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EXTENSION OF MEASURES AND INTEGRALS 
BY THE HELP OF A PSEUDOMETRIC 

BELOSLAV RIEČAN 

There are various methods of constructing an extension of a measure pt from 
a ring ^ to a a-ring ^containing 01. One of them is the following: An extension p. 
of JU is constructed (fi need not be a measure, e.g. fi may be the outer measure 
induced by fi) and a pseudometric is defined by the equality g(E, F) = fi(EAF). 
Then the family Zf=0l~ (the closure with respect to g) is one of the convenient 
a-rings. (Of course, some assumptions concerning the finiteness of \i are neces
sary; see e.g. [6], [9].) 

A similar method can be used for integrals (see e.g. [3], [7]). 
Here we shall study the method from a general point of view. We shall work with 

functions /: 5—> ( — GO, oo), where 5 is a sublattice of a given lattice H. If H is a set 
of sets then the measure extension theory is obtained; if H is a set of real-valued 
functions then the integral extension theory is obtained. The same idea has been 
realised (only with different constructions) in papers [1], [8], [11], [12], [13]. 

Generating function 

First we shall construct a function for generating our pseudometric. Its construc
tion and corresponding proofs are known. 

Assumptions* 1. H will denote a lattice with the following properties: 
1.1. H is relatively o-complete, i.e. every monotone bounded sequence has the 

least upper bound and the greatest lower bound. If (xn)n^t is an increasing 
sequence and x is its supremum, then we write xn/x; the symbol xn\x has an 
analogous meaning. We use the symbols also for the lattice R of real numbers. 

1.2. H is o-continuous, i.e. the relations xn/x, y„/y (xn\x, yn\y) imply 
xnAyn/XAy (xnvyn\xvy). 

2. A is a sublattice of H satisfying the following condition: To every xeH there 
are aneA (n = \, 2, ...) such that 

xl^Sf an 
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( S/ an is the supremum of (an)n = l). 

3. /„: .4—•/? is a real-valued function with the following properties: 
3.1. /„ is increasing, i.e. x^y, x, ye A implies J(}(x) = J(>(y). 
3.2. /„ is a valuation, i.e. J(t(xvy) + /„(JC Ay) = /„(JC) + /„(y) for every x, y eA. 
3.3. /„ is upper continuous in the following sense: If xn /x, xneA(n = \,2,...), 

xeA, then J0(xn)/J()(x). 
We shall extend the function /n in the following two steps. 

Lemma 1. Let xeH, xneA, yneA (/i = l, 2, ...), xn/x, yn/x. Then 

lim J{)(xn) = lim J()(yn). 

Proof. [1, Lemma 1], [11, Lemma 2.4], [12, Lemma 1]. 

Definition 1. By B we denote the set of elements b eH such that there exist 
aneA (/i = l, 2, ...) for which an/b. Further we denote by /, the mapping 
/ , : B—> R defined by the equality 

J,(b) = lim J0(an), 
n—• » 

where an/b, aneA (n = 1, 2, ...). 

Definition 2. Let xeH. Then we put 

J(x) = inf {/,(£) ;x^b,be B} 

if the set {Jx(b); x^b, beB} is non empty; otherwise /(jr.) = oo. 

Theorem 1. The function J is increasing and it is an extension ofJ0. Ifxn /x, then 

/(.r) = lim J(xn). 

Proof. See [1, Prop. 3.1], [11, Theorem 3.1], [12, Theorem 1]. 
Of course, E. M. A If sen does not assume that to any xeH there are an e A such 

that x^ van. But then, in the case of lim J(xn)<°°, we are not able to prove that 
n—»oo 

{J(b); x^beB}±0 although {J(b)\ xn^beB}±0 (n = l, 2, ...) and hence 
there are bn eB, bn ̂ xn (n = 1, 2, ...). H need not be a-complete and therefore 
v bn need not exist. It seems to us that this detail m the Alfsen theory is not correct. 

