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TWO HEURISTICS FOR THE ABSOLUTE p-CENTER 
PROBLEM IN GRAPHS 

JAN PLESNIK 

1. Introduction 

Given a connected graph G (finite, undirected, without loops and multiple 
edges), we denote by V(G) and E(G) the vertex and edge sets, respectively; also 
we put n: = | V(G)\ and m: = \E(G)\. It is supposed that each vertex ve V(G) is 
assigned a nonnegative real number w(v), called the weight of v, and each edge 
eeE(G) is assigned a positive real number a(e), called the length of e. For any 
two vertices w, ve V(G), d(u, v) is the minimal sum of the edge lengths of a u — v 
path and is called the distance between u and v. This definition can be extended 
also to the case when u and v are any two points of a geometric representation 
of G (the edges are considered as simple geometric curves with the correspond
ing lengths). The distance between a vertex ve V(G) and a point set X of G is 
d(v, X): = min{d(i;, x)\xe X}. A p-set is a set of cardinality p. 

Given G and p, the absolute p-center problem is to find a p-set X of G such 
that the objective function, the weighted eccentricity of X, 

t](X): = max {d(v, X) w(v)} 
veV(G) 

is minimized. An absolute p-center is any optimal p-set X. The optimal value of 
rj(X) is called the absolute p-radius. If the stronger constraint I c V(G) is 
required, then the problem is referred to as the p-center (or vertex p-center) 
problem. The corresponding notions are a p-center and the p-radius. 

We can suppose that d(u, v) = a(uv) for any edge uv, because otherwise the 
edge uv could be deleted without affecting the optimal weighted eccentricity of 
ap-set. Further, it will be assumed that the distance matrix (with entries d(u, v) 
for all w, ve V(G)) is available. 

Since the appearance of Hakimi's seminal paper [4] in 1964, the literature on 
network location problems has grown rapidly. At present, there are about one 
hundred papers concerning p-centers or absolute p-centers (e.g. see [1, 8, 9, 12, 
13, 14]. 

While both problems are polynomially solvable if p is fixed (see e.g. [8]), they 
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are NP-hard in general, even in very special cases [3, 7, 8, 10]. Moreover, the 
corresponding ^-approximation problems are NP-hard whenever g < 2 [7, 10] 
(g means a worst-case error ratio). On the other hand, there are 2-approxima-
tion polynomial algorithms for these problems and clearly, they are best poss
ible, unless P = NP. For special cases of the p-center problem see [2, 5, 6] and 
for the general case see [11] where we developed a 2-approximation 0(n2logn) 
algorithm, called CENTER, for the p-center problem and a 2-approximation 
0(mn2\ogn) algorithm, called ABCENTER, for the absolute p-center problem. 

The aim of this paper is to give two faster heuristics for the absolute p-center 
problem. In Section 2 we approximate an absolute p-center by a p-center in a 
graph obtained by introducing k — 1 new vertices into each edge. This yields a 
(2 + 2/k)-approximation 0(kmn log kmri) algorithm. In Section 3 we modify 
CENTER (from [11]) which results in a 2-approximation 0(n2logn) algorithm 
for the absolute P-center problem. This paper strongly depends on our previous 
paper [11] and the reader shQuld consult it. 

2. A subdivision approach 

Let k ^ 1 be a given integer. To approximate an absolute P-center of a 
graph G, each edge eeE(G) is subdivided into k new edges of length a(e)/k by 
inserting k — 1 new vertices of weight zero, where a(e) is the length of e. The 
resulting graph is denoted by Gik\ Our heuristic is based on the following result; 
the special case k = 1 was proved in [11]. 

Theorem 1. For any absolute p-center A ofG and any p-center C ofG(k\ we have 

n(A)^ / /(c)^n +yri(Ay 

Moreover, these bounds are best possible. 
Proof. The left inequality and its tightness are trivial. The right inequal

ity becomes equality e.g. if G has only one edge uv with length k, w(u) = 
= w(v) = 1 and p = 1. If k is an odd integer, then t](A) = k/2 while 77(C) = 
= (k + l)/2. Thus it remains to prove the right inequality. 

