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ON BORSIK'S PROBLEM CONCERNING 

QUASIUNIFORM LIMITS OF DARBOUX 

QUASICONTINUOUS FUNCTIONS 

ZBIGNIEW G R A N D E 1 

(Communicated by Ladislav Misik) 

ABSTRACT. It is proved that every cliquish function / : 1R —> R is a quasiuni 
form limit of a sequence of Darboux quasicontinuous functions. 

Let R be the set of all reals. A function / : R —> R is said to be quasicontin­

uous (cliquish) a t a poin t x 6 R if for every e > 0 and every neighbourhood U 

of ./• there is a nonemp ty open set V C U such that \f(t) — f(x)\ < e for each 

t eV (osc / < e on V). 

A function / is quasicontinuous (cliquish) if it is such at each point of its 

domain [2]. A sequence ( / n ) , fn : R —» R, quasiuniformly converges to / : R —> R 

(\l\\) if (fn) point/wise converges to / and 

V£ > 0 Vm 3p Vx G R : m i n { | / m + 1 ( x ) - / ( x ) | , . . . , \fm+P(x) - / W l } < £ . 

In the article [1], B o r s i k proved t h a t every cliquish function / : R —• E 

is a epiasiuniform limit of a sequence of quasicont inuous functions and he pu t s 

the following problem: 

P R O B L E M . ([!]) Let / : R —> R be a cliquish function. Is t he function / a 
(piasiuniform limit of a sequence of D a r b o u x quasicont inuous functions? 

In this article, I prove t h a t the answer to the above Borsik 's question is 
a ihrmat ive . 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Primary: 26A15. 
Key w o r d s : Cliquishness. Quasicontinuity, Darboux property, Quasiuniform coiivergeiuo. 
1 Supported by KBN grant 2 1144 91 01. 1992-94. 
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THEOREM. Let / : R —+ R be a cliquish function. There is a sequence of 
Darboux quasicontinuous functions f.n: R —> R which quasiuniformly converges 
to f. 

In the proof of this theorem, we use the following lemmata: 

LEMMA. If a continuous function f: [a,b] —> R and a closed interval [c,d] are 
such that f([a,b]) C [c, d]. then there is a continuous function g: [O.b] —* R 
.sHcb 6bOl g(a) = / (O ) ; g(b) = / ( b ) ; and g([a,b\) — [c, d]. 

The proof of this lemma is obvious. 

LEMMA. Let e > 0 and let f: (a,b) —» R be a function such that for every 
x G (a,b) we have oscf(x) < e. There is a continuous function g: (O.b) --> R 
such that \f(x) — g(x)\ < 2e for each x G (a, b). 

P r o o f . It suffices to prove that for every closed interval [c, d] C (O.b) there 
is a continuous function h: [c,d] —> R such that h(c) = /(O), h(d) = f(d) and 
\h(x) — f(x)\ < 2e for every x G [c,d]. Let [c,d] C (O, b) be a closed interval. 
Since oscf(x) < e for every x G [c, d], there are open intervals J2 = (O^-.b,). 
i — 1,.. . ,k, such that Oi < c < O2 < bi < O3 < b2 < • • • < & * . • < bA-i < 
d < bk , and o s c / < £ on every Ji, i = 1,. .. ,k. In every interval (Oz + i. b*j. 

= 1,. .. , k — 1, we find a point Xi. Let x0 = c, x^ — d. Put h(xj) = f(xt) for 
= 0 , 1 , . . . , k and let h be linear in every interval [xt, x/+i], i = 0, 1, . . .. k — 1. 

Obviously h is continuous and h(c) — f(c) and h(d) == / ( d ) . Let T G (c.d). 
Then x G (2^, 2^+1) for some i < k. Since [^,,T?;+i] C (O2+i,bz+i). we have 
o s c / < £ on [a^Xi+i]. Consequently, \f(xi)-f(xi+1)\ < e, \f(x) - / ( . r / ) | < £\ 
and |b(.x) - f(x)\ < \h(x) - h(xi)\ + \h(xt) - / ( x ) | < \h(xi+i) ~ h(xi)\ + 
| / ( x 0 - f(x)\ = | / ( s , + 1 ) - f(Xi)\ + \f(xt) - f(x)\ <e + e = 2e. Thus the 
proof is completed. 

