Mathematic Slovaca

Alfred Geroldinger; Franz Halter-Koch
 Non-unique factorizations in block semigroups and arithmetical applications

Mathematica Slovaca, Vol. 42 (1992), No. 5, 641--661

Persistent URL: http://dml.cz/dmlcz/128623

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

NON-UNIQUE FACTORIZATIONS
 IN BLOCK SEMIGROUPS AND
 ARITHMETICAL APPLICATIONS

A. GEROLDINGER - . F. HALTER KOCH

Abstract

We study the structure of non-unique factorizations in block semigroups over finite abelian groups G with $\# G \geq 3$. As an application we obtain asymptotic formulas for certain functions associated with the non-uniqueness of factorizations in algebraic number fields.

§1. Factorizations in block semigroups

Throughout this paper, let G be an additively written finite abelian group, with $\# G \geq 3$.

We recall briefly the notion of block semigroups. Let $\mathcal{F}(G)$ be the multiplicative free abelian monoid with basis G. The elements of $\mathcal{F}(G)$ are of the form

$$
S=\prod_{g \in G} g^{v_{g}(S)}
$$

where $v_{g}(S) \in \mathbb{N}_{0}$, and we set

$$
\mathcal{B}(G)=\left\{B \in \mathcal{F}(G) \mid \sum_{g \in G} v_{g}(B) g=0 \in G\right\}
$$

$\mathcal{B}(G)$ is called the block semigroup over G, the elements of $\mathcal{B}(G)$ are called blocks. More generally, for a subset $G_{0} \subset G$, we set

$$
\mathcal{B}\left(G_{0}\right)=\left\{B \in \mathcal{B}(G) \mid v_{g}(B)=0 \quad \text { for all } g \in G \backslash G_{0}\right\} .
$$

The semigroups $\mathcal{B}\left(G_{0}\right)$ are Krull monoids; if $G_{0}=G$, then the embedding $\mathcal{B}(G) \hookrightarrow \mathcal{F}(G)$ is a divisor theory, the divisor class group is isomorphic to G. and every class contains exactly one prime divisor; see [7, Beispiel 6] and $[6, \S 3]$.

[^0]
A. GEROLDINGER - F. HALTER-KOCH

In particular, every $B \in \mathcal{B}(G)$ is a product of (finitely many) irreducible elements of $\mathcal{B}(G)$, which we call irreducible blocks.

Block semigroups were first introduced by W. Narkiewicz [12] as a combinatorial tool for the investigation of non-unique factorizations in algebraic number fields. In the sequel, they turned out not only to be an in fact very powerful tool [3] but also to be of structural interest [6].

For a block $B \in \mathcal{B}(G)$, we denote by $\mathbf{f}(B)$ the number of distinct factorizations of B into irreducible blocks (factorizations which differ only in the order of their factors are regarded as being equal). We set

$$
\begin{aligned}
\mathcal{B}_{k}(G) & =\{B \in \mathcal{B}(G) \mid \mathbf{f}(B) \leq k\} \quad \text { and } \\
\overline{\mathcal{B}}_{k}(G) & =\{B \in \mathcal{B}(G) \mid \mathbf{f}(B)=k\}
\end{aligned}
$$

Clearly,

$$
\mathcal{B}_{k}(G)=\bigcup_{j=1}^{k} \overline{\mathcal{B}}_{j}(G)
$$

and we are going to describe the structure of the sets $\mathcal{B}_{k}(G)$ and $\overline{\mathcal{B}}_{k}(G)$ in some detail. For this, we introduce the notion of independent subsets, cf. [2, §16].

DEFINITION 1. A subset $Q \subset G$ is called independent, if

$$
\sum_{g \in Q} n_{g} g=0 \quad \text { with } \quad n_{g} \in \mathbb{Z}
$$

implies $n_{g} g=0$ (i.e., $\left.n_{g} \equiv 0 \bmod \operatorname{ord}(g)\right)$ for all $g \in Q$. We set

$$
\rho(G)=\max \{\# Q \mid Q \subset G \quad \text { is independent }\}
$$

A subgroup $H<G$ is called essential, if $H \cap G_{1} \neq\{0\}$ for every subgroup $\{0\} \neq G_{1}<G$.

The group G is called elementary, if every element of G has square-free order. Obviously, a finite abelian group is elementary, if and only if it is a direct sum of cyclic groups of prime order; then it contains no proper essential subgroups.

For a prime p, we denote by $r_{p}(G)$ the p-rank of G, and for a subset $E \subset G$, we denote by $\langle E\rangle$ the subgroup generated by E. For $n \in \mathbb{N}$, let C_{n} be the cyclic group of order n.

The notion of independence as introduced differs slightly from the usual one, where 0 is excluded.

NON-UNIQUE FACTORIZATIONS IN BLOCK SEMIGROUPS

Lemma 1. Let $Q \subset G$ be an independent subset.
i) Q is a maximal independent subset if and only if $0 \in Q$ and $\langle Q\rangle$ is an essential subgroup.
ii) If G is elementary, then Q is maximal independent if and only if $0 \in Q$ and $G=\langle Q\rangle$.

Proof. [2, §16].
Proposition 1. We have

$$
\rho(G)=1+\sum_{p} r_{p}(G)
$$

(where the sum is taken over all prime numbers), and for an independent subset $Q \subset G$, the following assertions are equivalent:
i) $\# Q=\rho(G)$;
ii) Q is maximal independent and contains only elements of prime power order.

Proof. By [2, §16] we have

$$
\# Q=1+\sum_{p} r_{p}(G)
$$

for every maximal independent subset $Q \subset G$ containing only elements of prime power order. Therefore it is sufficient to prove that $\# Q<\rho(G)$, if $Q \subset G$ is an independent subset containing an element which is not of prime power order. If $Q=\left\{g_{1}, \ldots, g_{n}\right\} \subset G$ is independent and ord $\left(g_{1}\right)=$ de, where $d, e \in \mathbb{N}$, $d>1, e>1$ and $(d, e)=1$, then the set $Q^{\prime}=\left\{d g_{1}, e g_{1}, g_{2}, \ldots, g_{n}\right\}$ is also independent, and $\# Q<\# Q^{\prime} \leq \rho(G)$.

DEFINITION 2.

i) A system $($ in $G)$ is a pair (Q, σ), consisting of a subset $Q \subset G$ and a function $\sigma: G \backslash Q \rightarrow \mathbb{N}_{0}$; we set

$$
|\sigma|=\sum_{g \in G \backslash Q} \sigma(g) \in \mathbb{N}_{0}
$$

(the extremal cases $Q=\emptyset$ and $Q=G$ are not excluded).
ii) For a system (Q, σ) and $l \in \mathbb{N}_{0}$, we set

$$
\Omega(Q, \sigma)(l)=\left\{B \in \mathcal{B}(G) \left\lvert\, v_{g}(B)\left\langle\begin{array}{lll}
=\sigma(g) & \text { for all } & g \in G \backslash Q \\
\geq l & \text { for all } & g \in Q
\end{array}\right\}\right.\right.
$$

A. GEROLDINGER - F. HALTER-KOCH

and

$$
\Omega(Q, \sigma)=\Omega(Q, \sigma)(0)
$$

iii) Let (Q, σ) be a system and $k \in \mathbb{N} .(Q, \sigma)$ is called a k-system, if $\emptyset \neq \Omega(Q, \sigma) \subset \mathcal{B}_{k}(G) ;(Q, \sigma)$ is called a maximal k-system, if it is a k-system and if there is no k-system $\left(Q^{\prime}, \sigma^{\prime}\right)$ such that $Q \nsucceq Q^{\prime}$ and $\sigma^{\prime}=\left.\sigma\right|_{G \backslash Q^{\prime}}$.

Proposition 2. Let $Q \subset G$ be a maximal independent subset, $d=\max \{\operatorname{ord}(g) \mid g \in Q\} \geq 2$ and $k \in \mathbb{N}$. Then there exists a function $\sigma: G \backslash Q \rightarrow \mathbb{N}_{0}$ such that (Q, σ) is a k-system, $\Omega(Q, \sigma)(d k-1) \subset \overline{\mathcal{B}}_{k}(G)$, and moreover:
i) $|\sigma|=4 k$, if there exists an element $g_{0} \in G$ such that $\operatorname{ord}\left(g_{0}\right)=4$ and $2 g_{0} \in Q$.
ii) $|\sigma|=d k-1$, if either $d \geq 3$, or if there exist elements $g_{1}, g_{2} \in Q$ such that $g_{1} \neq g_{2}$ and $d=\operatorname{ord}\left(g_{1}\right)=\operatorname{ord}\left(g_{2}\right)=2$.

Proof. Since $\# G \geq 3$ and Q is maximal, Q fulfils one of the three conditions stated in i) and ii). We set $Q=\left\{g_{1}, \ldots, g_{r}\right\}$, where $r \geq 2, g_{1}, \ldots, g_{r}$ are distinct, $d_{i}=\operatorname{ord}\left(g_{i}\right)$ and $d_{1}=d$. Then the blocks $B_{i}=g_{i}^{d_{i}} \in \mathcal{B}(G)$ are irreducible.

