and for A G y, let a, b e A. 
Put cV d = p(c,a,d), c A d = p(c,b,d), c' = p(a,c,b) for each c, d G {a,b}. It is 
easy to check that ({a, b}; V, A/ , a, b) is a two-element Boolean algebra where a is 
the least element. Evidently, V is derived by a. 

(2) =-> (3) is trivial. 
(3) => (4): By (3), ({x,y}; V) is the V-semilattice with the least element x and V 

is a binary algebraic function derived by x, i.e. z V v = p(z,x,v) for some ternary 
term p of y. Since a; is also a term of y, V is a term of 'f'. 

(4) => (1): If ({x,y}; V) is the semilattice with the least element x and V is derived 
by x, there exists a ternary term p of y with z\l v = p(z, x, v). For z, v G {:r, g} we 
have 

y = y\fy = p(y,x,y), 

y = yVx =p(y,x,x), 

y = xVy =p(x,x,y), 

whence p is the Pixley term. By Theorem 1, y is arithmetical. • 
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