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A COIN TOSSING ALGORITHM FOR 
COUNTING LARGE NUMBERS OF EVENTS 

PETER KIRSCHENHOFER HELMUT PRODINC.ER 

ABSTRACT. R. Morris lias proposed a probabilistic algorithm to count up to n 
using only abou t log2 log2 n bits. In this paper a slightly more general concept is 
introduced that allows to obtain a smoother average case behaviour. This concept 
is general enough to cover the analysis of an algorithm where the randomness is 
simulated by coin tossings. 

1. I n t r o d u c t i o n 

"Approximate counters" are realized by probabilistic algori thms tha t main
tain an approximate count in the interval 1 to n using only about log2 log2 n 

bits. The algorithmic principle was proposed by R . M o r r i s [7]: 

S tar t ing with counter C = 1 , after n increments C should contain a good 
approximat ion to log2 n . Thus C should be increased by 1 after other n in
crements approximately . Since only C is known the algori thm has to base its 
decision on the content of C alone. 

The principle to increment the counter is now 

f 0 with probability 1 - 2 " r ; 

C:=C+{ [ y (*) 
{ 1 with probability 2 ~ r 

F l a j o l e t [2] has analysed this algorithm in detail; another method of 
analysis has been proposed by the authors [4]. In [2; p. 127ff] F l a j o l e t also 
discusses variants of the incremental procedure (*) , essentially replacing base 2 
by base a . For a < 2 a smoother behaviour of the counter is obtained. 

The aim of this paper is twofold. 

(i) On the one hand we subst i tute (*) by an incremental process tha t adds 

- to the counter with suitable probability. For a = 2 1 / 6 the resulting u au toma-
b 
ton'1 (compare Fig. 1) is closely related to Flajolet 's smoothing procedure just 

A MS S u b j e c t CI a s s i f ica t ion (1991): Primary 68Q25. 
K e y w o r d s : Probabilistic algorithms, Analysis of algorithms, Asymptotic expansions. 
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described. Nevertheless we point out that our algorithm is slightly more general 
and flexible enough to deal with a related problem described below. 

(ii) On the other hand we describe a simple coin tossing algorithm that sim
ulates the probabilities in (*). We compare the results on this algorithm with 
another one whose analysis is closely related to a problem studied by K n u t h 
in the context of binary addition [6]. It turns out that the variance in our instance 
is significantly smaller. 

In Section 2 of this paper we present the analysis of the general incremental 
principle mentioned in (i) above. 

Section 3 refers to the coin tossing problems mentioned in (ii). It turns out 
that the analysis of the behaviour of these algorithms is essentially (i.e. with 
neglect able error terms) covered by the analysis of Section 2. 

2. A general incremental procedure 

We consider the following incremental procedure. Starting with C — 1 we 
increment as follows ( b is a fixed natural number, 0 < d < 21 ' ). 

, j 0 with probability 1 - d • 2~c'/b 

\ 1 with probability d • 2-c'lb 

(The constant d will be chosen appropriately later on.) To get a good approxi
mation for log2 n it is meaningful to rescale the countervalues of counter C by 
considering 

C - 1 
C - 1 + - J - • 

A reformulation of the incremental procedure in terms of C reads 

0 with probability 1 - d • 2 - c - i + 1 

C := C + I 1 , (**) 
* i with probability d-2'c'^1 

We denote* for abbreviation the possible counter values of C by 

r. = 1 + - - ^ - - , 7 = 1,2,3 

Then we have for the transition Cj —> c;+i the probability d • 2~i'b . In the 
following we set 

« = 2 , / 6 . 
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In order to i l lustrate the above concept we may use the following " a u t o m a t o n " : 

1 - d a " 1 1 - da-2 1 - da~3 \-du~f 

Fig. 1 

T h e reader might observe that the instance d — \ is the instance studied by 

F 1 a j o 1 e t in [2; p . 127ff ]. In the following derivation we digress from Flajolet 's 

analysis after having established the probabilities as in formula ( 6 ) . Instead of 

Flajolet 's Mellin-type analysis we use a contour integral representat ion for the 

a l ternat ing sums coming up (compare L e m m a 1). 