Let x,, ..., xp be the points of A. We will show that any point xeA can be 
replaced by a suitable vertex of G{k) without changing weighted eccentricity t](A) 
too much. We can assume that in every edge uv e E(G) there is at most one point 
xe A lying strictly between u and v (otherwise the closest points to u or v can be 
replaced by u or v9 respectively, and the other points can be deleted without 
increasing 7/(A)) and if w, or v9 or both belong to A9 then there is no other point 
of A lying'on uv (otherwise, such a point can be replaced by v9 or w, or deleted, 
respectively, without increasing t](A)). 
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Now we are going to show that if every point xe A, which is an internal point 
of an edge u'v' of G(k), is replaced by u' or v' (properly chosen), then T](A) can 
increase at most 1 + 1/k times. All the vertices of G are contained in p subsets, 
"regions", SX9 ..., Sx such that for SXf the point x, is an absolute 1-center with 
weighted eccentricity at most T](A) (i.e., Sx: = {ve V(G)\d(xh v) w(v) ^ T](A)}). 
Clearly, any two distinct points of A can be handled separately and thus we can 
confine ourselves to one point xeA. Let x be an internal point of an edge u'v' 
in G such that its ux section contains u'. The region Sx can be decomposed into 
two sets Tu and Tv, where a vertex y e V(G) belongs to Tu iff a shortest x — y path 
contains u; the other vertices of Sx belong to Tv. If the region Sx cannot be 
covered in G(k) by either u' or v' without exceeding weighted eccentricity 
(1 + 1/k) T](A), then there are vertices uxeTu and vxe Tv such that 

d(u\vl)w(v])>(\ + \/k)T1(A) (1) 

d(v\u2)w(ux)>(\ + \/k)T](A) (2) 

(because all the new vertices have weight zero). Since the triangle inequality 
holds, inequality (1) yields 

[d(w', x) + d(x, vx)]w(v{) > (1 + 1/k) T](A) > 
>(\ + \/k)d(x,v])w(vly 

Thus 
d(u',x)>d(x,vl)/k. (3) 

Fully analogously, (2) yields 

d(v\ x) > d(x, ux)/k. (4) 

Summing up (3) and (4), we obtain 

kd(w\ v') > d(ul9 x) + d(x, vx). (5) 

Clearly, kd(w', v') = d(w, v) = a(uv) but w, e Tu and i;, e Tv. Therefore d(uu x) + 
+ d(x, vx) ^ d(w, v) and (5) gives a contradiction. B 

Now, given G and k, we can suggest the following approximation algorithm 
for the absolute p-center problem. 

Heuristic SUBDIVISION 

Step 1. Construct the n[n — 1 + (k — l)m]-multiset D of non-null weighted 
distances in G{k). 

Step 2. Apply the heuristic CENTER [11] to G{k) (to the multiset D) and output 
the obtained p-set B of vertices of G{k) as ap-set of points of G and end. 
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Since it is assumed that the distance matrix of G is available and that 
n ^ O(m), Step 1 can be performed in time 0(kmn). Thus (see [11]) Step 2 is 
of complexity 0(kmn \ogkmn), which is the overall complexity of SUBDI
VISION. 

As CENTER is a 2-approximation algorithm, Theorem 1 implies that for 
any p-center C of G{k) and any absolute p-center A of G, we have t](B) < 
^ 277(C) < (2 + 2/k) t](A). Thus SUBDIVISION is a (2 + 2/k)-approximation 
0(kmn \og kmn) algorithm for the absolute p-center problem. 

Clearly, for k -» oo SUBDIVISION runs to a 2-approximation algorithm but 
then the complexity of SUBDIVISION will be rather large when compared to 
0(mn2\ogn) of ABCENTER [11]. Thus SUBDIVISION is recommended to use 
for small k and sparse graphs (e.g. if m ^ 0(n)). 

Note that instead of CENTER one can use in SUBDIVISION also the 
heuristic PROXICENTER which will be developed in the next section. 

2. A common 2-approximation algorithm 

In this section we develop a heuristic like CENTER [11] which works for both 
the p-center problem and the absolute p-center one. 

Theorem 2. For any real number r > 0, if there exists a p-set X of points ofG 
with t](X) ^ r, then there exists a weighted distance R^2r between two vertices 
of G such that the following procedure finds a set S c V(G) with \S\ ^ p and 
t](S) ^ R. 

Procedure DISTRICT 

Step 0. At first all vertices of G are unlabelled; S: = 0. 
Step 1. If all vertices are labelled, then go to Step 2. Else choose an unlabelled 

vertex u of the maximum weight and put S: = S u {w}; label the ver
tex u and every unlabelled vertex v such that w(v) d(u, v) ^ R; go to 
Step 1. 

Step 2. Output S. 