Case 1. $g_{1}=2 g_{0}$, where $g_{0} \in G$ and ord $\left(g_{0}\right)=4$. We define $\sigma: G \backslash Q \rightarrow \mathbb{N}_{0}$ by

$$
\sigma(g)= \begin{cases}4 k-1, & \text { if } g=g_{0} \\ 1, & \text { if } g=-g_{0} \\ 0 & \text { otherwise }\end{cases}
$$

If $B=\left(2 g_{0}\right)^{n_{1}} g_{2}^{n_{2}} \ldots \ldots g_{r}^{n_{r}} g_{0}^{n_{0}}\left(-g_{0}\right)^{n_{0}^{\prime}} \in \mathcal{B}(G)$, then $\left(2 n_{1}+n_{0}-n_{0}^{\prime}\right) g_{0}+n_{2} g_{2}+$ $\cdots+n_{r} g_{r}=0$, and since Q is independent, we infer $2 n_{1}+n_{0}-n_{0}^{\prime} \equiv 0 \bmod 4$ and $n_{i} \equiv 0 \bmod d_{i}$ for all $i \in\{2, \ldots, r\}$. Therefore every block $B \in \Omega(Q, \sigma)$ has the form

$$
B=\left(2 g_{0}\right)^{2 m_{1}-1} g_{2}^{m_{2} d_{2}} \cdot \ldots \cdot g_{r}^{m_{r} d_{r}} g_{0}^{4 k-1}\left(-g_{0}\right)
$$

where $m_{1} \in \mathbb{N}, m_{2}, \ldots, m_{r} \in \mathbb{N}_{0}$, and the only irreducible blocks which may divide B are $B_{1}=\left(2 g_{0}\right)^{2}, B_{2}, \ldots, B_{r}, B_{0}=g_{0}^{4}, B_{0}^{\prime}=\left(2 g_{0}\right) g_{0}^{2}$ and $B_{0}^{*}=g_{0}\left(-g_{0}\right)$. Hence all factorizations of B into irreducible blocks are given by

$$
B=B_{1}^{j_{1}} B_{2}^{m_{2}} \cdot \ldots \cdot B_{r}^{m_{r}} B_{0}^{j_{0}} B_{0}^{\prime j_{0}^{\prime}} B_{0}^{*}
$$

where $j_{1}, j_{0}, j_{0}^{\prime} \in \mathbb{N}_{0}$ are such that $2 j_{1}+j_{0}^{\prime}=2 m_{1}-1$ and $4 j_{0}+2 j_{0}^{\prime}=4 k-2$, i.e., $j_{0}^{\prime}=2 j-1$, where $1 \leq j \leq \min \left(m_{1}, k\right)$ and $j_{1}=m_{1}-j, j_{0}=k-j$. Consequently, $\mathbf{f}(B)=\min \left(m_{1}, k\right) \leq k$, and $\mathbf{f}(B)=k$ if $m_{1} \geq k$, i.e., $B \in \Omega(Q, \sigma)(2 k-1)$.

NON-UNIQUE FACTORIZATIONS IN BLOCK SEMIGROUPS

Case 2. $d \geq 3$. We define $\sigma: G \backslash Q \rightarrow \mathbb{N}_{0}$ by

$$
\sigma(g)= \begin{cases}d k-1, & \text { if } g=-g_{1} \\ 0 & \text { otherwise }\end{cases}
$$

If $B=g_{1}^{n_{1}} \cdot \ldots \cdot g_{r}^{n_{r}}\left(-g_{1}\right)^{n_{1}^{\prime}} \in \mathcal{B}(G)$, then $\left(n_{1}-n_{1}^{\prime}\right) g_{1}+n_{2} g_{1}+\cdots+n_{r} g_{r}=0$, and since Q is independent, we infer $n_{1}-n_{1}^{\prime} \equiv 0 \bmod d_{1}$ and $n_{i} \equiv 0 \bmod d_{i}$ for all $i \in\{2, \ldots, r\}$. Therefore every block $B \in \Omega(Q, \sigma)$ has the form

$$
B=g_{1}^{d_{1} m_{1}-1} g_{2}^{d_{2} m_{2}} \cdot \ldots \cdot g_{r}^{d_{r} m_{r}}\left(-g_{1}\right)^{d_{1} k-1}
$$

where $m_{1} \in \mathbb{N}, m_{2}, \ldots, m_{r} \in \mathbb{N}_{0}$, and the only irreducible blocks which may divide B are $B_{1}, \ldots, B_{r}, B_{1}^{\prime}=\left(-g_{1}\right)^{d_{1}}$ and $B_{0}=g_{1}\left(-g_{1}\right)$. Hence all factorizations of B into irreducible blocks are given by

$$
B=B_{1}^{j_{1}} B_{2}^{m_{2}} \cdot \ldots \cdot B_{r}^{m_{r}} B_{1}^{\prime j_{1}^{\prime}} B_{0}^{j_{0}}
$$

where $j_{1}, j_{1}^{\prime}, j_{0} \in \mathbb{N}_{0}$ are such that $d_{1} j_{1}+j_{0}=d_{1} m_{1}-1$ and $d_{1} j_{1}^{\prime}+j_{0}=$ $d_{1} k-1$, i.e., $j_{0}=d_{1} j-1$, where $1 \leq j \leq \min \left(m_{1}, k\right)$ and $j_{1}=m_{1}-j$, $j_{1}^{\prime}=k-j$. Consequently, $\mathbf{f}(B)=\min \left(m_{1}, k\right) \leq k$, and $\mathbf{f}(B)=k$ if $m_{1} \geq k$, i.e., $B \in \Omega(Q, \sigma)(d k-1)$.

Case 3. $d_{1}=d_{2}=2$. We define $\sigma: G \backslash Q \rightarrow \mathbb{N}_{0}$ by

$$
\sigma(g)= \begin{cases}2 k-1, & \text { if } g=g_{1}+g_{2} \\ 0 & \text { otherwise }\end{cases}
$$

If $B=g_{1}^{n_{1}} g_{2}^{n_{2}} g_{3}^{n_{3}} \cdot \ldots \cdot g_{r}^{n_{r}}\left(g_{1}+g_{2}\right)^{n} \in \mathcal{B}(G)$, then $\left(n_{1}+n\right) g_{1}+\left(n_{2}+n\right) g_{2}+$ $n_{3} g_{3}+\cdots+n_{r} g_{r}=0$, and since Q is independent, we infer $n_{1} \equiv n_{2} \equiv n \bmod 2$ and $n_{i} \equiv 0 \bmod d_{i}$ for all $i \in\{3, \ldots, r\}$. Therefore every block $B \in \Omega(Q, \sigma)$ has the form

$$
B=g_{1}^{2 m_{1}-1} g_{2}^{2 m_{2}-1} g_{3}^{d_{3} m_{3}} \cdot \ldots \cdot g_{r}^{d_{r} m_{r}}\left(g_{1}+g_{2}\right)^{2 k-1}
$$

where $m_{1}, m_{2} \in \mathbb{N}, m_{3}, \ldots, m_{r} \in \mathbb{N}_{0}$, and the only irreducible blocks which may divide B are $B_{1}, \ldots, B_{r}, B_{0}=\left(g_{1}+g_{2}\right)^{2}$ and $B_{0}^{\prime}=g_{1} g_{2}\left(g_{1}+g_{2}\right)$. Hence all factorizations of B into irreducibles are given by

$$
B=B_{1}^{j_{1}} B_{2}^{j_{2}} B_{3}^{m_{3}} \cdot \ldots \cdot B_{r}^{m_{r}} B_{0}^{j_{0}} B_{0}^{j_{0}^{\prime}}
$$

where $j_{1}, j_{2}, j_{0}, j_{0}^{\prime} \in \mathbb{N}_{0}$ are such that $2 j_{1}+j_{0}^{\prime}=2 m_{1}-1,2 j_{2}+j_{0}^{\prime}=2 m_{2}-1$ and $2 j_{0}+j_{0}^{\prime}=2 k-1$, i.e., $j_{0}^{\prime}=2 j-1$, where $1 \leq j \leq \min \left(m_{1}, m_{2}, k\right)$ and $j_{0}=k-j, j_{1}=m_{1}-j, j_{2}=m_{2}-j$. Consequently, $\mathbf{f}(B)=\min \left(m_{1}, m_{2}, k\right) \leq k$, and $\mathbf{f}(B)=k$, if $B \in \Omega(Q, \sigma)(2 k-1)$.

A. GEROLDINGER - F. HALTER-KOCH

Definition 3. For every maximal independent subset $Q \subset G$ and $k \in \mathbb{N}$, we set

$$
\begin{gathered}
\psi_{k}(Q)=\max \{|\sigma| \mid(Q, \sigma) \text { is a k-system }\} \\
\bar{\psi}_{k}(Q)=\max \left\{|\sigma| \mid(Q, \sigma) \text { is a } k \text {-system, } \Omega(Q, \sigma) \cap \overline{\mathcal{B}}_{k}(G) \neq \emptyset\right\}
\end{gathered}
$$

(by Proposition 2, the sets $\{|\sigma| \mid \ldots\}$ are not empty), and

$$
\begin{aligned}
& \psi_{k}(G)=\max \left\{\psi_{k}(Q) \mid Q \subset G \text { is independent, } \# Q=\rho(G)\right\}, \\
& \bar{\psi}_{k}(G)=\max \left\{\bar{\psi}_{k}(Q) \mid Q \subset G \text { is independent, } \# Q=\rho(G)\right\} .
\end{aligned}
$$

We shall investigate the combinatorial invariants $\psi_{k}(G)$ and $\bar{\psi}_{k}(G)$ in $\S 3$. We shall obtain estimates from above and from below, and in a few cases we shall determine their precise values. Obviously, we have

$$
\psi_{\boldsymbol{k}}(G)=\max \left\{\bar{\psi}_{j}(G) \mid 1 \leq j \leq k\right\} .
$$

In the next Proposition we characterize the independent subsets of G.
Proposition 3. For a subset $Q \subset G$, the following assertions are equivalent:
i) Q is independent.
ii) $\mathcal{B}(Q)$ is a free abelian monoid.
iii) There exists a function $\sigma: G \backslash Q \rightarrow \mathbb{N}_{0}$ and integers $k \in \mathbb{N}, l \in \mathbb{N}_{0}$ such that $\emptyset \neq \Omega(Q, \sigma)(l) \subset \mathcal{B}_{k}(G)$.
If Q is independent, $Q=\left\{g_{1}, \ldots, g_{r}\right\}$, where g_{1}, \ldots, g_{r} are distinct, $d_{i}=\operatorname{ord}\left(g_{i}\right)$ and $B_{i}=g_{i}^{d_{i}}$, then $\mathcal{B}(Q)$ is the free abelian monoid with basis B_{1}, \ldots, B_{r}.