A pseudometric 

Now we shall not follow the excellent Alfsen definition Q(X, y) = 
= J(xvy)-J(xAy), since we want to say a little more about the algebraic 
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structure of investigated lattices. We shall introduce axiomatically two binary 
operations on H: A and +. Further we shall assume that all the elements of H are 
non-negative and hence H has the least element. If H is a set of sets, then a A b is 
the symmetric difference of a, b and a + b is the union of a, b. If H is a set of 
functions, then a + b has the usual sense and a A b = \a — b \. The reader can easily 
verify that in the classical cases all our axioms are satisfied. Recently a similar 
algebraic structure has been studied in [4] and [5], where two binary operations 
+ and \ are given. With respect to the Brehmer system (the so-called C-lattice) 
our operation A can be defined by the formula aAb = (a\b) + (b\a). 

Assumptions. H has the least element O. On the lattice H there are given two 
binary operations A, + satisfying the following identities: 

1.3. tfAa = 0, aAO = a. 
1.4. aAb = bAa. 
1.5. a + b = b + a. 
1.6. . a^b^a + c^b + c. 
1.7. an/a,bn/bd>an+bn/a + b. 
1.8. aAb^(aAc) + (bAc). 
1.9. (avb)A(cvd)^(aAc) + (bAd). 
1.10. (aAb)A(cAd)^(aAc) + (bAd). 
1.11. (a + b)A(c + d)^(aAc) + (bAd). 
1.12. a^(aAb) + b. 
A is closed under the operation +. 
J0 has moreover the following properties: 
3.4. J{)(0) = 0. 
3.5. Ua + b)^J0(a) + Ub). 

Lemma 2. For any x, yeH it is J(x + y)^J(x) + J(y). 
Proof. Take first a, beB and aneA, bneA (/i = l, 2, ...) such that an/a, 

bn/b. Then by 1.7 also an+bn/a + by hence a + beB and 

Jl(a + b) = \\mUan + bn)S\\mUan) + \\mUbn) = 
n—»oo .j—ftoo n— . ,ao 

= J,(a) + J,(b). 

Finally let x,yeH, J(x)< °°, J(y)< oo. Then to every £>0 there are a,beB such 
that x^a, y^b and 

J(x)+£>J,(a), j(y)+l>Jt(b). 

By 1.5 and 1.6 we have x + y^a + b, hence 

J(x + y)^J,(a + b)^Jl(a) + Jl(b)<J(x) + J(y) + e. 
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Lemma 3. LetHx = {xeH\ J(x)<™}. Thena + beHx, aAbeHx for every a, 
beHx. 

Proof. It follows from Lemma 2 and 1.8. 

Definition 3. Let Hx = {x e H; J(x)< *>}. We define a mapping g:HxxHx-+R 
by the equality g(x, y) = J(xAy). 

Lemma 4. g is a pseudometric on Hx. 
Proof. It follows from 1.3, 1.4, 1.8 and Lemma 2. 
Now we can finish our extension process. 

Definition 4. Let (Hx, g) be the pseudometric space defined in Definition 3. 
Since J is an extension ofJ() andJ() is finite on A, we have A c Hx. Therefore we can 
define S = A~ (the topological closure) and J=J\S (the restriction of J to S). 

Lemma 5. For all x, yeHx it holds \J(x) — J(y)\<J(xAy). 
Proof. By 1.12 and Lemma 2 we have J(x)^J(xAy) + J(y) and similarly 

J(y)^J(xAy) + J(x). 

Theorem 2. 5 is closed under the operations +, v , A ; J is a valuation on S. 
Proof. Evidently .re5 if and only if to every e>0 there is such an aeA that 

J(aAx)<£. Then the first three assertions follow from this fact, 1.9, 1.10, 1.11 
and Lemma 2. 

Now we prove that 7 is a valuation. Take x, y eS. Let e be an arbitrary positive 
number. Then there are such a, be A that J(xAa)<e, J(yAb)<e, hence by 
Lemma 5 

\J(x)-J(a)\<e, \J(y)-J(b)\<e. 

Further, by 1.9 

\J(xvy)-J(avb)\^J((xvy)A(avb))^ 
^ J(x A a) + J(y A b) < 2e. 

Analogously we have by 1.10 

\J(x Ay)- J(a Ab)\^J((x Ay)A(a Ab))ž 
ŽJ(x Aa) + J(y Ab)<2e. 