Proof. Let X consist of points xl9 x2, ..., xp and let "the regions" corres
ponding to these points be S,, S2, ..., Sp9 respectively (i.e. S, u ... u Sp = V(G) 
and for every i = 1, ..., p, we have w(v)d(xi9 v) ^ r whenever veSt). Let 

R: = max{d(w, v)w(v)\d(u9 v)w(v) < 2r; u,ve V(G)}. 

By Step 1, we have w(v)d(S, v) < R for any ve V(G) and hence t](S) ^ R. To 
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prove that |S| ^ p we will show that at most one vertex of each Sf belongs to S. 
Let us consider an iteration of Step 1. Let u be the chosen vertex and let ue St 

(posibly, there are several such sets). Then for every unlabelled vertex v of Sf we 
have w(v) ^ w(u) and the triangle inequality gives 

w(v) d(u, v) ^ w(v) [d(u, x,) + d(xi9 v)] < 
< w(u) d(u, x,) + w(v) d(xh v) ^ 2r. 

According to the definition of R, we see that w(v)d(u, v) ^ R. Therefore one 
must label all the unlabelled vertices of S( and thus no other vertex than u will 
be added to S. • 

Now we can give the following heuristic for both the p-center problem and 
the absolute p-center one. 

Heuristic PROXICENTER 

Step 1. Arrange the n(n — l)-multiset of weighted distances d(u, v)w(v) with 
u, v e V(G) into a non-decreasing sequence and deleting duplicates 
reduce it to an increasing sequence 

/ i < / 2 < • • • < / ; . (6) 

Step 2. Find i?*, the least value of Re{f, ...,fq} for which DISTRICT yields 
an output S with |5 | ^ p. 

Step 3. Augment S arbitrarily to a set S" of p vertices. Output S' and end. 

Formally, PROXICENTER is the same as CENTER from [11]. Thus the 
complexity of PROXICENTER is 0(n2logn). 

According to Theorem 2 we have t](S') < r/(S) < R* ^ 2r*, where r* is the 
absolute p-radius of G. Hence PROXICENTER is a 2-approximation strongly 
polynomial algorithm for the absolute p-center problem (and simultaneously for 
the p-center problem). 

Note that PROXICENTER is of a lower complexity than ABCENTER from 
[11] (its complexity is 0(mn2 log n)). Although in a worst case, the error ratio of 
approximations is the same, one can see that in some cases PROXICENTER 
provides better results than ABCENTER or CENTER (because it may be that 
R* < 2r*). 

We also note that PROXICENTER is a best polynomial heuristic as to the 
error ratio in a worst case because the ^-approximation absolute (or vertex) 
p-center problem is NP-hard whenever g < 2 (see [10] or [7, 10], respectively). 
Nevertheless, we have the following result. First we need a definition. 

Given a real number b with 1 ^ b < 2,0>b denotes the class of all instances of 
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thep-center problem such that the (vertex) p-radius 7/cand the absolute p-radius 
t]A fulfil the inequality 

T]c>bi]A. 

(It is well known [11] that always t]A^ TJC^ 2t]A.) 
Theorem 3. For any class 2Pb of p-center problems PROXICENTER is a 

(2/b)-approximation algorithm. 
Proof. Let us consider an instance of the p-center problem from SPb. Let 

//cand 7]A be its p-radius and the absolute p-radius of the corresponding absolute 
p-center problem, respectively. PROXICENTER provides a p-set S' of vertices 
with //(SO ^2t]A. Since t]A ^ rjc/b, we have r](S') ^ (2/b) 7]c, as desired. H 

Consequently, we see that in the class ^ PROXICENTER provides an exact 
solution of the p-center problem. We must admit, however, that we are unable 
to find out quickly whether or not a given instance belongs to a class &b. 
Therefore Theorem 3 seems to be interesting from the theoretical view-point 
only. 

R e m a r k . Although PROXICENTER seems to be a superior heuristic, 
ABCENTER [11] or SUBDIVISION can be combined with other heuristics 
(e.g. the interchange heuristic [12]) and thus can give better results because they 
can output also points different from vertices, while PROXICENTER always 
yields only vertex p-sets. 
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ДВЕ ЭВРИСТИКИ ДЛЯ ЗАДАЧИ АБСОЛЮТНОГО р-ЦЕНТРА НА ГРАФАХ 

^ап Р1езп1к 

Резюме 

Предлагаются два эвристических полиномиальных алгоритма для нахождения абсолют
ного р-центра графа с длинами ребер и весами вершин. Один из этих алгоритмов находит 
/^-множество, стоимость которого в самом худшем случае не больше, чем вдвое оптималь
ной стоимости. 
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