Proof. We set $Q=\left\{g_{1}, \ldots, g_{r}\right\}$, where g_{1}, \ldots, g_{r} are distinct and $d_{i}=\operatorname{ord}\left(g_{i}\right)$; then the blocks $B_{i}=g_{i}^{d_{i}}$ are irreducible.

We prove first that ii) and iii) are violated, if Q is not independent. Indeed, suppose that there is a relation of the form $n_{1} g_{1}+\cdots+n_{r} g_{r}=0$, where $0 \leq$ $n_{i}<d_{i}$ and $\left(n_{1}, \ldots, n_{r}\right) \neq(0, \ldots, 0)$. Then we have $B_{0}=g_{1}^{n_{1}} \cdot \ldots \cdot g_{r}^{n_{r}} \in \mathcal{B}(Q)$, and we may assume that B_{0} is irreducible. We set $d=d_{1} \cdot \ldots \cdot d_{r}, d_{i}^{\prime}=d_{i}^{-1} d$ and $B=B_{0}^{k d}\left(B_{1} \cdot \ldots \cdot B_{r}\right)^{l} \in \mathcal{B}(Q)$ (where $l \in \mathbb{N}_{0}$ is arbitrary). For every $0 \leq j \leq k, B$ has the factorization

$$
B=B_{0}^{j d} \cdot \prod_{i=1}^{r} B_{i}^{(k-j) n_{i} d_{i}^{\prime}+l}
$$

into irreducible blocks, whence $\mathbf{f}(B) \geq k+1$.
i) \Longrightarrow iii) follows from Proposition 2.

If Q is independent, then every $B \in \mathcal{B}(Q)$ has a unique representation in the form $B=B_{1}^{n_{1}} \cdot \ldots \cdot B_{r}^{n_{r}}$; therefore $\mathcal{B}(Q)$ is free abelian with basis B_{1}, \ldots, B_{r}.

The following Theorem uncovers the structure of the sets $\mathcal{B}_{k}(G)$ and $\mathcal{B}_{k}(G)$.
Theorem 1. Let $k \in \mathbb{N}$ be a positive integer.
i) There exist only finitely many maximal k-systems $\left(Q_{1}, \sigma_{1}\right), \ldots$, $\left(Q_{m}, \sigma_{m}\right)$, and

$$
\begin{equation*}
\mathcal{B}_{k}(G)=\bigcup_{j=1}^{m} \Omega\left(Q_{j}, \sigma_{\jmath}\right) \tag{*}
\end{equation*}
$$

ii) Let (Q, σ) be a k-system. Then we have either

$$
\Omega(Q, \sigma) \cap \overline{\mathcal{B}}_{k}(G)=\emptyset
$$

or there exists an integer $l \in \mathbb{N}_{0}$ such that

$$
\Omega(Q, \sigma)(l) \subset \overline{\mathcal{B}}_{k}(G)
$$

iii) There exist (finitely many) k-systems $\left(\bar{Q}_{1}, \bar{\sigma}_{1}\right), \ldots,\left(\bar{Q}_{r}, \sigma_{r}\right)$ and integers $l_{1}, \ldots, l_{r} \in \mathbb{N}_{0}$ such that

$$
\begin{equation*}
\overline{\mathcal{B}}_{k}(G)=\bigcup_{i=1}^{r} \Omega\left(\bar{Q}_{i}, \bar{\sigma}_{i}\right)\left(l_{i}\right) \tag{**}
\end{equation*}
$$

iv) Let $(Q, \sigma),\left(Q_{1}, \sigma_{1}\right), \ldots,\left(Q_{n}, \sigma_{n}\right)$ be k-systems, $l \in \mathbb{N}_{0}$ and

$$
\Omega(Q, \sigma)(l) \subset \bigcup_{i=1}^{n} \Omega\left(Q_{i}, \sigma_{i}\right)
$$

Then we have $Q \subset Q_{i}$ and $\sigma_{i}=\left.\sigma\right|_{G \backslash Q_{i}}$ for some $i \in\{1, \ldots, n\}$.
In particular, in the representations (*) and (**) in i) and ii) above, every maximal independent subset Q of G appears among Q_{1}, \ldots, Q_{m} as well as among $\bar{Q}_{1}, \ldots, \bar{Q}_{r}$, and the corresponding constituent of the union cannot be left out.

A. GEROLDINGER - F. HALTER-KOCH

Proof.
i) If $B \in \mathcal{B}_{k}(G)$ and $\sigma: G \rightarrow \mathbb{N}_{0}$ is defined by $\sigma(g)=v_{g}(B)$, then (\emptyset, σ) is a k-system, and $B \in \Omega(\emptyset, \sigma)$. Since for every k-system (Q, σ) there exists a maximal k-system $\left(Q^{\prime}, \sigma^{\prime}\right)$ such that $\Omega(Q, \sigma) \subset \Omega\left(Q^{\prime}, \sigma^{\prime}\right)$ it remains to prove that there are only finitely many maximal k-systems. If not, then there exists an independent subset $Q \subset G$, and there exist infinitely many functions $\sigma: G \backslash Q \rightarrow \mathbb{N}_{0}$ for which (Q, σ) is a k-system. In particular, there exists a sequence of functions $\left(\sigma_{n}: G \backslash Q \rightarrow \mathbb{N}_{0}\right)_{n \geq 0}$ such that all $\left(Q, \sigma_{n}\right)$ are k-systems, and $\lim _{n \rightarrow \infty} \sigma_{n}\left(g_{1}\right)=\infty$ for some $g_{1} \in G \backslash Q$. By extracting subsequences of $\left(\sigma_{n}\right)_{n \geq 0}$, we arrive, in a finite number of steps, at the following situation: there exists a subset $\emptyset \neq Q_{1} \subset G \backslash Q$, an integer $M \in \mathbb{N}$ and a sequence of functions $\left(\sigma_{n}: G \backslash Q \rightarrow \mathbb{N}_{0}\right)_{n \geq 0}$ such that all $\left(Q, \sigma_{n}\right)$ are k-systems, $\lim _{n \rightarrow \infty} \sigma_{n}(g)=\infty$ for all $g \in Q_{1}$, and $\sigma_{n}(g) \leq M$ for all $n \geq 0$ and all $g \in G \backslash\left(Q \cup Q_{1}\right)$. Therefore there exists a function $\sigma: G \backslash\left(Q \cup Q_{1}\right) \rightarrow \mathbb{N}_{0}$ and a subsequence $\left(\sigma_{n_{j}}\right)_{j \geq 0}$ of $\left(\sigma_{n}\right)_{n \geq 0}$ such that $\sigma_{n j}(g)=\sigma(g)$ for all $j \geq 0$ and all $g \in G \backslash\left(Q \cup Q_{1}\right)$. We contend that $\left(Q \cup Q_{1}, \sigma\right)$ is a k-system (contradicting the maximality of the k-systems $\left.\left(Q, \sigma_{n_{j}}\right)\right)$. Indeed, $\emptyset \neq \Omega\left(Q, \sigma_{n_{j}}\right) \subset \Omega\left(Q \cup Q_{1}, \sigma\right)$, and if $B \in \Omega\left(Q \cup Q_{1}, \sigma\right)$, then there exists an index $j \geq 0$ such that $\sigma_{n_{j}}(g) \geq v_{g}(B)$ for all $g \in Q_{1}$, and therefore there exists a block $B \in \Omega\left(Q, \sigma_{n_{j}}\right)$ such that $\bar{B}=B B^{\prime}$ for some $B^{\prime} \in \mathcal{B}(G)$, whence $\mathbf{f}(B) \leq \mathbf{f}(\bar{B}) \leq k$, i.e., $B \in \mathcal{B}_{k}(G)$.
ii) Fix a block $B_{0} \in \Omega(Q, \sigma) \cap \overline{\mathcal{B}}_{k}(G)$, and set $l=\max \left\{v_{g}\left(B_{0}\right) \mid g \in Q\right\}$. If $B \in \Omega(Q, \sigma)(l)$, then $B=B_{0} B^{\prime}$ for some $B^{\prime} \in \mathcal{B}(G)$, and therefore we have $k=\mathbf{f}\left(B_{0}\right) \leq \mathbf{f}(B) \leq k$, i.e. $B \in \overline{\mathcal{B}}_{k}(G)$.
iii) By i), we have

$$
\overline{\mathcal{B}}_{k}(G)=\bigcup_{j=1}^{m} \Omega\left(Q_{j}, \sigma_{j}\right) \cap \overline{\mathcal{B}}_{k}(G),
$$

and therefore it is sufficient to prove the following statement:
Given a k-system (Q, σ) such that $\Omega(Q, \sigma) \cap \overline{\mathcal{B}}_{k}(G) \neq \emptyset$, then there exist finitely many k-systems $\left(Q_{i}, \sigma_{i}\right)(i=1, \ldots, n)$ and $l_{1}, \ldots, l_{n} \in \mathbb{N}_{0}$ such that

$$
\Omega(Q, \sigma) \cap \overline{\mathcal{B}}_{k}(G)=\bigcup_{i=1}^{n} \Omega\left(Q_{i}, \sigma_{i}\right)\left(l_{i}\right)
$$

