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ON BORSIK’S PROBLEM CONCERNING
QUASIUNIFORM LIMITS OF DARBOUX
QUASICONTINUOUS FUNCTIONS

ZBIGNIEW GRANDE!

(Communicated by Ladislav Misik )

ABSTRACT. It is proved that every cliquish function f: R — R is a quasiuni-
form limit of a sequence of Darboux quasicontinuous functions.

Let R be the set of all reals. A function f: R — R is said to be quasicontin-
wous (cliquish) at a point x € R if for every € > 0 and every neighbourhood 7
of & there is a nonempty open set V C U such that |f(t) — f(z)] < e for each

el (oscf<eonl).

A function f is quasicontinuous (cliquish) if it is such at each point of its
domain [2]. A sequence (f,,), f,: R — R, quasiuniformly converges to f: R — I
(I3 if (f,)) pointwise converges to f and

Ve > 0Vm dpVae e R: mind|fng (2) = f@)], ... | fingp(z) = f(2)]} < =.

In the article [1], Borsik proved that every cliquish function f: R — ¥
is a quasiuniform limit of a sequence of quasicontinuous functions and he puts

the following problem:
PROBLEM. ([1]) Let f: R — R be a cliquish function. Is the function [ a
quasinniform limit of a sequence of Darboux quasicontinuous functions?

In this article, T prove that the answer to the above Borsik’s question is

aflirmative.
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ZBIGNIEW GRANDE

THEOREM. Let f: R — R be a cliquish function. There is a sequence of
Darboux quasicontinuous functions f,: R — R which quasiuniformly converges

to f.

In the proof of this theorem, we use the following lemmata:

LEMMA. If a continuous function f: [a,b] — R and a closed interval [c.d] are
such that f([a,b]) C [e,d], then there is a continuous function g: [a.b] — R

such that g(a) = f(a), g(b) = f(b), and g([a,b]) = [c,d].
The proof of this lemma is obvious.

LEMMA. Let € > 0 and let f: (a,b) — R be o function such that for cvery
x € (a,b) we have osc f(x) < . There is a continuous function g: (a.b) — X

such that |f(z) — g(z)| < 2¢ for each z € (a.b).

Proof. It suffices to prove that for every closed interval [c,d] C (a.b) there
is a continuous function h: [¢,d] — R such that h(c) = f(c), h(d) = f(d) and
[h(z) — f(z)] < 2¢ for every z € [c,d]. Let [c,d] C (a,b) be a closed interval.
Since osc f(z) < e for every z € [c,d], there are open intervals J; = (a;.b;).

i =1,...,k, such that a; < ¢ < as < by <az < by < - < ap < b <
d < b, and oscf < e on every J;, i = 1,...,k. In every interval (aj4,.b;).
i=1,....,k—1, we find a point x;. Let z¢g = ¢, z;, = d. Put h(r;) = f(x;) for
i=0,1,...,k and let h be linear in every interval [z;, z;;1], z' =0,1..... h—1.
Obviously h is continuous and h(c) = f(c) and h(d) . Let € (c.d).
Then z € (z;,2,4,) for some ¢ < k. Since [z;, r;4]

() = flrdl <=
IZ( ,+1 *—}I( ) -+

€ . Thus the

osc f < e on [z;,x;4+1]. Consequently, |f(x;)— f(a z+1);
and |h(x ) fl@)] < Jh(I) = h(z;)| + [h(2i) = f(2)]
1f(x;) — @) = |[flzis1) — f(@)| + |f(z:) — f(z)] <

proof is Completed.