Let pni denote the probability to reach " s t a t e " c/ in n steps a n d Hi(z) the 

corresponding probabil i ty generating function, i.e., 

#.(-) = $>.,..-"• 
n > 0 

With a , = 1 — da l it follows immediately from Figure 1 t h a t 

Hi(z) — • da л z • • da 2 z .. 
1 — OL\Z 1 — OL^Z 1 — OL\Z 

i 

^ ' - ' " - ^ ' - I I т ^ 

Let 

Au 

Ul~a]Z 

(2) 

(3) 

denote the par t ia l fraction decomposition of H\(z). It is a straightforward com

p u t a t i o n to derive 

(-IJ'-Ja-C-O 
Au = Qj^\(a)Qi-j(a) ' 

where 

Q,(a) = | 1 - 1 ) ( 1 
a / V a* ?)• 

(4) 

(5) 
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From (3) and (4) we find (interchanging j and / — j ) 

E (-1)J a~(*) , , ,- / N n 

?TTT7) T\ 0~da' ) ' (6 

j = 0 QAa)Qi-y-Aa) 

By the binomial theorem we may express p n / by an alternating sum: 

*»•' = E ( i V ^ E r w !n1)j • ,-°-(i)+(>- ,)*-
£ ^ , W ^ Q > ( « ) Q l - i - > ( a ) 

Using Euler ' s famous par t i t ion identities [1] 

E^=nV~ ) 
>>0 ^ n ; m>0 V 7 

and 

Ľg£)=П ('-£)"'. (8) 
j>0 ^ J V У m>0 V 7 

the second s u m in pnj may be associated to a product . 

^=EG>-<)Vin (!-£)• i») 
A:rr:0 V 7 V 7 m=0 V 7 

For the expecta t ion JB„ of the value of the counter C after n s teps we find 

^-E^^^iEQc-D'^E'MliO-^). 
;>i k=o x 7 x 7 ;>o m=0 v 7 

Now VJ / [<']/(<) = T(l), so tha t 

^=>-ïÊ(V')'(ÿ«-w='-^. (10) 

An asympto t ic evaluation of an a l ternat ing sum as in (10) may be performed 

using the following 
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LEMMA 1. [8] Let C be a curve surrounding the points :s, ;> -f 1,. . . , n (,sE 

77;, the complex plane and let f(z) be analytic inside C . Then 

k = 

where 

D 
r ( c - ! ) . . . ( - - „ ) 

Extending the contour of integration it turns out that under suitable growth 

conditions on f(z) (compare [3]) the asymptotic expansion of the alternating 

sum is given by 

£ R e s ( [ n ; z ] / ( z ) ) + 0 ( n < ' + e ) , any e > 0 , 

w here the sum is taken over all poles ZQ different from s,. . . ,n with 5rcz0 >
 a 

In our sum we have s — 1 and f(k) — ( — ] Qk-\(a) , which may be con 
< г * 

tinned analytically by 

/(--)= ( - V Q — ( « ) , where Q,(a) = ?°°{"\ . 

In order to find the residues of [n\z]f(z) at the double pole z — 0 we use 

the local expansions 

[ n ; ~ ] ~ - ^ ( l + 2 B n ) 

d V , (d 
- ~ 1 + z log I -
a) \a 

Q,-i(a) ~ ^ (- + -Ooga)Q - - . ) ) where aa = £ ^ • 

With log a — -log 2 we have the following contribution Sn>o to S n : 
0 

7 1 
-E„,o = loga n + + loga d - - - aa . (11) 

log a 2 
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Near the simple poles ci = = \ , ( O ) , k G Z , k / 0 , we have the expan 
log O * 

sions 
. \ i. < " ) pí; , ~ u * ( " , - r ( - v . . ( « ) ) = ( . 2 t - M " » « " . r ( - x J t ( a ) ) 

ř / ^ \ . ( f l ) l o K o * 

<7 

O..-i(") * * logO z - \k(a) ' 

so that the poles ci- yield the following fluctuating contr ibut ion ._.„,* to E r i : 

s„.,.. = - ^ - r ( - x t ( « ) ) r n - " M o " - ( " ' " . 
log a * 

In total we have* 

T H E O R E M 2. 77/, e expected value En of the counter C after n random incre
ments with the generalized incremental procedure (**) fulfih 

i , , , . . i < • > , 

E» = i<>fi2» + r ^ + l o f i - r / + 1 - ^7 - T - + *> ( l ofi«'» + A ) + o ( » / - ' ) . 
log z lb b 

anJ /7/,e periodic function 

*('> = "i^E r(-*:>>)'""'' 

where 

Miice 

log_ 
ь л^o 

0 z* 

x * ( a ) = r — a n d A = 1 ( )£«r /- • 
K log a 

|r(i.y)|2 

y • sinh(7T/y) 

we have |V( —\ (a)) | ~ Of be" lo«2 ) for b —• oc , so that the fluctuating te rm, 

which is already very small for the classical case b = 1 , becomes even smaller 

for b get t ing large. 
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111 order to find the appropr iate value for the constant d we consider the 

expectat ion S n of 2 after n random increments: 

S„ = ] T / V , 2 r < . (12) 

Since 

Pnj = Pn-\j ( l ~ da"1) + pn-.ij_}dal~l (13) 

we have 

S n = S n _i h 2d , n > 1 ; So = 2 ; 
a. 

and thus 

S n =2r/f 1 - - ) n + 2. (14) 
a 

A good choice for d is therefore 

d= -—- , (15) 
2 ( a - l ) ' 7 

so t h a t S n — n + 2 . 