We do this by induction on $\# Q$. For $Q=\emptyset$, there is nothing to prove. Thus suppose $Q \neq \emptyset$; by ii), there exists an integer $l \in \mathbb{N}_{0}$ such that $\Omega(Q, \sigma)(l) \subset$ $\overline{\mathcal{B}}_{k}(G)$, and we obtain

$$
\Omega(Q, \sigma)=\Omega(Q, \sigma)(l) \cup \bigcup_{\left(Q^{\prime}, \sigma^{\prime}\right)} \Omega\left(Q^{\prime}, \sigma^{\prime}\right)
$$

where the union is taken over all proper subsets $Q^{\prime} \varsubsetneqq Q$ and all functions $\sigma^{\prime}: G \backslash Q^{\prime} \rightarrow \mathbb{N}_{0}$ satisfying $\left.\sigma^{\prime}\right|_{G \backslash Q}=\sigma, \sigma^{\prime}(g)<l$ for all $g \in Q \backslash Q^{\prime}$ and $\Omega\left(Q^{\prime}, \sigma^{\prime}\right) \neq \emptyset$. This implies

$$
\Omega(Q, \sigma) \cap \overline{\mathcal{B}}_{k}(G)=\Omega(Q, \sigma)(l) \cup \bigcup_{\left(Q^{\prime}, \sigma^{\prime}\right)} \Omega\left(Q^{\prime}, \sigma^{\prime}\right) \cap \overline{\mathcal{B}}_{k}(G)
$$

and the assertion follows by induction hypothesis.
iv) Let $B \in \Omega(Q, \sigma)(l)$ be a block satisfying $v_{g}(B)>\max \left\{\left|\sigma_{1}\right|, \ldots,\left|\sigma_{n}\right|\right\}$ for all $g \in Q$. If then $B \in \Omega\left(Q_{i}, \sigma_{i}\right)$ for some i, we infer $Q \subset Q_{i}$, and $\sigma_{i}(g)=v_{g}(B)=\sigma(g)$ for all $g \in G \backslash Q_{i}$.

Now let $Q \subset G$ be a maximal independent subset. By Proposition 2, there exists a function $\sigma: G \backslash Q \rightarrow \mathbb{N}_{0}$ and $l \in \mathbb{N}_{0}$ such that

$$
\Omega(Q, \sigma) \subset \mathcal{B}_{k}(G)=\bigcup_{j=1}^{m} \Omega\left(Q_{j}, \sigma_{j}\right)
$$

and

$$
\Omega(Q, \sigma)(l) \subset \overline{\mathcal{B}}_{k}(G)=\bigcup_{j=1}^{r} \Omega\left(\bar{Q}_{i}, \bar{\sigma}_{i}\right)\left(l_{i}\right)
$$

By the above argument, we infer $Q \subset Q_{j}, \sigma_{j}=\left.\sigma\right|_{G \backslash Q_{j}}$ for some $j \in\{1$, $\ldots, n\}$, and $Q \subset \bar{Q}_{i}, \bar{\sigma}_{i}=\left.\sigma\right|_{G \backslash \bar{Q}_{i}}$ for some $i \in\{1, \ldots, r\}$. Since Q is a maximal independent subset of G, this implies $Q=Q_{j}$ and $Q=\bar{Q}_{i}$, whence the assertion.

§2. Arithmetical applications

Let K be an algebraic number field, R its ring of integers, \mathcal{I} the semigroup of non-zero ideals of R, \mathcal{H} the semigroup of non-zero principal ideals of R, $G=\mathcal{I} / \mathcal{H}$ the ideal class group, and $h=\# G$ the class number of K. If \mathcal{P} denotes the set of all maximal ideals of R, then \mathcal{I} is the free abelian monoid with basis \mathcal{P}. For $\mathfrak{a} \in \mathcal{I}$, we denote by $[\mathfrak{a}] \in G$ the ideal class containing \mathfrak{a}, and we write G additively so that $[\mathfrak{a b}]=[\mathfrak{a}]+[\mathfrak{b}]$ for all $\mathfrak{a}, \mathfrak{b} \in \mathcal{I}$.

Every element $\alpha \in R^{\#}=R \backslash\left(R^{\times} \cup\{0\}\right)$ has a factorization $\alpha=u_{1}$. $\cdot \ldots \cdot u_{r}$, where $u_{i} \in R$ are irreducible elements of R; we call r the length of the factorization. If $h=1$, then R is factorial, and the factorization of any $\alpha \in R^{\#}$ into irreducibles is essentially unique (i.e., it is unique up to associated irreducibles and the order of the factors). If $h>1$, then there are

A. GEROLDINGER - F. HALTER-KOCH

elements $\alpha \in R^{\#}$ with several distinct factorizations, and G is said to measure the deviation of R from being factorial. For concrete results supporting this philosophy see [7] and the literature quoted there.

The arithmetic of R is connected with the arithmetic of the block semigroup $\mathcal{B}(G)$ in the following way (cf. [3]):

For $\alpha \in R^{\#}$, we consider the prime ideal decomposition

$$
(\alpha)=\mathfrak{p}_{1} \cdot \ldots \cdot \mathfrak{p}_{m}
$$

with $\mathfrak{p}_{j} \in \mathcal{P}$ and set

$$
\boldsymbol{\beta}(\alpha)=\left[\mathfrak{p}_{1}\right] \cdot \ldots \cdot\left[\mathfrak{p}_{m}\right] \in \mathcal{B}(G) ;
$$

$\boldsymbol{\beta}(\alpha)$ is called the block of α. An element $\alpha \in R^{\#}$ is irreducible in R if and only if $\boldsymbol{\beta}(\alpha) \in \mathcal{B}(G)$ is an irreducible block. If $\alpha=u_{1} \cdot \ldots \cdot u_{r}$ is a factorization of α into irreducible elements of R, then $\boldsymbol{\beta}(\alpha)=\boldsymbol{\beta}\left(u_{1}\right) \cdot \ldots \cdot \boldsymbol{\beta}\left(u_{r}\right)$ is a factorization of $\boldsymbol{\beta}(\alpha)$ into irreducible blocks, and every factorization of $\boldsymbol{\beta}(\alpha)$ in $\mathcal{B}(G)$ arises in this way.

Two factorizations

$$
\alpha=u_{1} \cdot \ldots \cdot u_{r}, \quad \alpha=u_{1}^{\prime} \cdot \ldots \cdot u_{s}^{\prime}
$$

of α into irreducible elements of R are called block-equivalent, if the corresponding factorizations

$$
\boldsymbol{\beta}(\alpha)=\boldsymbol{\beta}\left(u_{1}\right) \cdot \ldots \cdot \boldsymbol{\beta}\left(u_{r}\right), \quad \boldsymbol{\beta}(\alpha)=\boldsymbol{\beta}\left(u_{1}^{\prime}\right) \cdot \ldots \cdot \boldsymbol{\beta}\left(u_{s}^{\prime}\right)
$$

in $\mathcal{B}(G)$ differ at most in the order of their factors. We denote by

$$
\mathbf{f}^{*}(\alpha)=\mathbf{f}(\boldsymbol{\beta}(\alpha))
$$

the number of not block-equivalent factorizations of a.
Using this terminology, we obtain the following extension of a classical result of L. Carlitz [1].

Proposition 4. For an algebraic number field K, the following assertions are equivalent:
i) $h \leq 2$.
ii) $\mathbf{f}^{*}(\alpha)=1$ for all $\alpha \in R^{\#}$.
iii) For every $\alpha \in R^{\#}$, any two factorizations of α into irreducibles have the same length.

Proof.

i) \Longrightarrow ii): If $h \leq 2$, then $G=\{0, g\}$ and $\mathcal{B}(G)$ is factorial (it is the free abelian monoid with basis $\left\{0, g^{2}\right\}$), and therefore $\mathbf{f}^{*}(a)=1$ for all $a \in R^{\#}$.
ii) \Longrightarrow iii) : follows from the simple observation that any two blockequivalent factorizations of an element $\alpha \in R^{\#}$ have the same length.
iii) \Longrightarrow i) : See [1].

