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ON SMALL SYSTEMS AND COMPACT FAMILIES
OF BOREL FUNCTIONS

ELIZA WAJCH

The main purpose of the paper is to generalize Kisynski’s result of [6]
and to prove that a family F of Borel functions defined cn a compact perfectly
normal space is compact in the sense of the convergence with respect to an upper
semicontinuous small system (%, ) of Borel sets if and only if, for each positive
integer n, there exists a uniformly compact family F* of continuous functions
having the property that, for any feF, there is an f*eF* such that
{x: f(x) # f[*(x)}e .

To begin with, let us recall the most important definitions and establish some
useful facts.

In what follows, X denotes a compact perfectly normal space. The symbol
#(X) stands for the o-field of Borel subsets of X (i.e. the smallest o-field
containing all open sets). By a small system on %(X) we mean a sequence (¥ )
of non-empty subfamilies of #(X), satisfying the following conditions:

(I) for any ne N, there exists a sequence (k;) of positive integers such that if

A% forieN, then () 4,€ ;

i=1

(I) for any neN, Ae ¥, and Be #(X) such that B < A, we have Be ¥, ;
(I1T) for any neN, Ae ¥, and Be () ¥, we have AUBe Y, ;

i=1
av) &> ¢,, foreachneN
(cf. [2, 5, 7, 8, 9)). If, in addition, (&) has the following property:
(V) if (4,) is a non-increasing sequence of Borel sets for which there exists ie N

such that 4,¢ ¥ for any neN, then () 4,¢ () %,

n=1 m=1
then it is called an upper semicontinuous small system (cf. [7; Definition 18.29]).
Now, let us give some serviceable characterization of upper semicontinuous
small systems on #(X).

Proposition. A small system (%) on B(X) is upper semicontinuous if and only
if each Borel subset A of X has the following property:
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(R) for any ne N, there exist a closed subset D of X and an open subset U of
X, such that D =« A = U and U\De 9.

Proof. Necessity. Without any difficulties one can check that if (%) is
upper semicontinuous, then, since each open set in X is of type F,, the family of
these subsets of X which have the property (R) forms a ¢ — field containing all
open sets (cf. [9; proof of Theorem 2]).

Sufficiency. Suppose that (&%) is not upper semicontinuous but every
Borel set has the property (R). By virtue of (IIT) and (V), there exist a positive

integer i and a non-increasing sequence (4,) of Borel sets, such that () 4, =0

n=1

but 4,¢ % for any ne N. Take a sequence (k,) of positive integers such that
U E,e & whenever E, € %, forne N.There exists a closed set D, = A, such that

n=1

A\ D e % . We can inductively define a sequence (D, ) of closed sets such that
D,,, c D mA,,+l and (D, nA,,H)\I),,He.?’ forneN.Then 4,,, = (D, N

NA,, U U (D, mA,,,H)\D,,,H]u(A,\D) so D,n A, 1¢%, , for any

m=1

ne N (otherwise, 4, ,, would belong to ). In this way, we have obtained a
non-increasing sequence (D,) of non-empty closed subsets of X such that

D, c A, for any ne N. The compactness of X yields () D, # 0, which con-

n=1

tradicts the fact that (") 4, = 0.

n=1
The above proposition points out that the notions of upper semicontinuity
and regularity (cf. [7; Definition 18.35]) are equivalent for small systems of Borel
sets in perfectly normal compact spaces.
From now on, (%) will denote a fixed upper semicontinuous small system on
B(X).

Let ¢ = ﬂ . Obviously, # forms a c-ideal on #(X). One says that a

property holds j almost everywhere (abbr. #-a.e.) on X if the set of points not
having this property belongs to #. Denote by M(#) the family of all #-a.e.
finite Z(X)-measurable real functions defined on X.

Definition 1 (cf. [8]). 4 sequence (f,) of functions from M(#) converges with
respect to the small system () to a function fe M(#) if, for any € > 0 and any
meN, there exists nye N such that {xe X:|f,(x) — f(x)| > e}€ ¥, whenever

n = n,.

Definition 2 (cf. [5]). 4 family F < M(#) is compact in the sense of the
convergence with respect to the small system (<, ) (abbr. (¥£)-compact) if each
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sequence of functions from F contains a subsequence converging with respect to
(%) to some function from M(#).

By a partition of X is meant a finite family 2 of Borel sets such that
(J{P: Pe?} =

Definition 3 (cf. [5]). 4 family F ¢ M(#) is called:

(@) (%)-equibounded if, for any ne N, there exists a positive integer t such that
{xeX:|f(x) > t}e S, whenever feF.

(b) (¥)-equimeasurable if, for any € > 0 and ne N, there exist a partition P
of X and a collection {A;: fe F} ¢ ¥, such that, for each Pe P and feF, we have
|f(x) — f(y)| < € whenever x,ye P\ A,.