Nevertheless we can analyse the variance Vn of the content of C after n 

steps for arbi t rary d in an analogous manner as the expectat ion En . O m i t t i n g 

the technical details we obtain, neglecting periodic fluctuations of mean 0, 

_________ _L 
' " " 6 k ж 2 2 b'г b2 12A2~ 
V„~+-^-^-'^ + r^-Wíl, (16) 

where [O2jn is the mean of the square of the periodic function o\(x) defined in 

Theorem 2. 

In order to s tudy the influence of h on Vn , it is helpful to make use of the 

following remarkable transformation of the constant in (16) : We have 

na + fta - > —T . = li i (log rt), 
Jt>l 

where 
,kx 

(j-) = y,—r—- • (u) 
- s (,kx _ l)Z 

k>\ [i l > 
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Now it follows from Dedekind\s functional equation for the //-function tha t 

7T2 1 1 4 T T 2 , / 4 T T ' 2 

U ' 6.r2 2x 24 x2 

(compare [5]; observe the typo therein). Thus we have 

TT'2 1 1 4 T T 2 , / 4 T T 2 \ 

a f l + / i f l = ——J ~~ + ^7 - 7—T-h\[ i • <1 8) 
6 log2 a 2 log a 24 log2 a V log a J 

On the other hand, again using |T(iy)| = — , we get 
y-smh(-y) 

[A21 l o S f l V - 1 2 log a / 2TT2 \ 

V log a y 

with 

w , | = | ^ ( 2 0 ) 

Combining (18) and (19) and regarding log a = —-— , we finally have 
b 

T H E O R E M 3 . The variance Vn of the content of the counter C after n steps 

of the generalized incremental procedure (**) fulfils 

1 l 47r* f ^ 2 h \ 2 /27r2b 
n ~ 2Moi2 + 24^" + lo^2 V^g2/ " Mog2 2 1 ^ 2 

+r53(loga7i + A) + O f l 0 g ? l 

where h\(x) and h'i(x) are defined in (17) and (20) , and where 6$(x) is a 
periodic function of mean zero, and A = loga d. • 

6s(x) is a combinat ion of 6\(x) and <$2(x), whose Fourier coefficients could 
be computed in principle. 

T h e reader should note tha t the main term is of order b~l in b; the val-
, / 4 T T 2 6 \ , / 2 T T 2 6 \ , n . „ „ . , m i 

u e s " ! ( i n ) r e s P - "2 1 ~, ^ I tend to 0 exponentially fast in o. T h e result > g 2 / *'— '"Vlog^ 
quantifies the smoother behaviour of the approximate counting procedure for 
increasing b. For d = 1 Theorem 3 should be compared with F 1 a j o 1 e t 's 

result [2; eq. (50)], where only the leading term —— appears . 
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3 . A p p r o x i m a t e c o u n t i n g by c o i n t o s s i n g s 

In this section we apply the previous results to the analysis of an approx imate 
counting a lgori thm where the incremental procedure (*) is s imulated b y coin 
tossings. We flip a fair coin and increase the counter C by 1 after having 
seen C consecutive heads occurring since the previous incremental step. More 
formally the set of sequences yielding a counter C — / is described by the regular 
expression 

0*1(0,10}*11{0,10,110}* . . . l ' - ' {0 ,10, . . . , l ' - ' O H e , 1 , . . . , l ' _ 1 } . 

T h e corresponding generating function equals 

F,(Z)=
 l~z' -(.)TT — / > i (n) 

so t h a t the probabil i ty pnj t h a t counter C = I after n tossings is 

pn,, = 2-n[zn]Ft(z). (22) 

It is our aim to show t h a t the analysis of this coin tossing a lgori thm m a y be 
reduced to the analysis of Section 2 by approximating the probabilit ies pnj s tep 
b y s tep. 