The quantities $\mathbf{f}^{*}(\alpha)$ give rise to the following quantitative results. For $k \in \mathbb{N}$ and $x \in \mathbb{R}_{>0}$, we set

$$
\begin{aligned}
& B_{k}(x)=\#\left\{(\alpha) \in \mathcal{H}\left|\alpha \in R^{\#}, \quad\right| \mathcal{N}(\alpha) \mid \leq x, \quad \mathbf{f}^{*}(\alpha) \leq k\right\}, \\
& \bar{B}_{k}(x)=\#\left\{(\alpha) \in \mathcal{H}\left|\alpha \in R^{\#}, \quad\right| \mathcal{N}(\alpha) \mid \leq x, \quad \mathbf{f}^{*}(\alpha)=k \cdot\right\} .
\end{aligned}
$$

and we determine the asymptotic behaviour of these functions as follows.
Theorem 2. For $k \in \mathbb{N}$ and $x \geq e^{e}$, we have

$$
\begin{aligned}
& B_{k}(x)=x(\log x)^{-1+\frac{\rho(G i)}{h}}\left[V_{k}(\log \log x)+O\left((\log x)^{-\gamma h}(\log \log x)^{M \prime}\right)\right] \\
& \bar{B}_{k}(x)=x(\log x)^{-1+\frac{\rho(G)}{h}}\left[V_{k}(\log \log x)+O\left((\log x)^{-\gamma n}(\log \log x)^{M \prime}\right)\right]
\end{aligned}
$$

where $V_{k}, \bar{V}_{k} \in \mathbb{C}[X]$ are polynomials with positive leading coefficient, deg $V_{k}=$ $\psi_{k}(G), \operatorname{deg} \bar{V}_{k}=\bar{\psi}_{k}(G), \gamma_{h}=\frac{1}{h}\left(1-\cos \frac{2 \pi}{h}\right)$, and $M \in \mathbb{N}$ depend.s on k and K.

Proof. By Theorem 1, we have

$$
\mathcal{B}_{k}(G)=\bigcup_{j=1}^{m} \Omega\left(Q_{j}, \sigma_{j}\right), \quad \mathcal{B}_{k}(G)=\bigcup_{i=1}^{r} \Omega\left(Q_{2}^{\prime}, \sigma_{2}^{\prime}\right)\left(l_{t}\right) .
$$

where $\left(Q_{j}, \sigma_{j}\right)$ and $\left(Q_{i}^{\prime}, \sigma_{i}^{\prime}\right)$ are k-systems, $l_{i} \in \mathbb{N}_{0}$,

$$
\rho(G)=\max \left\{\# Q_{j} \mid j=1, \ldots, m\right\}=\max \left\{\# Q_{1}^{\prime} \mid i=1, \ldots, r\right\},
$$

and

$$
\begin{aligned}
\psi_{k}(G) & =\max \left\{\left|\sigma_{j}\right| \mid j=1, \ldots, m, \quad \# Q_{J}=\rho(G)\right\} \\
\bar{\psi}_{k}(G) & =\max \left\{\left|\sigma_{i}^{\prime}\right| \mid i=1, \ldots, r, \quad \# Q_{i}^{\prime}=\rho(G)\right\}
\end{aligned}
$$

Now the assertion follows from the following Lemma, due to J. K a c zo rowski [11] (Lemma 2 and p. 66/67):

LEMMA 2. Let $\left(Q_{1}, \sigma_{1}\right), \ldots,\left(Q_{n}, \sigma_{n}\right)$ be systems in G and $l_{1}, \ldots, l_{n} \in \mathbb{N}_{0}$ such that $\Omega\left(Q_{i}, \sigma_{i}\right)\left(l_{i}\right) \neq \emptyset$ for all $i \in\{1, \ldots, n\}$, and set

$$
\Omega=\bigcup_{i=1}^{n} \Omega\left(Q_{i}, \sigma_{i}\right)\left(l_{i}\right)
$$

Then we have, for $x \geq e^{e}$,

$$
\begin{aligned}
\#\{(\alpha) \in \mathcal{H} \mid \alpha & \left.\in R^{\#}, \quad|\mathcal{N}(\alpha)| \leq x, \quad \boldsymbol{\beta}(\alpha) \in \Omega\right\} \\
& =x(\log x)^{-1+\frac{\rho}{h}}\left[V(\log \log x)+O\left((\log x)^{-\gamma_{h}}(\log \log x)^{M}\right)\right]
\end{aligned}
$$

where

$$
\rho=\max \left\{\# Q_{i} \mid \quad i=1, \ldots, n\right\}
$$

$V \in \mathbb{C}[X]$ is a polynomial with positive leading coefficient and

$$
\operatorname{deg} V=\max \left\{\left|\sigma_{i}\right| \mid i=1, \ldots, n, \quad \# Q_{i}=\rho_{i}\right\}
$$

$\gamma_{h}=\frac{1}{h}\left(1-\cos \frac{2 \pi}{h}\right)$ and $M=M(\Omega) \in \mathbb{N}$.
There are several other functions connected with non-unique factorizations in algebraic number fields whose asymptotic behaviour has been investigated. For $\alpha \in R^{\#}$, let $\mathbf{f}(\alpha)$ be the number of essentially distinct factorizations of α into irreducible elements of R and $\mathbf{l}(\alpha)$ the number of distinct lengths of such factorizations. Among others, the following functions were considered:

$$
\begin{array}{lll}
F_{k}(x)=\#\left\{(\alpha) \in \mathcal{H} \mid \alpha \in R^{\#},\right. & |\mathcal{N}(\alpha)| \leq x, & \mathbf{f}(\alpha) \leq k\} \\
\bar{F}_{k}(x)=\#\left\{(\alpha) \in \mathcal{H} \mid \alpha \in R^{\#},\right. & |\mathcal{N}(\alpha)| \leq x, & \mathbf{f}(\alpha)=k\} \\
G_{k}(x)=\#\left\{(\alpha) \in \mathcal{H} \mid \alpha \in R^{\#},\right. & |\mathcal{N}(\alpha)| \leq x, & \mathbf{l}(\alpha) \leq k\} \\
\bar{G}_{k}(x)=\#\left\{(\alpha) \in \mathcal{H} \mid \alpha \in R^{\#},\right. & |\mathcal{N}(\alpha)| \leq x, & \mathbf{l}(\alpha)=k\}
\end{array}
$$

All these functions have, for $x \rightarrow \infty$, an asymptotical behaviour of the form

$$
(C+o(1)) x(\log x)^{-1+q}(\log \log x)^{d}
$$

where $C>0,0<q<1$ and $d \in \mathbb{N}$. This was shown

- for F_{k} in [14] (with $q=\frac{1}{h}$); d was investigated in [12] and [15],
- for \bar{F}_{k} in [5] and [9] (with $q=\frac{1}{h}$),
- for G_{k} and \bar{G}_{k} in [16] and [4].

In any case, the remainder term $o(1)$ can be made more precise by means of the method of Kaczorowski [11]. All results (also these for B_{k} and \bar{B}_{k}) remain valid in the general context of formations as introduced in [10].

§3. The invariants $\psi_{k}(G)$ and $\bar{\psi}_{k}(G)$

Let again G be a finite abelian group and $\# G \geq 3$. For $k \in \mathbb{N}$, we denote by $D_{k}(G)$ the generalized Davenport constant [8], which is defined as follows:
$D_{k}(G)$ is the minimal number such that, for every

$$
S=\prod_{g \in G} g^{v_{g}(S)} \in \mathcal{F}(G)
$$

satisfying

$$
\sum_{g \in G} v_{g}(S) \geq D_{k}(G)
$$

there exist irreducible blocks $B_{1}, \ldots, B_{k} \in \mathcal{B}(G)$ such that

$$
S=B_{1} \cdot \ldots \cdot B_{k} S^{\prime}
$$

for some $S^{\prime} \in \mathcal{F}(G)$.

Proposition 5.

i) If e is the exponent of G, then we have, for $k \in \mathbb{N}$,

$$
\psi_{k}^{\prime}(G) \leq \sum_{0 \neq g \in G}(\operatorname{ord}(g)-1)+(k-1) \epsilon-\rho(G)+1
$$

ii) If G is an elementary group, then we have, for $k \in \mathbb{N}$,

$$
\psi_{k}(G) \leq D_{k}(G)-1
$$

Proof. We assume that there exists a subset $Q \subset G$ and a function $\sigma: G \backslash Q \rightarrow \mathbb{N}_{0}$ such that (Q, σ) is a k-system, $\# Q=\rho(G)$, and $|\sigma|$ exceeds the bounds given in the Proposition.
i) Suppose that $|\sigma|>\sum_{0 \neq g \in G}(\operatorname{ord}(g)-1)+(k-1) e-\rho(G)+1, l \geq k e$ and $B \in \Omega(Q, \sigma)(l) \subset \mathcal{B}_{k}(G)$. We assert that there exist elements $a_{1}, \ldots, a_{k} \in G \backslash Q$ such that $d_{i}=\operatorname{ord}\left(a_{i}\right)$ and $B=a_{1}^{d_{1}} \cdot \ldots \cdot a_{k}^{d_{k}} B^{\prime}$ for some $B^{\prime} \in \mathcal{B}(G)$. Indeed, if $i \in\{1, \ldots, k\}$ and $a_{1}, \ldots, a_{i-1} \in G \backslash Q$ are such that $B=a_{1}^{d_{1}} \cdot \ldots \cdot a_{i-1}^{d_{i-1}} B_{i}$ for some $B_{i} \in \mathcal{B}(G)$, then

$$
\begin{aligned}
\sum_{g \in G \backslash Q} v_{g}\left(B_{i}\right) & =\sum_{g \in G \backslash Q} v_{g}(B)-d_{1}-\cdots-d_{i-1} \geq|\sigma|-(i-1) r \\
& >\sum_{0 \neq g \in G}(\operatorname{ord}(g)-1)-(\rho(G)-1) \geq \sum_{g \in G \backslash Q}(\operatorname{ord}(g)-1)
\end{aligned}
$$

A. GEROLDINGER - F. HALTER-KOCH

and therefore there exists an element $a_{i} \in G \backslash Q$ such that $B_{i}=a_{i}^{d_{i}} B_{i}^{\prime}$ for some $B_{i}^{\prime} \in \mathcal{B}(G)$.