= fld
C (ajs1. b,+1 . we have
< g,
< |
<e+

Proof of Theorem. Put A4, = {.T € R; oscf(r) > l/n}. no=

1,2,.... Then all sets A,,, n = 1,2,..., are closed and nowhere dense. Fix
a positive integer n. For every component (a,b) of the set R — .4, we have
osc f(z) < 1/n for every x € (a,b). So, bv Lemma, 2, there is a continuous func-
tion geap): (a,b) — R such that |f(z) — gup)(x)] < 2/n for every r € (a.b).
Let

gn(x) = f(x), for xe€ A,.
and

9n (.I’) = Y(a,b) (l‘)

if x belongs to some component (a,b) of the set R — 4, . If a > —~x. 7 < 1.
and dist(a, A;) = ;oa € A,,-} < 1/n, then there is a sequence ([, 41
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of closed intervals (which depends on (a,b)) such that:

o Lix = laik,bix] C (a,a + min(1/n, (b — a)/2))) N {z € (a,b);
dist(z, A;) < 1/n} for k=1,2,...;

o klim bik =a;
LixNIip=0if (i,k) # (4,0), t,7<n, k,1=1,2,.
oscgn, < 1/n onevery I, k=1,2,.

Similarly, if b < 00, i < n, and dist(b, 4; ) < l/n, then we find a sequence
of closed intervals J; x = [cix,dik], k =1,2,..., such that:

o Jix C (b—min(1/n,(b—a)/2),b) N {z € (a,b); dist(z,A;) < 1/n}
for k=1,2,...;
o klim cik=2b;

o JixN i =0 (1K) # G, 6 j<n, kl=1,2,.
o oscgp, < 1/n onevery J;i, k=1,2

For every k = 1,2,... and i < n there are closed intervals K;x D ¢,,(I; )
and L, D gn(Jix) such that K;, has the same center as ¢,(l; ), Li.
has the same center as g,(J; x), and the diameters d(K; ), d(L1 k) are equal
o 25/(i — 1) for i > 1 and Ky, N Lix D [—k,k] for k = 1,2,.... By
Lemma 1, for every k& = 1,2,... and ¢ < n there are continuous functions
Sniik - iy — I(‘i.f\W ;mdv tn,i,k: Jz,k - Lz.k such that 57;,1,1«*,(11,,1\') - A:Aa
fn.i.k(']'i.k) = L’i Ky Sn k(azk) = gn(az k)» sn,i,k(bi,k) = g1z(bi,k)7 tn.l‘k( ‘I,Is) =
.‘/n(ﬁ\k)- tn,i,.k(d ) = QW( ) If = € ((l7b)’ then let f'Zn—l(-'E) = 5n,’i,2k—1( )
for v € Ligp_1, fon-1(2) = tn,,,,’%‘l( )) for z € Jiok—1,1<n,k=1,2,... and
let fo,_1(r) = gn(x) at other points of (a,b). Moreover, let fo,_i(x) = f(x)
for & € A, . Similarly, let fo,(z) = sy ion(x) for © € Lok, fon(x) ==ty (x)
for v € Jian, 1 <n, k=12..., fon(x) = gn(z) otherwise in (a,b), and
fon(2) = f(z) for z € A, . Now, we shall prove that the sequence (f,) point-
wise converges to f. If © € A, for some n = 1,2,..., then fp(x) = f(x)

for every k& > 2n — 1 and L]im fe(x) = f(x). Suppose that « is not in
v OO
any A,, n = 1,2,.... Fix a positive ¢. There is a positive integer n such