Finally 

\J(x v y) + J(x A y) - J(x) - J(y) \ ž 
ž\J(xvy)-J(avb)\ + \J,,(avb) + J0(aAb)-Jo(a)-

-J0(b)\ + \J0(a)-J(x)\ + \J0(b)-J(y)\ + 
+ \J(xAy)-J0(aAb)\ž 

ž2e + 0 + e + e + 2e = 6f. 

Since e was arbitrary, we have \J(xvy) + J(xAy) — J(x) — J(y)\ = 0. 
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A quasilinear structure 

From the point of view of the applications it is useful to have some identity like 
J(x + y) = J(x) + J(y) or J(x -y) = J(x) - J(y). Since no such identity holds for 
measures, we shall work only with the implication x^y^>J(y) = J(x) + J(y\x). 
This implication holds for measures as well as for integrals. In the first case y\x is 
the set-theoretic difference and in the second case it is the difference of functions. 
Now we shall axiomatically introduce a binary operation \ . However, in the case of 
functions we must be careful. Namely, we work only with non-negative functions 
and the difference of two non-negative functions need not be non-negative. 
Therefore we interprete a\b in this case as a\b = a — (aAb) = a — min(a, b) (see 
[41, [51, [10], [14]). 

Assumptions. On the lattice H there is given a binary operation \ satisfying the 
following conditions: 

1.13. . (a\b)A(c\d)^(aAc) + (bAd). 
1.14. Ifa^b, then aAb = b\a. 
1.15. Ifa^b, then a = b\(b\a). 
1.16. If an/a, then an\b/a\b. 
1.17. If an\a, then ax\an/ax\a. 
The set A is closed under the operation \. 
J(, has moreover the following property: 
3.6. Jo(ft) = J0(a A b) + J()(b\a). 

Theorem 3. S is closed under the operation \. For every jt, y e S we have 
J(y) = J(xAy) + J(y\x). 

Proof. The first assertion follows from 1.13 and Lemma 2. Let x, yeS, e>0. 
Then there are a, be A such that J(xAa)<e, J(yAb)<e. Further 

\J(y)-J(xAy)-J(y\x)\^\J(y)-J(b)\ + 
+ \J(b)-J(aAb)-J(b\a)\ + \J(aAb)-J(xAy)\ + 

+ \J(b\a)-J(y\x)\^ 
^J(yAb) + 0 + J((aAb)A(xAy)) + J((b\a)A(y\x))^ 

^J(yAb) + J(aAx) + J(bAy) + J(bAy) + J(xAa)<5e. 

Limit theorems 

Now let all the assumptions 1.1—1.17 and 3.1—3.6 be satisfied. 

Theorem 4. Let xn eS (n = 1, 2, . . . ) , xn/x, lim J(xn)<oo. Then xeS (and, of 
n—»ac 

course, J(x) = \\m J(xn) by Theorem 1). 
n—•<» 
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Proof. By Theorem 3 we have 

J(xm) = J(xm AX„) + J(xm\xn). 

Since xm/x, then by 1.2 and 1.16 xmAxn/xAXn, xm\xn/x\xn, hence by 
Theorem 1 

J(x) = J(XAX„) + J(x\xn) = J(xn) + J(x\xn). 

We know (Theorem 1) that /(.*) = lim J(xn)<°°. Since /(.r)<oo, J(xn)<™ and 

also J(x\xn)<™, we have 

J(x\xn) = J(x)-J(xn), 

and therefore 

WmJ(x\xn) = 0. 
n—>•* 

Hence to every e>0 there is n such that J(x\xn)<el2. By 1.14 we have 
xAxn =x\xn, hence 

g(x,xn) = J(xAxn)<-. 

But xn e S, hence there is a e A such that 

g(x„,a)<-

and therefore 

g(x, a)<£. 

We see that xeA =S. 