It follows that B is divisible by a block B_{0} of the form

$$
B_{0}=a_{1}^{d_{1}} \cdot \ldots \cdot a_{k}^{d_{k}} \cdot \prod_{g \in Q} g^{k e},
$$

and hence $\mathbf{f}\left(B_{0}\right) \leq \mathbf{f}(B) \leq k$.
Since Q is a maximal independent subset of G, the subgroup $\langle Q\rangle$ of G is essential (Lemma 1), and therefore we obtain relations

$$
-m_{i} a_{i}=\sum_{g \in G} n_{g, i} g \quad(i=1, \ldots, k)
$$

where $1 \leq m_{i}<d_{i}$ and $0 \leq n_{g, i}<\operatorname{ord}(g) \leq e$. If we choose these relations so that, for each $i, m_{i}+\sum_{g \in Q} n_{g, i}$ is minimal, then the blocks

$$
C_{i}=a_{i}^{m_{i}} \cdot \prod_{g \in Q} g^{n_{g, i}} \in \mathcal{B}(G)
$$

are irreducible. Now we obtain, for $j=0,1, \ldots, k$,

$$
B_{0}=C_{1} \cdot \ldots \cdot C_{j} a_{j+1}^{d_{j+1}} \cdot \ldots \cdot a_{k}^{d_{k}} \cdot \prod_{g \in Q} g^{k e-\sum_{i=1}^{j} n_{g, i}} \cdot \prod_{i=1}^{j} a_{i}^{d_{i}-m_{i}},
$$

and therefore $\mathbf{f}\left(B_{0}\right) \geq k+1$, a contradiction.
ii) Let G be elementary, $|\sigma| \geq D_{k}(G), l \geq k e$ and $B \in \Omega(Q, \sigma)(l) \subset \mathcal{B}_{k}(G)$. By definition of $D_{k}(G)$, there exist irreducible blocks $A_{1}, \ldots, A_{k} \in \mathcal{B}(G \backslash Q)$ such that $A_{1} \cdot \ldots \cdot A_{k}$ divides B. Therefore B is also divisible by a block B_{0} of the form

$$
B_{0}=A_{1} \cdot \ldots \cdot A_{k} \cdot \prod_{g \in Q} g^{k \epsilon}
$$

and hence $\mathbf{f}\left(B_{0}\right) \leq \mathbf{f}(B) \leq k$. For every $i \in\{1, \ldots, k\}$, let $a_{i} \in G \backslash Q$ be an element satisfying $v_{a_{i}}\left(A_{i}\right)>0$, and set $A_{i}=a_{i} A_{i}^{\prime}$. By Lemma $1,\langle Q\rangle$ is an essential subgroup of G, and since G is elementary, we have $\langle Q\rangle=G$. Therefore there exist relations of the form

$$
-a_{i}=\sum_{g \in Q} n_{g, i} g \quad(i=1, \ldots, k),
$$

NON-UNIQUE FACTORIZATIONS IN BLOCK SEMIGROUPS

where $0 \leq n_{g, i}<\operatorname{ord}(g) \leq e$, and the blocks

$$
C_{i}=a_{i} \cdot \prod_{g \in Q} g^{n_{g, i}} \in \mathcal{B}(G)
$$

are irreducible. Now we obtain, for $j=0,1, \ldots, k$,

$$
B_{0}=C_{1} \cdot \ldots \cdot C_{j} A_{j+1} \cdot \ldots \cdot A_{k} \cdot \prod_{g \in Q} g^{k e-\sum_{i=1}^{j} n_{g, i}} \cdot A_{1}^{\prime} \cdot \ldots \cdot A_{j}^{\prime},
$$

and therefore $\mathbf{f}\left(B_{0}\right) \geq k+1$, a contradiction.
Proposition 5 ii) becomes false if G is not elementary. For $G=C_{p^{r}}$, this is shown by the next result; by [8], we have $D_{k}\left(C_{p^{r}}\right)=k p^{r}$.

Proposition 6. Let p be a prime, $k, r \in \mathbb{N}$ and $r \geq 2$. Then

$$
\bar{\psi}_{k}\left(C_{p^{r}}\right) \geq k p^{r}-1+(r-1)(p-1) .
$$

Proof. For $C_{p^{r}}=\left\langle g_{0}\right\rangle$, we set $Q=\left\{0, p^{r-1} g_{0}\right\}$, and we define $\sigma: G \backslash Q \rightarrow \mathbb{N}_{0}$ by

$$
\sigma(g)= \begin{cases}k p^{r}-1, & \text { if } g=-g_{0} \\ p-1, & \text { if } g=p^{\nu} g_{0} \\ 0 & \text { otherwise } .\end{cases}
$$

We shall prove that $\Omega(Q, \sigma)(k p-1) \subset \mathcal{B}_{k}\left(C_{p^{r}}\right)$; since $\# Q=2=\rho\left(C_{p^{r}}\right)$, this implies $\psi_{k}\left(C_{p^{r}}\right) \geq|\sigma|=k p^{r}-1+(r-1)(p-1)$. If $B \in \Omega(Q, \sigma)(k p-1)$, then

$$
B=\left(-g_{0}\right)^{k p^{r}-1} \cdot \prod_{\nu=0}^{r-2}\left(p^{\nu} g_{0}\right)^{p-1}\left(p^{r-1} g_{0}\right)^{n p-1}(0)^{m}
$$

where $m, n \in \mathbb{N}_{0}, m \geq k p-1, n \geq k$. We shall prove that, for every $j \in\{1, \ldots, r\}$, all blocks of the form

$$
B_{j}=\left(-g_{0}\right)^{k p^{r}-p^{r-j}} \cdot \prod_{\nu=r-j}^{r-2}\left(p^{\nu} g_{0}\right)^{p-1}\left(p^{r-1} g_{0}\right)^{n p-1}(0)^{m}
$$

$(m, n \geq k)$ lie in $\overline{\mathcal{B}}_{k}\left(C_{p^{r}}\right)$ (for $j=r$, the assertion follows).

A. GEROLDINGER - F. HALTER-KOCH

We use induction on j. For $j=1$, we have

$$
B_{1}=\left(-g_{0}\right)^{k p^{r}-p^{r-1}}\left(p^{r-1} g_{0}\right)^{n p-1}(0)^{m}
$$

the irreducible blocks dividing B_{1} are $A_{0}=\left(-g_{0}\right)^{p^{r}}, A_{1}=\left(-g_{0}\right)^{p^{r-1}}\left(p^{r-1} g_{0}\right)$, $A_{2}=\left(p^{r-1} g_{0}\right)^{p}$ and (0). Therefore all factorizations of B_{1} into irreducibles are given by

$$
B_{1}=A_{0}^{j_{0}} A_{1}^{j_{1}} A_{2}^{j_{2}}(0)^{m},
$$

where $j_{i} \in \mathbb{N}_{0}$ are such that $p^{r} j_{0}+p^{r-1} j_{1}=k p^{r}-p^{r-1}$ and $j_{1}+p j_{2}=n p-1$, i.e., $j_{1}=j p-1$ for $1 \leq j \leq k$ and $j_{0}=k-j, j_{2}=n-j$; this implies $\mathbf{f}\left(B_{1}\right)=k$.

Suppose now that $2 \leq j \leq r$ and $B_{j-1} \in \overline{\mathcal{B}}_{k}(G)$. There is only one irreducible block C_{j} dividing B_{j} for which $v_{p^{r-j} g_{0}}\left(C_{j}\right)>0$, namely $C_{j}=\left(p^{r-j} g_{0}\right)\left(-g_{0}\right)^{p^{r-j}}$. Therefore C_{j}^{p-1} occurs in every factorization of B_{j}, and since $B_{j}=C_{j}^{p-1} B_{j-1}$, we infer $\mathbf{f}\left(B_{j}\right)=\mathbf{f}\left(B_{j-1}\right)=k$.