In [5] we obtained the following abstract version of Fréchet’s theorem charac-
terizing compactness in the sense of the convergence with respect to a finite
measure (cf. [1, 3, 4]):

Theorem 0. A family F =« M(#) is (¥,)-compact if and only if it is (¥, )-equi-
bounded and (¥,)-equimeasurable (cf. [5; Proposition 1 and Theorem 1]).

J. Kisynski gave in [6; Theorem 1] an elegant characterization of com-
pact families of measurable real functions defined on a compact interval of the
real line by approximating them to uniformly compact families of continuous
functions. Here we shall extend the above mentioned result of Kisynski to
(4)-compact subfamilies of M(#). To do this, we need some lemma.

Denote by C(X) the space of all continuous real functions defined on X with
the topology of uniform convergence.

Lemma. If a family F =« M(#) is (¥ )-equimeasurable, then, for any ¢ > 0 and
neN, there exist a closed subset D of X, a family {A;: f €F} of Borel sets, a
continuous function h: X — [0, 1] and a real number & > 0, such that the following
conditions are satisfied:

(@) (X\D)u A,e¥, forany feF;

(b) for any f €F and x,ye D\ A;, we have

If(x) —f(P)I <& whenever |h(x)—h(y) <5
Proof. Let us fix € > 0 and nye N. Take a sequence (k;) of positive in-

tegers such that if 4,e & for ie N, then U A;€ 4, . Since F is ())-equimeasur-
i=1

able, there exist a family {P,, P,, ..., P,} of pairwise disjoint Borel subsets of X
and a family {4,: f €F} = &% such that U P, = X and, moreover, for any fe F

i=1
and i =1, 2, ..., m, we have | f(x) — f(»)| < & whenever x, ye P,\ 4,. By virtue
of our Proposmon we can find closed subsets D,, D,, ..., D, of X such that
D;= Pand P\D;e %, A fori=1,2, ..., m. It follows from the normality of X
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that there exists a continuous function 4: X — [0, 1] such that A(D,) = {1} for
i

i=1,2,..,m Letusput D= () D;and § = ———1———— Then, for any f €F,

i=1 2m(m — 1)
the set (X\D)u 4, < 4,U U (P\D,) is a member of &, . To complete the

proof, it suffices to observe that if x,ye D and |h(x) — h(y)| < d, then x,ye D,
for some ie{l, 2, ..., m}.
Now we are in a position to prove the main theorem of the paper.

Theorem 1. A family F =« M(#) is (%)-compact if and only if, for any ne N,
there exists a compact subset F* of C(X) having the property that, for any feF,
there is an f* € F* such that {xe X: f(x) # f*(x)}e 4.

Proof. Necessity. Let us fix nye N. There exists me N such that
Av Be S, whenever A, Be 5. Take a sequence (k;) of positive integers such

that if 4;e % for ie N, then U A € %,. By Theorem 0, the family F is (% )-equi-

=1
bounded, so there exists teN such that {xe X: |f(x)| > t} €<%, whenever feF.

The Lemma, along with Theorem 0, implies that, for ie N, there exist closed sets
D; c X, collections {4;: fe F} = %(X), continuous functions 4;: X — [0, 1] and
real numbers §; > 0, such that, for any feF, the following conditions are
satisfied:

(@ (X\D)UAje%;

®) /() —fOI < <2 whenever x, yeD\ 4f and |h(x) — h(y)| < §,
i

We may assume that §,,, <, for ie N. Denote D = () D, and 4, = {xe X:

i=1

lf(x) > t}u UA,’ for feF. Clearly, (X\D)u 4,€ ¥, for any feF. Let us

i=1

consider the pseudometric A(x,y) = 3, M;_ﬁ@[ For any feF and ie N,
i=1

we have |f(x) — f(y) < —_ whenever x, ye D\ 4, and h(x,y) < 2 It is not

difficult to construct a non-decreasing bounded uniformly continuous function

g: [0, + o) — R having the properties that g(0) = 0, g(¢) > for €€ <2‘ :‘I %]
i

and g(¢) > 2t for € > % Then, for any fe F, we have_
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If(x) —f(»)] < g(h(x,y)) whenever x,yeD\A,.

Following [6; proof of Lemma 1], we define
S*(x) = sup{f(y) — g(h(x,)): ye D\ A} for fe F and xe X.

If x,ye D\ 4, then f*(x) = f(x) = f(y) — g(h(x, y)), so {xe X: f(x) # [*(x)} =

< (XY\D)u 4y; hence {xe X: f(x) # f*(x)}e %, for any feF. Obviously, the
family {f*: fe F} is equibounded. In view of Ascoli’s theorem, it suffices to show.
that {f*: fe F} is evenly continuous. Bearing this in mind, let us define

G(e) = sup{lg(e;) — g(ex)|: €,,6,=> 0 and g, — & <&}

Consider any & > 0 and xe X. There exists €, > 0 such that G(g) < & for
0 < € < g,. We can find a neighbourhood U of x such that /(x, y) < g, for any
ye U. Arguing similarly as in the proof of Lemma 1 in [6], one checks that

I/*() —f*(WDI < G(h(x,y)) forany feF and yeX.