Theorem 5. Letxn e S (n = 1,2,...), jcn\jc.*) Thenxe SandJ(x) = lim J(xn). 
n—+<x> 

Proof. First we prove that xeS. By 1.17 XiVrll\j:,Vr. But 

J(xl\xn) = J(xl)-J(xn) 

by Theorem 3, hence lim J(xx\xn)< oo. Hence by Theorem 4 JC,\JC e 5 and 

/(x,U) = lim J(x,\x„) = /(-c,) - lim /(*„). 

*) lim J(xn)> -oo automatically, because / is a non-negative function. 
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Now 1.15 and Theorem 3 imply that 

x = xt\(Xi\x) e S. 

Moreover by Theorem 3 

lim J(xn) = J(xx) - J(xt\x) = J(XAX,) = J(x). 

Linear case 

In this section we shall deal with lattice ordered groups and we adopt the 
terminology used in [2]. 

Theorem 6. Let G bean Abelian lattice ordered group, which is o-complete (i.e. 
every non-empty countable bounded subset of G has the supremum and the 
infimum). Let Fbe a subgroup of G closed under the lattice operations. Let there 
to everyxe G existan eF (n = 1, 2, ...) such thatx^van. Finally let/0:F'-»R be 
a linear positive operator such that xn\x, xneF (n = \, 2, ...), xeF implies 
I0(xn)\I0(x). 

Then there are a subgroup T containing F and closed under the operations 
x-+x*,x->x~ and a linear positive operator I: T-+R, which is an extension ofh 
and is continuous in the following sense: If xn/x (xn\x), xneT for bll n and 

(I(xn))n=i is bounded, then xe T and /(j:) = lim I(xn). 

Proof. Put H={xeG;x^O}, A=FnH, J0 = I0\A. Further let + be the 
group operation, a\b = a-(a/\b), aAb = \a — b\. Evidently all assumptions 
1.1—1.17, 3.1—3.6 are satisfied and hence all assertions of Theorems 2—5 hold. 
Of course, 5 need not be a subgroup and we do not know whether / is linear. 

First we prove that / is linear on 5. Let f,geS. Evidently f,gl%0. Put h=f+g. 
Then h^f, hence 

J{f+Q) = J{h) = J(f) + J(h\f) = 
= / ( / ) - f / ( A - / ) = / ( / ) -h / (^) . 

Now we define the set T={xeG; x = y-z, yeS, zeS}. Evidently T is 
a subgroup. If xe T, Then x = y-z9 where y, zeS. Hence 

x* = xvQ = (y-z)vO = (y-z)v(z-z) = 
= (yvz)-ze T 

and 

-x~=xAO = (y-z)AO = (yAz)-zeT. 

Hence we can define / : T—>R by the equality 

I(x) = J(x+)-J(x-). 
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If x = y — z, where v, z e 5, then y — z= x— x , hence v - f i = x * +- ^ and by the 
linearity of J 

J(>) + J(x ) = J(x*) + J(z). 

whence 

J(>)-JU)=J(jrwu ) = / (*) . 

If j r e F , then jr , x eA czS, hence x = x - . r e F. Moreover, 

/(x) = J0O-J(jr ) = J()(x )-J„(x ) = 
= I0(.0-/o(x ) = /„(jr), 

hence / is an extension of I„. 
If *,, jr2eF, j r , = > , - z , , Jt2 = >2 —-32, >i, >2, £., z2eS, then x, +x2 = 

= (y i+y2)-(-3.+ z2) and 

/(*, + x2) = Ay . + y2) - / (*, + z2) = 
= A y , ) - 4 z I ) + 4 y 2 ) - / ( z 2 ) = / ( - r I ) ^ / U 2 ) , 

/ is linear. / is also positive, since jr = > - z ^ O , >, z e 5 implies > ^ z , hence 
J(>)^J(z) and I(jr) = J(>)-J(z)^0. 

Finally, let xn/x, xn e F, (I(jr.f)).T=. is bounded. Then x^jr", x„\jr . 
Moreover, 

0^J ( j r ; ) = I(x.t) + J(x-)^I(xJ + J(jr7), 

0 ^ J ( j r - ) g J ( x , ) , 

hence both sequences (J(xn))n = { and (J(jr„)),T=, are bounded. By Theorems 4 and 

5, jr**", j r e S and J(x^) = lim J(x\). J(x ) = lim J(jr J, hence xeT and 

I(x) = J(x*)-J(x) = \\mI(xn). 