Proposition 7.

i) If $G=G_{1} \oplus G_{2}, \# G_{i} \geq 3$ and $k_{i} \in \mathbb{N}$ for $i=1,2$, then

$$
\begin{aligned}
& \bar{\psi}_{k_{1} k_{2}}\left(G_{1} \oplus G_{2}\right) \geq \bar{\psi}_{k_{1}}\left(G_{1}\right)+\bar{\psi}_{k_{2}}\left(G_{2}\right) \quad \text { and } \\
& \psi_{k_{1} k_{2}}\left(G_{1} \oplus G_{2}\right) \geq \psi_{k_{1}}\left(G_{1}\right)+\psi_{k_{2}}\left(G_{2}\right)
\end{aligned}
$$

ii) If $G_{0}<G$ is a subgroup and $k \in \mathbb{N}$, then

$$
\bar{\psi}_{k}(G) \geq \bar{\psi}_{k}\left(G_{0}\right) \quad \text { and } \quad \psi_{k}(G) \geq \psi_{k}\left(G_{0}\right)
$$

Proof.
i) It is sufficient to prove the assertion for $\bar{\psi}$, since then we have

$$
\begin{aligned}
\psi_{k_{1} k_{2}}\left(G_{1} \oplus G_{2}\right) & =\max \left\{\bar{\psi}_{j}\left(G_{1} \oplus G_{2}\right) \mid 1 \leq j \leq k_{1} k_{2}\right\} \\
& \geq \max \left\{\bar{\psi}_{j_{1} j_{2}}\left(G_{1} \oplus G_{2}\right) \mid 1 \leq j_{1} \leq k_{1}, 1 \leq j_{2} \leq k_{2}\right\} \\
& \geq \max \left\{\bar{\psi}_{j_{1}}\left(G_{1}\right)+\bar{\psi}_{j_{2}}\left(G_{2}\right) \mid 1 \leq j_{1} \leq k_{1}, 1 \leq j_{2} \leq k_{2}\right\} \\
& =\sum_{i=1}^{2} \max \left\{\bar{\psi}_{j_{i}}\left(G_{i}\right) \mid 1 \leq j_{i} \leq k_{i}\right\}=\psi_{k_{1}}\left(G_{1}\right)+\psi_{k_{2}}\left(G_{2}\right) .
\end{aligned}
$$

We may suppose that $G_{1} \subset G$ and $G_{2} \subset G$. For $i=1,2$ let $Q_{i} \subset G_{i}$ be an independent subset and $\sigma_{i}: G_{i} \backslash Q_{i} \rightarrow \mathbb{N}_{0}$ a function such that $\# Q_{i}=\rho\left(G_{i}\right)$,
$\left|\sigma_{i}\right|=\bar{\psi}_{k_{i}}\left(G_{i}\right)$ and $\left(Q_{i}, \sigma_{i}\right)$ is a k_{i}-system with $\Omega\left(Q_{i}, \sigma_{i}\right) \cap \mathcal{B}_{k_{i}}\left(G_{i}\right) \neq \emptyset$. Then $Q_{1} \cup Q_{2}$ is an independent subset of G, and $\#\left(Q_{1} \cup Q_{2}\right)=\# Q_{1}+\# Q_{2}-1$ $=\rho(G)$. We define $\sigma: G \backslash\left(Q_{1} \cup Q_{2}\right) \rightarrow \mathbb{N}_{0}$ by

$$
\sigma(g)= \begin{cases}\sigma_{1}(g), & \text { if } g \in G_{1} \backslash Q_{1} \\ \sigma_{2}(g), & \text { if } g \in G_{2} \backslash Q_{2} \\ 0 & \text { otherwise }\end{cases}
$$

Then we have $|\sigma|=\left|\sigma_{1}\right|+\left|\sigma_{2}\right|$, and every block $B \in \Omega\left(Q_{1} \cup\left(Q_{2}, \sigma\right)\right.$ has the form $B=B_{1} B_{2}$, where $B_{i} \in \Omega\left(Q_{i}, \sigma_{i}\right)$. This implies $\mathbf{f}(B)=\mathbf{f}\left(B_{1}\right) \mathbf{f}\left(B_{2}\right)$ and therefore $\Omega\left(Q_{1} \cup Q_{2}, \sigma\right)$ is a $k_{1} k_{2}$-system with

$$
\begin{aligned}
& \Omega\left(Q_{1} \cup Q_{2}, \sigma\right) \cap \overline{\mathcal{B}}_{k_{1} k_{2}}\left(G_{1} \oplus G_{2}\right) \neq \emptyset \quad \text { and } \\
& \bar{\psi}_{k_{1} k_{2}}(G) \geq|\sigma|=\psi_{k_{1}}\left(G_{1}\right)+\psi_{k_{2}}\left(G_{2}\right) .
\end{aligned}
$$

ii) Again it suffices to show the assertion for ψ. Let $Q_{0} \subset G_{0}^{\prime}$ be an independent subset and $\sigma_{0}: G_{0} \backslash Q_{0} \rightarrow \mathbb{N}_{0}$ a function such that $\# Q_{0}=\rho\left(G_{0}\right)$, $\left|\sigma_{0}\right|=\bar{\psi}_{k}\left(G_{0}\right)$ and $\Omega\left(Q_{0}, \sigma_{0}\right) \cap \mathcal{B}_{k}\left(G_{0}\right) \neq \emptyset$. By Proposition 1, Q_{0} contains only elements of prime power order. Let $Q_{0} \subset Q \subset G$ be such that Q is a maximal independent subset containing only elements of prime power order, and define $\sigma: G \backslash Q \rightarrow \mathbb{N}_{0}$ by $\left.\sigma\right|_{G_{0} \backslash Q_{0}}=\sigma_{0}$ and $\left.\sigma\right|_{G \backslash\left(G_{0} \cup Q\right)}=0$. Then $\# Q=\rho(G)$ by Proposition 1, and every block $B \in \Omega(Q, \sigma)$ has the form

$$
B=\prod_{g \in Q} g^{n_{g}} \cdot \prod_{g \in G_{0} \backslash Q_{0}} g^{\sigma_{0}(g)},
$$

where $n_{g} \in \mathbb{N}_{0}$.
We contend that an element

$$
B_{1}=\prod_{g \in Q} g^{n_{g}} \cdot \prod_{g \in G_{0} \backslash Q_{0}} g^{m_{g}} \in \mathcal{F}(G)
$$

(where $m_{g}, n_{g} \in \mathbb{N}_{0}$) is a block if and only if

$$
B_{1}^{*}=\prod_{g \in Q_{0}} g^{n_{g}} \cdot \prod_{g \in G_{0} \backslash Q_{0}} g^{m_{g}} \in \mathcal{B}\left(G_{0}\right), \quad \text { and } \quad n_{g} \equiv 0 \quad \bmod \operatorname{ord}(g)
$$

for all $g \in Q \backslash Q_{0}$. Indeed, if B_{1} is of the indicated form, then it is a block. Conversely, if

$$
\sum_{g \in Q} n_{g} g+\sum_{g \in G_{0} \backslash Q_{0}} m_{g} g=0
$$

A. GEROLDINGER - F. HALTER-KOCH

then we obtain

$$
g^{*}=\sum_{g \in Q \backslash Q_{0}} n_{g} g \in G_{0}
$$

If $g^{*}=0$, then $n_{g} \equiv 0 \bmod \operatorname{ord}(g)$ for all $g \in Q \backslash Q_{0}$, and the assertion follows. If $g^{*} \neq 0$, then there exists an integer $d \in \mathbb{N}$ such that $0 \neq d g^{*} \in\left\langle Q_{0}\right\rangle$, since $\left\langle Q_{0}\right\rangle$ is an essential subgroup of G_{0}. This implies

$$
\sum_{g \in Q \backslash Q_{0}} d n_{g} g=\sum_{g \in Q_{0}} e_{g} g \neq 0
$$

(where $e_{g} \in \mathbb{N}_{0}$), which contradicts the independence of Q.
Now every block $B \in \Omega(Q, \sigma)$ is of the form

$$
B=\prod_{g \in Q \backslash Q_{0}} g^{m_{g} \operatorname{ord}(g)} \cdot B_{0},
$$

where $B_{0} \in \Omega\left(Q_{0}, \sigma_{0}\right)$ and $m_{g} \in \mathbb{N}_{0}$, and for every $g \in Q \backslash Q_{0}, g^{\operatorname{ord}(g)}$ is the only block dividing B and containing g. This implies $\mathbf{f}(B)=\mathbf{f}\left(B_{0}\right)$, and since $B_{0} \in \Omega\left(Q_{0}, \sigma_{0}\right)$ can be prescribed arbitrarily, we infer $\Omega(Q, \sigma) \cap \overline{\mathcal{B}}_{k}(G) \neq \emptyset$, whence $\bar{\psi}_{k}(G) \geq|\sigma|=\left|\sigma_{0}\right|=\bar{\psi}_{k}\left(G_{0}\right)$.

Corollary 1.

i) If p is a prime dividing $\# G$, e the exponent of G and $k \in \mathbb{N}$, then

$$
-1+k p \leq \bar{\psi}_{k}(G) \leq \psi_{k}(G) \leq a+k e
$$

for some $a \in \mathbb{N}$.
ii) $\psi_{k}(G)=\bar{\psi}_{k}(G)$ for infinitely many $k \in \mathbb{N}$.

Proof.
i) We start with the left inequality. By Proposition 7 ii) it is sufficient to prove that $\bar{\psi}_{k}\left(C_{p}\right) \geq k p-1$, if $p>2, \bar{\psi}_{k}\left(C_{4}\right) \geq 2 k-1$ and $\bar{\psi}_{k}\left(C_{2} \oplus C_{2}\right) \geq 2 k-1$. But these inequalities follow immediately from Proposition 2.

Obviously $\bar{\psi}_{k}(G) \leq \max \left\{\bar{\psi}_{j}(G) \mid 1 \leq j \leq k\right\}=\psi_{k}(G)$. The right inequality is a consequence of Proposition 5 i).
ii) Since $\psi_{k}(G)$ tends to infinity with k and $\psi_{k}(G)=\max \left\{\bar{\psi}_{j}(G) \mid 1 \leq j \leq k\right\}$, we infer $\psi_{k}(G)=\bar{\psi}_{k}(G)$ for infinitely many $k \in \mathbb{N}$.