For / > 2 , Fi(z) is a rat ional function having / — 1 first order poles 
3 . . 3 

/?i , . . . ,/9/_i of absolute value < — : For z traversing the circle \z\ — -r the 
value of l — 2z + zJ+2 winds around the origin exactly once, so t h a t 1 — 2z + zJ+2 

3 
has exactly one root p3 in \z\ < — . For later purposes we note t h a t 

\l-2z + z>+2\ > 

Therefore 

~ l + (f) \ = -k f°r J~1 and | 2 | = 4 

Qm'-1^1-1 

l ^ ) I S C . ( í y Q ) " ( f ) " = 0 ( , « ) ) forany , > ? . ( 2 3 ) 

The reader should observe that because of 

,1 + 2 2Pi = 1 + pŢŁ (24) 
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Pj will be close to 1/2 for j getting large. More precisely, using Lagrange's 
inversion formula, we have 

ft-K"+gK^-.a,)^)-K,+^+-")- (25) 

Now it follows that 

/ 

2"p„,/ = - £ Rcs(F.(-); z = Pi)PJn-1 + з7j / *•< 

1*1=* 

where the integral is 0(ip2' ( — j J for any 7/ > — , with an absolute O-con-

stant. From this observation it is immediate that pnj may be substituted by 

/ - i 

qnJ = - ~T Res(F,(z); * = I^D"1 ( 2 ^ ) " n (26) 
j=\ 

with exponentially small errors in expectation and variance. The computation 
of the residues gives 

B (P(\ \ ( 1 - ^ 4 ' ) ( 1 - ^ ) < " 1 , ff 
Res(F/(z); z = /?,) = —; — y A, _3j,/, 

(l-p]f(-2 + (j+2)p^) 

where (compare (24)) 

.Mw^no-^+^r^nV2-''")" 
1 = 0 2 = 0 

• ' - ( , J , ) / 9 > ( , ; ' ) . 

B>,. = />7" + 2 , < ' _ , -"(-I) '- , -V<?.-.->W). 

Using formula (24) it can be shown by some straightforward algebra that 

/ - i 

' " " è í (i-ü + iVГ) ' в > ^ , ) в . - > W , ) ( W )

 ( 2 7 ) 

/ - l 

= Xľ a / '>( 2 ^)~ П ' say-
І=l 
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This formula suggests the quanti ty 

i±(_i)'-i->9-r.-'') £! 
M = E ( \ ) n - (2^)-" = £ *'•> (2^)- ' , (28) 

t t QJQI-X-J t t 

wlu'ir Q* = Qjt(2), as a good approximation of qnj. Indeed, we have 

(w,+lV 
E /a'.> = 7 — T T T r £ ( ' + •>' + ^-".J 

with 

^ ^ ( l - p f V ^ l - ^ O ' f - D ' ^ V ^ ^ 1 ) - (29) 

Using Euler 's identity (7) 

E ' > = n ( I - ( I - P J + , K , ) - ^ + 1 n ( I - ( I - P J + , ) P 7 + , ) = O . (30) 
/>() m>0 m>0 

Differentiating formula (7) we have 

E<4^- (E^ )n( -^ ) . <-> 
/ > 0 ^ « V 7 \ myQ / ^^y \ / 

so tha t , after a short computat ion, 

E'^-O-^ono-^rv)- <32> 
/>0 m>l 

Altogether 

j + i 

s ""' = -f. , ( + n t L , - M n ('-('-'.;+V). <33> 
• >>+i ( ! ~ 0 + !)/>> j Qj (/»> ) »»>. 

In the same way we derive 

Qc 
E U)i} = - 7 T • wh(T<> Q~ = # _ ( 2 ) . <?; = Q>W- <3 4 ' 

/>>+. ^ 
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The sum is up to a factor 1 + 0(j2~J) the right hand side of (33) . Therefore1 

the series 

53(2^)"" E ' K > - M 
]>\ / > 7 + l 

converges absolutely and may be rearranged as ]P '(<1n,/ — rn,/) • 
'>* 

It is easily seen tha t ^ (2D7 ) - " 0 ( 2 ~ J ) is o ( l ) for n —> oo . In order to get 
>>i 

a sharper es t imate we may apply Lemma 1: We have (2Pj)~
] = I — 6j , where 

6j = 0(2~J) so tha t 

J > 1 A; = 0 

with f(k) = Y, 6k
)0(2~J). Since £ ^ 0 ( 2 " - > ) deques an analy t ic function for 

7 > i >>i 

tylz > —1 we find from Lemma 1 that the whole sum is 0(u~]~*~e) for any e > 0 . 