All this implies that | f*(x) — f*(y)| < 6 for any fe F and y € U; therefore the
family {f*: fe F} is evenly continuous.

Sufficiency. Let nje N and € >0 be fixed. Take a compact set
F* < C(X) having the property that to each fe F one can assign some f*e F*
such that the set B, = {xe X: f(x) # f*(x)} is a member of T The equiboun-
dedness of F* implies the (¥ )-equiboundedness of F. Since F* is evenly con-
tinuous, there exists, for any xe€ X, an open neighbourhood U, of x such that
|f*(x) — f*(y)| < € whenever feF and ye U,. If 2 is a finite subcover of the
cover {U,: xe X} of X, then, for any fe F and Pe 2, we have |f(x) — f(y) <&
whenever x, y € P\ B;; hence F is (¥ )-equimeasurable. Theorem 0 completes the
proof.

An immediate consequence of Theorem 1 is the following

Corollary. A family F =« M( #) is (%, )-compact if and only if, for any ne N and
€ > 0, there exists a finite set F* = C(X) with the property that, for any f eF,
there is an f* e F* such that {xe X: |f(x) — f*(x)| > e}e .

Finally, let us formulate Theorem 1 in terms of the o-ideal #.

A family F « M(#) is called compact in the sense of the convergence with
respect to the o-ideal ¢ (abbr. #-compact) provided each sequence of functions
from F contains a subsequence converging #-a.e. on X to some function
fe M(#) (¢f. [5; Definition 2(b)]). Since (%) is upper semicontinuous, #-com-
pactness is equivalent to (& )-compactness, as observed before in [5].

Theorem 2. A family F c M(¥#) is #-compact if and only if there exists a
sequence (F¥) of compact subsets of C(X) with the property that, for any sequence
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() of functions from F, there exists a sequence (f,¥) of continuous functions such

that ﬁ O {xeX: f,(x) # fXx)}e # and f*c F}for any neN.

m=1n=m

Proof. Necessity. Lemma 1 of [8] implies the existence of a sequence

(k,) of positive integers such that if 4,¢ &, for ne N, then U A, e 4, for any

me N. In view of Theorem 1, there exists a sequence (F¥) of compact subsets of
C(X) having the property that, for any ne N and feF, there is an f* € F* such
that {xe X: f(x) # f*(x)}€ % . It is evident that (F}) is the required sequence.

Sufficiency. Using similar arguments as in the proof of Theorem 1, we

find a sequence (1,) of positive integers such that () () {xeX:|f,(x)| > t,}e ¥

m=|n=m
for any sequence (f,) of functions from F. Therefore, by Proposition 2(b) of [5],
F is (¥,)-equibounded.
Let us fix € > 0. According to the proof of Theorem 1, one can show without
any difficulties that there exists a sequence (2) of partitions of X having the
property that, for any sequence (f,) of functions from F, there exists a sequence

(A,) of Borel sets such that () (J 4,€ ¢ and, furthermore, for any ne N and
m=1n=m

Pe 2, we have |f,(x) — f(»)] < € whenever x, ye P\ 4,. Following the proof of
Proposition 4(b) in [5], we show that F is (¥ )-equimeasurable. By virtue of
Theorem 0, F is #-compact.

Let us note that Theorems 1 and 2, together with the Corollary, remain true
if we assume that X is a compact Hausdorff space (not necessarily perfectly
normal) and (%) is a regular small system on #(X) (i.e. every Borel set has the

property (R)).
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MAJIBIE CUCTEMblI U KOMITAKTHBIE MHO>ECTBA
BOPEJIEBCKUX ®VHKIIUN

Eliza Wajch
Pe3iome

I'naBHas uenb paboThi qoKa3aTh, 4TO ceMeiicTBo F GopeneBckux (pyHkuuil, onpesiesieHHBIX Ha
KOMIIaKTHOM COBEpIIEHHO HOPMAaJIbHOM IPOCTPAHCTBE, SBJISETCS KOMIAKTHBIM IO CXOJUMOCTH
M0 HEMpepbIBHOM CBepXy Mauoit cucreMe () GopesieBCKHX MHOXECTB B TOM H TOJILKO B TOM
ciyyae, Korga Ui MPOM3BOJILHOTO HATYpPaJbHOIO YMCJIa 1 CYLIECTBYET TaKoe KOMIAKTHOE B
TOIIOJIOTHH PAaBHOMEPHOI CXOAUMOCTH ceMeiCTBO F* HenpepbiBHBIX (GYHKIMM, YTO IJIS KaXIAOTO
feF naitnercs takoe f* e F*, uto {x: f(x) # f*(x)}e &.
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