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ON THE UNIQUE FACTORIZATION PROBLEM

IVAN CHAJDA

B. Jonsson has posed the following problem in [1]. Let A= (A, 0, R, ), . be an
algebraic structure consisting of a set A, an indexed family of relations R, of the
finite rank over A, and a distinguished element 0 € A satisfying the condition (0,
...,0) € R, forall y € I'. Let € be a class of relational structures of the same type.
A is said to have the unique factorization property over the class € if two following
conditions hold true -

1. 'lis isomorphic to a direct product of directly indecomposable structures of the

class 6.

2. Whenever A =11 A, =T11Y,, where A, B, € 6, 7€ T,0 € S, and U,, B, are

teT o€S

directly indecomposable, then card T =card S and there exists a one-to-one map

m of T onto S such that ¥, =*B,,, for each T € T (=denotes an isomorphism).
The problem is to give conditions for algebraic structures to have the unique
factorization property.

This problem was solved in [1] for finite structures. Also some results about it are
known for finite direct products. The purpose of this paper is to find some sufficient
condition in the general case.

Let A=(A, 0, R,),.r be an algebraic structure with (0, ..., 0) € R, for each
y € I'. The element O is called the zero of UA. We say that U is almost without
zero-divisors, if card A > 1 and there exist two fixed indices y,, ¥, € I" such that R,
is a partial binary operation ® and R,, is an n-ary operation @ (n>1) with the
following properties

(i) a@®0, 0@a exist for each a € A and a®0=0Pa =a,

(ii)) for arbitrary a,, ..., a, € A

a,...a,0 =0if and only if 4, =0 for at leastone j € {1, ..., n}.
The direct product of algebraic structures U, of the same type for 7 € T will be

denoted by IT .. We denote by pr, the projection of IT ¥, onto the direct factor

teT teT

A 1A =(A,,0,R,),.rand A= TT ¥,, then A=(A, 04, R,),.where A is the
teT
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Cartesian product of A, (t € T) and 0, is an element satisfying pr.0, =0 for each
7 € T; further, relations R, are performed component by component. Clearly, 0,
is the zero of 2L

Lemma 1. An algebraic structure almost without zero-divisors is directly
indecomposable over the class of structures almost without zero-divisors.

Proof. Let IT %, be an algebraic structure almost without zero-divisors and so
teT

for A, (teT) Let card T>2. If t', t" € T, t'#1", a, b € T1 I, such that

teT
pr a¥0, pra=0 for t#t' and pr.b#0, pr.b=0 for t# 1", then a¥0,#b,
however, ab...bw =0,, which is a contradiction.

Notation. Let U, (7 € T) be algebraic structures of the same type, A= 1T A,.

teT
N

Let T'cT. By ¥, (or TI_QI,) is denoted a substructure of 9 such that

teT’

aef, iff ae A and pr.a=0 for ' #1

(orae IN U, iff a e Aand pr.a=0 for t € T— T, respectively). If a, € A,, we
TeT’
denote by 4, an element of U, such that pr.d, =a,.

Lemma 2. Let Y, for T € T be algebraic structures almost without : ero-divisors

and of the same type. Let =TI ..

teT

(a) Leta,, ..., a, € Y such that for each t € T there exists at leastonej € {1, ..., n}

with pr. a,=0. Then a,...a,0 =0,.
(b) Leta, b € W with either pr.a=0 or pr.b =0 foreach t € T. Then a®b, b@a

exist in W a®b =b@a and
pr.(a®b)=pr.a or prb

foreach t e T.
(c) U, for t € T are also algebraic structures almost without zero-divisors of the

same type as U..
Proof. (a) For each 7 € T we have

pr.(a,...a,w)=(pra,)...(pra,)w =
=(pra,)...(pr.a;,_,)0(pr.a;.,)...
(pr.a,)w =0, thus a,...a,0=0,.

(b) For each t € T pr.a@®pr.b is defined and equal to pr.b@pr.a (by (i)). From
the definition of direct product we get

202



prt(a®b) = pr’”@prtb ’

thus a@®b is also defined and equal to b@a. As pr.a=0 or pr.b =0, it is evident
that

pr.(a®b)=pra®prb=pra or prb.
(c) Evident.

Theorem 1. Let U,, B, for t € T, o € S be algebraic structures almost without

zero-divisors and of the same type. Let A=T11 A,, B=1T1 B, and ¢ be an

teT O€S

isomorphism of N onto B. Then there exists an injective mapping 6— 1, of Sinto T
such that B, c @(.,) for each o € S.

Proof. 1° Let us choose a fixed o, € s arbitrarily. Let & € B,,, ##05. Then
prob =b,# 0 and pr,b =0 for o# 0,. Denote by a an element of U such that
@(a)=b. As @ is an isomorphism, such a € U exists, hence there exists 7, € T such
that pr, a# 0. Denote a, = pr, a. Further, denote by ¢ an element of % such that
pr.c = pr.a for t# 1, and pr,c=0. By Lemma 2 (b), a,®c exists and, evidently,
a=a,Pc.

By Lemma 2(a) we obtain 4, c...co =0,. Hence 05 =@(0,)=@(a,c...co)=
@(a,)p(c)...p(c)w. According to the definition of direct product we get 0=

pr.0s = (pr.p(a.,))(pe.(c))...(pr.p(c))w. By (ii) we get

(A) either pr,p(a,)=0 or pr,p(c)=0
’ foreacho e S.