Proposition 8. Let $k, r \in \mathbb{N}$ and $p>2$ be a prime.
i) $\quad \psi_{k}\left(C_{p}^{r}\right) \geq \bar{\psi}_{k}\left(C_{p}^{r}\right) \geq(k+r-1) p-r$.
ii) If $k=1$ or $r \leq 2$, then

$$
\psi_{k}\left(C_{p}^{r}\right)=\bar{\psi}_{k}\left(C_{p}^{r}\right)=(k+r-1) p-r .
$$

Proof.
i) We do the proof by induction on r. For $r=1$ Corollary 1 implies $\psi_{k}\left(C_{p}\right) \geq$ $k p-1$. For $r \geq 2$ we obtain by Proposition 7 i) that
$\bar{\psi}_{\boldsymbol{k}}\left(C_{p}^{r}\right) \geq \bar{\psi}_{k}\left(C_{p}^{r-1}\right)+\bar{\psi}_{1}\left(C_{p}\right) \geq(k+r-2) p-(r-1)+p-1=(k+r-1) p-r$.
ii) By Proposition 5 i) we have $\psi_{k}\left(C_{p}^{r}\right) \leq D_{k}\left(C_{p}^{r}\right)-1$. For $k=1$ or $r \leq 2 \quad D_{k}\left(C_{p}^{r}\right)=k p+(r-1)(p-1)([8])$ and so the assertion follows.

Proposition 9. For $k, r \in \mathbb{N}, r \geq 2$ we have
i) $\psi_{k}\left(C_{2}^{r}\right) \geq \bar{\psi}_{k}\left(C_{2}^{r}\right) \geq\left[\frac{r}{2}\right]+2 k-2$.
ii) If $k=1$ or $r=2$, then

$$
\psi_{k}\left(C_{2}^{r}\right)=\bar{\psi}_{k}\left(C_{2}^{r}\right)=\left[\frac{r}{2}\right]+2 k-2 .
$$

Proof.
i) By Proposition 7 ii) it suffices to show the assertion for even r. We set $r=2 s$ and do the proof by induction on s. Corollary 1 i) gives the assertion for $s=1$. Let $s \geq 2$; using Proposition 7 i) we obtain

$$
\begin{aligned}
\bar{\psi}_{k}\left(C_{2}^{2 s}\right) & =\bar{\psi}_{k}\left(\left(C_{2} \oplus C_{2}\right)^{s}\right) \geq \bar{\psi}_{k}\left(\left(C_{2} \oplus C_{2}\right)^{s-1}\right)+\bar{\psi}_{1}\left(C_{2} \oplus C_{2}\right) \\
& \geq s-1+2 k-2+1=s+2 k-2 .
\end{aligned}
$$

ii) Case 1. $r=2$: Let $G=C_{2} \oplus C_{2}$ and $Q=\left\{0, g_{1}, g_{2}\right\}$ a maximal independent subset of G; then $G \backslash Q=\left\{g_{1}+g_{2}\right\}$. Therefore we must prove that a block of the form

$$
B=g_{1}^{n_{1}} g_{2}^{n_{2}}\left(g_{1}+g_{2}\right)^{m}
$$

where $n_{1}, n_{2}, m \in \mathbb{N}_{0}, n_{1}+m \equiv n_{2}+m \equiv 0 \bmod 2$ satisfies $\mathbf{f}(B) \leq k$ if and only if $m \leq 2 k-1$. This is done in essentially the same way as Case 3 in the proof of Proposition 2.

A. GEROLDINGER - F. HALTER-KOCH

Case 2. $k=1:$ Let $Q \subset C_{2}^{r}$ be an independent subset such that $\# Q=\rho\left(C_{2}^{r}\right)=r+1$; then Q is of the form $Q=\left\{0, g_{1}, \ldots, g_{r}\right\}$, where $\left\langle g_{1}, \ldots, g_{r}\right\rangle=C_{2}^{r}$.

Now let $\sigma: G \backslash Q \rightarrow \mathbb{N}_{0}$ be any function such that (Q, σ) is a 1 -system, and set $m=|\sigma| \in \mathbb{N}_{0}$; we shall prove that $m \leq\left[\frac{r}{2}\right]$. For a subset $J \subset\{1, \ldots, r\}$, we set $g_{J}=\sum_{j \in J} g_{j} ;$ then we have

$$
G \backslash Q=\left\{g_{J} \mid J \subset\{1, \ldots, r\}, \quad \# J \geq 2\right\}
$$

We contend that $\sigma(g) \leq 1$ for all $g \in G \backslash Q$. Indeed, if $\sigma(g) \geq 2$ and $g=g_{J}$ for some $J \subset\{1, \ldots, r\}, \# J \geq 2$, then there exists a block $B \in \Omega(Q, \sigma)$ which is of the form

$$
B=g_{J}^{2} \cdot \prod_{j \in J} g_{j}^{2} \cdot B_{0}
$$

for some $B_{0} \in \mathcal{B}(G)$, and since

$$
g_{J}^{2} \cdot \prod_{j \in J} g_{j}^{2}=\left(g_{J} \cdot \prod_{j \in J} g_{j}\right)^{2}
$$

we obtain $\mathbf{f}(B) \geq 2$.
Therefore there exist subsets J_{1}, \ldots, J_{m} of $\{1, \ldots, r\}$ such that $\# J_{\mu} \geq 2$ for all μ and $\sigma(g)=1$ if and only if $g=g_{J_{\mu}}$ for some $\mu \in\{1, \ldots, m\}$. We contend that $J_{\mu} \cap J_{\nu}=\emptyset$ for all $\mu \neq \nu$. Indeed, if $\mu \neq \nu$ and $J_{0}=J_{\mu} \cap J_{\nu} \neq \emptyset$, then there exists a block $B \in \Omega(Q, \sigma)$, which is of the form

$$
B=\prod_{j \in J_{\mu}} g_{j} \prod_{j \in J_{\nu}} g_{j} \cdot g_{J_{\mu}} g_{J_{\nu}} \cdot B_{0}
$$

for some $B_{0} \in \mathcal{B}(G)$, and since

$$
\left(g_{J_{\mu}} \cdot \prod_{j \in J_{\mu}} g_{j}\right)\left(g_{J_{\nu}} \cdot \prod_{j \in J_{\nu}} g_{j}\right)=\left(g_{J_{\mu}} g_{J_{\nu}} \prod_{j \in J_{\mu} \backslash J_{0}} g_{j} \prod_{j \in J_{\nu} \backslash J_{0}} g_{j}\right) \cdot \prod_{j \in J_{0}} g_{j}^{2},
$$

we infer $\mathbf{f}(B) \geq 2$.
Now we obtain

$$
r \geq \sum_{\mu=1}^{m} \# J_{\mu} \geq 2 m
$$

and hence $m \leq\left[\frac{r}{2}\right]$, as asserted.

NON-UNIQUE FACTORIZATIONS IN BLOCK SEMIGROUPS ..

REFERENCES

[1] CARLITZ, L.: A characterization of algebraic number fields with class number two, Proc. Amer. Math. Soc. 11 (1960), 391-392.
[2] FUCHS, L.: Infinite Abelian Groups, Academic Press, Address of publisher, 1970.
[3] GEROLDINGER, A.: Über nicht-eindeutige Zerlegungen in irreduzıble Elemente, Math. Z. 197 (1988), 505-529.
[4] GEROLDINGER, A.: Ein quantitatives Resultat über Faktorisierungen verschiedener Länge in algebraischen Zahlkörpern, Math. Z. 205 (1990), 159-162.
[5] GEROLDINGER, A.: Factorization of natural numbers in algebraic number fields, Acta Arith. 57 (1991), 365-373.
[6] GEROLDINGER, A.-HALTER-KOCH, F.: Realization Theorems for semigroups with divisor theory, Semigroup Forum 44 (1992), 229-237.
[7] HALTER-KOCH, F.: Halbgruppen mit Divisorentheorie, Exposition. Math. 8 (1990), 27-66.
[8] HALTER-KOCH, F.: A generalization of Davenport's constant and its arithmetical applications, Colloq. Math. 63 (1992), 203-210.
[9] HALTER-KOCH, F.: Typenhalbgruppen und Faktorisierungsprobleme, Resultate Math. 22 (1992), 545-559.
[10] HALTER-KOCH, F.-MÜLLER, W.: Quantitative aspects of non-unvque factorization: A general theory with applications to algebraic function fields, J. Reine Angew. Math. 421 (1991), 159-188.
[11] KACZOROWSKI, J.: Some remarks on factorization in algebraic number fields, Acta Arith. 43 (1983), 53-68.
[12] NARKIEWICZ, W.: Finite abelian groups and factorization problems, Colloq. Math. 42 (1979), 319-330.
[13] NARKIEWICZ, W.: Elementary and Analytic Theory of Algebranc Numbers, Springer, Address of Publisher, 1990.
[14] NARKIEWICZ, W.: Numbers with unique factorization in an algebrave: number field, Acta Arith. 21 (1972), 313-322.
[15] NARKIEWICZ, W.-ŚLIWA, J.: Finite abelian groups and factorızatıon problems, II, Colloq. Math. 46 (1982), 115-122.
[16] ŚLIWA, J.: Factorizations of distinct lenghts in algebraic number fields, Acta Arith. 31 (1976), 399-417.

[^0]: A MS Subject Classification (1991): Primary 11R27, 11R44. Secondary 20M14
 Key words: Factorizations, Block semigroups.