The dual assertion follows easily by the linearity of I. 

Remark. In any Abelian lattice ordered group the two definitions of 
pseudometric 

g(x,y) = J(xAy) 

and 

g,(x, y) = J(xvy)-J(x/\y) 

coincide. Indeed, in the case 

| . r - > | = ( . r v > ) - ( . * A > ) 
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(see [2], ch. XIV., § 4., Th. 8; of course, the proof is not very difficult). Since / is 
linear, we obtain 

J(\x-y\) = J(xvy)-J(xAy). 

Measure 

For measures we do not obtain any new result. 

Theorem 7. Let H be a relatively o-complete Boolean algebra, AczH be 
a Boolean ring and J0:A-+Ra finite measure. Then there is a measure J' defined 
on the d-ring D generated by A that is an extension of J0. 

Proof. We again apply Theorems 2—5. Here a + b = avb, a\b = a/\b' (b' is 
the complement of b), aAb = (a\b)v(b\a). The theorem will be proved if we 
show that DaS. But 5 is a ring closed under countable infimums, hence 5 is 
a d-ring over A. Therefore 5 contains the least <5-ring over A. 

REFERENCES 

[1] ALFSEN, E. M.: Order preserving maps and integration processes. Math. Ann. 149, 1963, 
419_461. 

[2] BIRKHOFF, G.: Lattice theory. 3. ed. Providence 1967. 
[3] BOURBAKI, N.: Elements de math6matique, VI, Integration. Paris. 
[4] BREHMER, S.: Verbandtheoretische Charakterisierung des Mass- und Integralbegriffs von 

Caratheodory. Potsdam. Forsch. 1974, B, 3, 88—91. 
[5] BREHMER, S.: Algebraic characterization of measure and integral by the method of 

Caratheodory, to appear. 
[6] DREWNOWSKI, L.: Topological rings of sets, continuous set functions, integration, I, II. Bull. 

Acad. Pol. Sci. 20, 1972, 269—286. 
[7] FUTAS, E.: Extension of linear operators. Mat. Cas. 22, 1972, 271—281. 
[8] FUTAS, E.: Extension of continuous functionals. Mat. Cas. 21, 1971, 191—198. 
[9] KLUVANEK, I.: O vcktorovcj micrc. Mat.-fyz. Cas. 7, 1957, 186—192. 

[10] PUGLISI, M. A.: Scminorme di Beppo Levi ed integrali di Daniell sopra uno spazio die Riesz 
astratto. Richerche di Matematica 13, 1969, 181—214. 

[11] RIECAN, B.: O HerrpepuBHOM npoAOJixeioDf MOHOTOHHUX <|>yHKiuiOHajiOB HeKoroporo THna. 
Mat.-fyz. Cas. 15, 1965, 116—125. 

[12] RIECAN, B.: O npoAOJUteHMM onepaxopos c 3Ha<ieHH5iMH B JIHHCHHHX no.nyynop*AOHeHH.brx 
npocTpaHCTBax. Gas. pest. Mat. 93, 1968, 459—471. 

[13] §ABO, M.: On an extension of finite functionals by the transfinite induction. Math. Slovaca 26, 
1976, 193—200. 

[14] TOPSOE, F : Topology and measure, In: Lecture notes in math. 133. Berlin 1970. 

Received October 23, 1975 
Katedra numcrickej matematiky 
a matematickej Statistiky PFUK 

Mlynska dolina 
816 31 Bratislava 

151 



ПРОДОЛЖЕНИЕ МЕР И ИНТЕГРАЛОВ ПРИ ПОМОЩИ ПСЕВДОМЕТРИКИ 

БелославРиечан 

Резюме 

В работе продолжается действительная функция ./„ определенная на некоторой подструктуре 
К данной структуры Н При помощи подходящей псевдометрики на Н продолжается .1,, на 
замыкание Н~ множества Я. Если в качестве Н взять некоторую структуру множеств, то 
возможно получить теорему о продолжении меры, если взять структуру функций, то возможно 
получить теорему о продолжении интеграла. 
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