2°. If @(a,)éB.,,, then there exists o’ #a, such that pr,@(a,)#0. By (A),
pr..@(c)=0. As @ is an isomorphism, the existence of a,(Pc implies the existence
of @(a,)Pe@(c) and, moreover, @(4,)D@(c)=@(a,Dc)=@(a)=>b. Thus 0=
prob=pr,@(a)=pr,(a.,)dpr,o(c) = pr, ¢(a,)P0 = pt, ¢(a,)#0, which is a
contradiction. In the same way we obtain a contradiction for @(c) ¢ B,,. In the
summary, we have

(B) ' @(a,) € B., @(c)eDB,.

3°. By (B) pr,@(a.)=0=pr,@(c) for each a# g,. By (A) either pr, @(4,)=0 or
pr,,@(c)=0. Thus either ¢(4,)=0s or @(c)=0s.

If @(c)#0s, then @(4,)=05 and b=@(a)=@(a,)Pe(c)=@(c). As @ is a
one-to-one mapping, we get a =c. However, 0=pr, c, pr,,a=a, ¥0, and there-
fore a# c, which is a contradiction.

It remains @(c) =05, i. e. @(a)=@(a, )Pe(c)=p(a,). As @ is a one- to -one
mapping, it implies a =4,,. Thus, for each b € B,, b+#0; there exists an index
7, € T and an element g, € A, such that ¢(4,)=>b.
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4°. We prove that this index 7, is the same for all b € B,,. Let b,, b, € B,,,
b, # 05+ b,. By 3° there exist 7,, 7, € T and elements 4, € Q_It,, a, € ., such that
p(a,)=0b, @(a,)=>b, Clearly a,#0,#a,. Suppose t1,¥7,. Then, by
Lemma 2(a),

OB = (p(OA ) = (p(a_r, a_tz'“drzw) = b|a2...b2(l) N
however, by Lemma 2(c),

0s# b,b,...b,w, acontradiction. Thus 7,=1,.

Accordingly, there exists an index 7, € T such that for each b € B,,, b# 0, there
exists a € 9, satisfying @(a)=5b.1f b =04, we put a =0,. Clearly ¢(0,) =0, and
0. € ‘2—1,”. Thus (p(‘il,m) =) ‘B‘,", where 7, =7,. As.0, € S was choosen arbitrarily, the
preceding holds true for each o€ S. .

5° The unicity of z, for each o € S follows by 4°: If B, c ¢(¥.,), B, c@(U,),
T,# 1T, then for 0,#b € B, we get b=g@(a,), a, € Q—I i=1, 2. This yields a
contradiction by the reasoning as in 4°. Hence there is a mapping 06— 7, of Sinto T
with B, c @(%.,).

6°. Prove the injectivity of this mapping. Let 0,, 0, € S, 7 € T and B,, c @(U,),
B, c@(A.). Let b, €B,, b, €B,, b, #0s#b,,. Then there exist a,, a, € A,
such that @(a,)=0b,, @(a,)=>b,,. Clearly, a,+0,#a,. By Lemma 2(c), A, is
almost without zero-divisors, thus a,a,...a,0#0,. However, 0,=¢@(0,)#
F@(aa,...a,w)=b, b, w=0, by Lemma 2(a), which is a contradiction. Sum-
marizing, 0— 7, is an injective mapping.

Theorem 2. If an algebraic structure A= (A, 0, R, ), . is directly decomposable
into structures almost without zero-divisors, then W has the unique factorization
property over the class of structures almost without zero-divisors.

Proof. Let 9., B, be algebraic structures almost without zero-divisors of the
same type for t € T, 0 € S and

A=11 9. =11 B,.

teT o€S

By Lemma 1, YU, and B, are directly indecomposable. Denote by ¢ the isomorph-
ism of IT 9[, onto IT B,. Clearly ¢~ is also an isomorphism of IT B, onto 1 A[,

TeT og€S oc€S teT

and ¢ '@ =1id,. By Theorem 1, there exists exactly one 7, € T for each o € S and
just one o, € S for each 7 € T such that |

or e )28, ¢'(B,)2%..
As L.rfl.={0,}for'#7", 7', 7', 7" € T, we have 7, =7 and ¢ '(B,.)= .. In
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the same way o,, = o can be proved and (p(?_l,") =18, . In other words the mappings
a:0—1, and B: 71— 0, satisfy ‘

aff=ids, Pa=id;r.

Hence a and 8 are subjective and injective and 9], isomorphic to Bj(.,. It follows
that 9, is isomorphic to B,,,, which completes the proof.
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O TMPOBJIEME OOHO3HAYHOM ®AKTOPU3ALIUU
HNBan Xanga
Pe3iome

IMpennonaraeM, 4to anreGpauyeckas CcTPykTypa N BBIMOJNHAET YCIOBME OJHO3HAYHOM
chakTOpHU3aumMu B kiacce 6, CYLIECTBYIOT AM NPAMO Hepa3noxuMble cTpykTypbl Y, € € qnsa t € T Tak,
4yto "l n3omopdHa npsmoMy mpousseneHuto cTpykryp Y, (t € T) u, eciu B, € € ans o €S npsamo
HepasnoxuMa u Y[ uzoMopdHa npsvMoMy npousseneHuio cTpykTyp B, (o € S), noTOM cyuiecTByeT
6uekumst 1 MHoXectBa T Ha S Tak, uto [, u3somopdua ¢ B, B 3Toit pabote BBEaeHO MOHATHE
anreGpanveckoit CTPYKTYpbl NouTH Ge3 jenuTeneid Hylas M [OKa3aHO, YTO eciu anrebpanyeckas
ctpyktypa Y mnpsmo paznoxuMa Ha ctpyktypwl V. (7 € T) mouru Ge3 penurtenenn Hyns (mas
npou3BoJbHOrO MHOXecTBa T7), To ¥l BHIMOJNHSAET YCIOBHE OAHO3HAYHOI (haKTOPU3ALMM HAJl KIIACCOM
CTPYKTYp MouYTH 6e3 fenurenei Hyns.
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