T h u s the expectat ion En of the content of the counter C after n tossings 

fulfils 

En = ~l !</„,, + °((IУ) = 5>'"-' + Y,lІЧ»,' ~ '•"') + °((f ) 
/>1 />1 / > ! 

^ J ^ / V . . , . + O í > _ l + f ) , anу ŕ f > 0 . 
/>i 

In order to evaluate ^.Z/r,,,/ w o approximate (2t; ; )
 ] by 1 — 2 7 2 

(compare (25) ): 

Afl = 5 3 ( ( 2 / , J ) - - ( l - 2 - ^ ) " ) ^ 
>>! G, 

=ž(';>-i>'i;('í^-"+"')7r-
I — 1 ^ z , \ i w k=\ y ' J>\ 

where (2/) j)- ' = 1-/),. From (31) we have ^ ' - 2 - ( j + 2 ) f c = O(j2-^A-2-j(t-") 

= D(tj2--'(t+,)) so that f(z) = £ (/>* - 2- (J + 2)--) ^ is again an analytic 
v ' j > i v ' Qj 

function for Rz > - 1 . Since / ( 0 ) = 0 , [n ; r ] / (~ ) has a removable singularity 

at z = 0 and A„ = O(»_1+f) . any e > 0 . 
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We finally have 

/ - l 

/ > 1 />1 ; = 1 

= E / E 6 ' . > ( 1 - 2 " i " 2 ) B + °("",+*) 
*>i i=\ (35) 

' 3 \ n 

= E'v«-~~>.o(f) +o(n-,+-) 
. > i / > i 

= £/<n,/ + 0(n-,+г), 

where tn\ coincides with p n ,/ from (6) for a = 2, d = =- . Therefore £"„ from 

this section coincides with En from Section 2 with an error of order 0 ( n ~ 1 + f f ) . 

The same result may be proved for the variance Vn by an analogous reasoning. 

T H E O R E M 4 . The expected value En of counter C after n coin tossings fulfils 

7 1 
En = log2 n + - — - - - - a + 6i ( log 2 n) +0 ( n " 1 + f ) , any £ > 0, 

" 1 . 6 0 6 6 . . . . 
2* - 1 

ifc>i fe2'-1 

Tfce variance Vn fulfils for any e > 0 

1 - 4 7 r 2 » . f 4 7 r 2 " \ 2 , / 2 i 2 \ t n N 
y " = 2 1 ^ + M + ^ , t eJ -^ 2 f eJ + 6 3 ( 1 ° 6 2 ^ 

+ 0 ( n " 1 + e ) ^ 0 . 7 6 3 0 . . . 

with ^ i , <?3, / i i , b2 from Theorems 2 and 3 . 

Theorem 4 shows tha t our coin tossing algori thm is a very good simulation 

of the general incremental procedure mentioned in the first two sections with 

paramete rs 6 = 1 , d = 1/2. 

We finally compare these results with the following al ternat ive variant of a 

coin tossing algori thm: The Counter C is incremented by 1 if after another 

flipping of the coin the sequence ends up with a run of C ones. W i t h other 

words, C mainta ins 1 plus the length of the longest run of ones. Results on 
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this problem may be found e.g. in [9], [10]; the analysis is closely related to 
Knuth's analysis of the average time for carry propagation in binary addition 
[6]. Intuitively it is clear that the latter proposal leads to a less smooth behaviour 
than our algorithm from above. 

The regular expression corresponding to the set of sequences yielding a 
counter C < / is 

{0,l0,...Al-'0Y{e,\,...A1-'} 

with corresponding generating function 

l-z' 
Eю l - 2 г + z ' + ' 

The dominating singularity is /9/_i , where p3 fulfils (24). In Knuth's analysis 
[6] the corresponding generating function is 

G,(z) = 
1 - 2 2 + .U. 

The dominating singularity r/_j of G/(z) fulfils r/_i = /9/_i+0(/2 2 / ) , so that 
Knuth's asymptotic result on the expectation covers the coin tossing problem, 
too. For comparison we cite the results from [6] and [10]: 

Expectation En and variance Vn of the counter C in the modified algorithm 
are asymptotic to (neglecting the small periodic fluctuations of mean zero) 

-5" ~ - o g 2 n + - - ! - ; - | , 

1 ( 3 6 ) 

with <$i from Theorem 2. Comparing with (16) we find that the variance in our 

2k 

algorithm is smaller by a + 0 = Ŷ  TTT ^r ~ 2.7440 . . . . 
* ^ fcVi (2* - l ) 2 
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