that 15/n < e, and a positive integer m > n such that dist(z, 4,) > 1/m.
Then for & > m we have dist(xz, 4,) > 1/k, and if z € 0,1 U Jig,_
for some i and p, then ¢ > n. Since for k¥ > m and ¢ > n we have
Sor— 1 (1 2p— 1) = K. 2p— 1, f’A-—l(]i 2p— 1) = L"’I’ 1, f\"igl, 1(L, 2p— 1) has the
same center as gp(L;2p—1) Jizp-1)) s d(Kiop-1) = d(Ligp_1) = 25/(i — 1)
< 25/n. and d(gn(Lizp- 1)) < 1/k < 1/n, d(g k(Jizp-1)) < 1/k < 1/n, we
may ()])H(l\(‘ that | fop—1(x) — gi(x)| < 13/n. Consequently, for k > m we have
Sow () = (0] < [ fan-1 () = gr(@)| +gr (@) = flo)] < 13/n+2/k < 15/n < ¢
and similarl_\', |for(x) = f(a)] < e. So. the sequence (f,) pointwise converges
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to f. Since min{|fon-1(2) = f(2)], [fon(®) = f(2)[} < lgn(2) = f(a) i
for every x € R and n = 1,2,..., the above convergence of the sequence (j,,‘,
is quasiuniform. We will show that every function fo,, n = 1,2..... is qua-
sicontinuous. Fix a positive integer n. Since f, is continuous at every point
x € R— A, , it suffices to prove that it is quasicontinuous at each point = € 4, .
Fix r € A, and € > 0. If x € A, then there is an interval [ o, C (r—z.0+ ="
such that fy,(z) € (—k,k). Consequently, there is an open interval I C I o
such that fo,(I) C (fz,,,(x) — &, fan(z) + €). So, in this case. fa, is qua-
sicontinuous at z. If © € A; — A;_;, 1 < ¢ < n, then there is a positive
number & < e such that oscf < 1/(i —1) on (v — &2 +8) C (0 —=z.0+ =),
There is an interval [;op C (& — 8,2 + 68). Let z € I; 5. be a point. Then
flx) = f(2)| < 1/(@i — 1), and |g,(2) — f(2)| < 2/n < 2/(i — 1). Conse-
quently, f(z) € (gn(z) — 3/(i — 1), gu(z) +3/(i — 1)). and there is a poin
u € I; o5 such that fy,(u) = f(x). Since the function f5, is continuous at .
there is an open interval [ C I; 2 such that fo,(I) C (f(r) - =, flo)+ =)

(fan(z) — &, fan(x) + ). So fo, is quasicontinuous at .. The proof of the
quasicontinuity of the function fs, 1 is analogous. Now we shall prove that f,
has the Darboux property. Let K C R be a closed interval. If K ¢ - 4, . then
fon 1s continuous on K, and f2,(K) is a connected set in B. If 4, ™ A # 0

then f5,(K) = R. Assume that the set f2,(K) is not connected. Let ¢ € = bhe
such that

A:{rek fon(z <(}77i(7) B:{;relx’; fon () }#U

and fo,(x) # ¢ for every x € K. Find a point z € K NclAncl B (cl denotes
the closure operation). Evidently, z € A, . Since z is not in ;. there is / <
n, ¢+ > 1, such that z € 4; — A;_1. Assume that f,,(z) = f(z) > ¢. Since
osc f(z) < 10 — 1) and |gn(u) — ga(0)] < lgn(u) = F(0)] + () — fl0) ~
If(v) = gn(v)] < 2/n+ |f(u) — f(0)] +2/n = |f(u) = f(v)] +4/n for all points
u,v € R, we may observe that oscg,(z) < 1/(i—1)+4/n <5/(i—1) I et {7 h
an open set containing z such that oscg, < 5/(i— 1) on U and osc f < 1/(i-1:
on U. Assume that g,(u) < ¢ at a point u & U . Then for every » € U we have
L(],,(LE) - C| < Ign(f) - gn(u)‘ + lgn - ('i < r)/(’ —=1)+ (( =l ) <5/
(.f('z)_flrl('L)) =5/(i —1) +gn(2) Jn(u)l <B/i =D +5/ - 1) = R
There is I C UNint K (or J,op € Utiint K). I0 T, 0 <0 07 7ving /\ Cthen
gn(Liop) C (e—10/(i=1).c+10/(i—1) ).(111( ((mscqmml e N = fongtd o
Similarly, if Jior < U mint A, then also ¢ € fy,(J; 200 This contradiction
proves that g, () > ¢ on the set U. Now we find 7,50 & T7 it Kofor ) o
U rint K). Since ¢ is not in Ko (or in Lo b we obiain that g
e+ 10/(i — 1) for 2 € I; 2 tor for w € Jiup ). Bat oscg, 570~ 1 on TN

gniv) > e+ 5/00 = 1) for o« U In partienlar, jiz) = g, 020 > =500

o

\
- 1‘ —
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Since z € cl A, there is a point w € ANU. Then f(w) < ¢, in a contradiction
with the facts f(z) > 5/(i — 1)+ ¢ and oscf < 1/(i — 1) on U. In the case
where f(z) < ¢, the proof is analogous.
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