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INVARIANT MEASURES

RADKO MESIAR

Introduction. Let (£2, a, P) be a complete probability space. Let the Markov
operator Q: L,(R2, a, P) —» L,(R2, a, P) satisfy the following conditions:

(1) Q- Q)= Q() - Q(g) forall feL,(Q, a,P)
suchthat f-geL,(Q, a, P)

(2) feL, (R, a, P) implies Q(f)eL,(L2, a, P)
forall p=1.

In the present paper we study the set M of all Q-invariant probability measures on
(2, a). M clearly depends on P, as the operator Q works on L,(£2, a, P).

A similar problem for Markov operators in the space of bounded a-measurable
functions was solved by Dynkin in [2]. However, his results cannot be applied in
our case.

Theorem 1 (Dynkin, [2]). Let Q be a Markov operator on the space of bounded
a-measurable functions with the property Q(f - Q(g)) = Q(f)- Q(g) for all f, g
bounded a-measurable functions. Let J, be the collection of all Q-invariant
a-measurable sets. Then:

i) M is a simplex.

ii) P is an extreme point of M iff P(A)=0 or P(A)=1 for all A €J,.

iii) The mapping P— P,, where Pq is the restriction of the probability measure
P to Jqo, is the isomorphism of M onto M(Jy), the class of all probability
measures on (2, Jo).

Throughout this paper let Q be a Markov operator satisfying conditions (1) and

Q. e

1. Q-invariant measures

Definition. A probability measure m on (2, a) is Q-invariant if L,(£2, a,P)c
< L(Q, a, m) and if for all fe L\(S2, a, P) there holds:

Lfdm=J:2 Q(f)dm.
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dm
iP eL.(Q, a, P).

Proof. As meM implies L(Q, a, P) « L,(L2, a, m), we have m <P. The
Radon-—Nikodym theorem [1] implies w € L,(Q, a, P). Define for fe L.(£2, a, P)

Lemma 1. Let me M. Then w =

L(f)=Lfdm=Lf-de.

L is a continuous linear functional in the space L,(Q, a, P), so that there exists
g € L.(2, a, P) with the property

L()=[ f-gdP,feL(@, a,P)

(see [1]).
Clearly w=g(P —a.e.).
dm
Theorem 2. Let meM, w=aF..Then Qw)=w(P—a.e.).

Proof. As Q is a Markov operator on L,(Q, a, P) we have f fdpP =f Q{f)dpP
Q Q
for all fe L,(Q, a, P). Then for every fe L,(L2, a, P) there holds:

Lf-de - Lfdm - LQ(f)dm = L Q(f)- wdP = L QQ(f) - w) dP
= [ em-amar = [ o¢-awnep = [ famdp, so that
ff-‘(w—Q(w))dP=0, for all fe.Ll(Q,a,P). Let f=w;Q(w). Then

feL(Q, a, P), so that f (w—Q(Ww))>*dP =0. This fact immediatelly implies
Q
Q(w)=w(P —a.e.).

Theorem 3. Let m<P be a probability measure on (L, a), (—(11%! =
= weL.(Q, a,P), w=Q(w) (P —a.e.). Then me M.
Proof. Let feL,(Q, a,P). Then f fdm = I f-wd<oeo, so that
Q Q

L(Q,a,P) c L(Q,a,m). As f fdm = ff-de = ff-Q(w)dP
=f Q(f)-wdP = f Q(f) dm, we have me M.
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Lemma 2. Denote Jo={A€a, Q(xa)=% (P —a.e.)}. Then:
i) The system J, is a complete sub-o-algebra of a.
ii) Q(f)=E(f|Jo), i. e. the operator Q is an operator of conditional expectation
in L,(Q, a, P).
iii) w=Q(w) (P —a.e.) if and only if w is a Jo-measurable integrable random
variable, i.e. we L,(L2, Jo, P).
Proof. See [4]. '

Corollary 1. The mapping m —->w = ?iP is an isomorphism of M onto the

system M(P, Q) of all nonnegative bounded J,-measurable radom va-
riables of L,(LQ, a, P) whose integral with respect to P is equal to 1,

M(P, Q) = {weL(2,Jo, P), wao,f wdP=1}.
Q

2. Extreme points

Theorem 4. Let A €Jo, P(A)>0. Then:
i) P(. IA)eM

ii) P(.|A) is an extreme point of M iff A is an atom of J,.

Proof.

i) dpfj'},“‘) pL5 e M(P, Q), so that P(| A)e M.

ii) Let A be an atom of Jo. Then for all sets B € J, there is P(B|A)=0 or
P(B|A)=1. Let m, and m, be two Q-invariant probability measures and
P(.|A)=cm, + 1—c)m, for some c € (0, 1). Then evidently m,=m, = P(.|A)
on Jo. As all these measures are Q-invariant, we have m, = m, = P(.|A)on a, so
that P(.|A) is an extreme point of M.

Now let A don’t be an atom of Jo, so that A=BuC, B, Celo, BNC=9,

P(B)>0, P(C)>0. Then P(.|B) # P(|C) and P(|A) = £B)p(|B) +

P(A)
P(B) . . .
+ ( —P-m)P(.IC), so that P(.|A) is a convex combination of two different

measures of M. Then clearly P(.| A) is not an extreme point of M.

Corollary 2. The mapping A — P(.| A) is an isomorphism of the system K of all
atoms of Jo onto the set M., of all extreme points of M.

Remark 1. For every B e Jo, me M, is m(B)=0 or m(B)= 1. This fact fully
agrees with the results of Dynkin (assertion ii) of Theorem 1 of this paper).
However, there exist probability measures on (£2, o) with this property which are
not of M. (as they are not absolutely continuous with respect to P).
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Remark 2. Lemma 2 implies the fact that the present paper solves the problem
of invariant measures with respect to conditional expectations.
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VHBAPUAHTHBIE MEPHI
Pagko Mecbsip

Pe3iome

ITycTi onepatop MapkoBa Q siBAs€TCS ONEPAaTOPOM YCJIOBHOi BEpOSATHOCTH. MHOXecTBO M Bcex
Q — MHBapHaHTHBLIX MEP H3OMOPPHO MHOXECTBY

M(P, Q)={feL.(L, Jo, P),f=0, J’ﬂ fdP=1}.

MHoxecTBO M, Bcex 3KCTpeMalIbHbIX TOYEK MHOXecTBa M m3oMopdHO MHOXeCTBY Bcex P-aToOMOB
o-anbrebpsl Jo.
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