P r o o f of T h e o r e m. Put An = {x G R; osc f(x) > l/n} . ti ~ 
1,2,.. . . Then all sets A n , n = 1,2,.. . , are closed and nowhere dense. Fix 
a positive integer n. For every component (a,b) of the set R — .4,, we have 
osc f(x) < l/n for every x G (O,b). So, by Lemma 2, there is a continuous func­
tion g(a,b): (a,b) —» R such that \f(x) — g(a,b)(x)\ < 2 / n f° r every •*' £ (O.b). 
Let 

gn(x) = f(x), for x E i r n 

:шd 

tfn(z) = 0(a,.V)(*) 

if ,T belongs to some component (O.b) of the set R — An . If a > —oc . / < //. 
and dist(a.Ai) = inf{|O — x\ ; x G A/} < l / n , then there is a sequence (/./.) 
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of closed intervals (which depends on (a,b)) such that: 

° h,k = [o>i,k,bi,k] C (a, a + min( l/n, (b - a)/2))) D {x G (a, b) ; 

dist(x, Aj) < 1/n} for k = 1, 2 , . . . ; 

lim biђк 
k—-юc 

o h,k,nlj:i = % if (i,A,)^ ( i ,/), i , j < n , fc,/ = 1,2,... ; 
o oscgn < 1/n on every 7 ^ , k — 1, 2 , . . . . 

Similarly, if b < oo, i < n , and dist(b, Ai) < 1/n, then we find a sequence 
of closed intervals Jiik = [ c ^ , diik], k = 1, 2 , . . . , such that: 

° Ji,k C (b - min( l/n, (b - a)/2),b) H {x e (a, b); dist(x,A?;) < 1/n} 
for k = 1, 2, . .. ; 

o lirn C?;.A- = b; 
k—»oo 

o Ji.fcH Jj,/ = 0 if ( i , fc)^( j ,Z), z, j < n , fc,Z = 1,2,... ; 
o oscgn < 1/n on every J?5A:, k = 1, 2 , . . . . 

For every k =-- 1, 2 , . . . and i < n there are closed intervals i\"?iA; D gn(h,k) 
and J//. D gn(Ji,k) such that iv"^ has the same center as gn(I-i,k) •> Lj^. 
has the same center as gn(Ji,k) •> and the diameters d(Kiik), d(Lijk) are equal 
to 2 5 / ( / - 1) for z > 1 and /Ylifc fl L l i f c D [-k, k] for k = 1,2,.... By 
Lemma 1, for every k = 1,2,... and i < n there are continuous functions 
*//./,A-: h,k —> Ki,k, and tn^k: Ji,k, —• Li^k such that sn^k(Ii,k) — K-i,k, 

tn.i.k(Ji.k) = Li^k, Sn.i,k(ai,k) = 9n((-H,k), Sn,i,k(h,k) = 9n(bi,k) , hi,i,k(^i,k) = 
Un(ci,k), Ui,uk(di,k) = 9n(di,k)- If x G (a,b), then let f2n-i(x) = sn,i,2k-i(x) 
for .f G I2,2k-i, /2n-i(^) = *n,i,2ife-i(-c) for x G Ji,2fc-i, i < n, k = 1, 2,. .. and 
let f2n_i(x) = gn(x) at other points of (a, b). Moreover, let f2n-i(x) = f(x) 
for .r G A,,,. Similarly, let / 2 n(x) == sn,i,2k(^) for £' G Ji,2fc , /2n(-*0 =z: tn,i,2k(x) 
for .f G J?;,2fc5 2 < n, k = 1,2,... , f2n(x) = gn(x) otherwise in (a, b), and 
f2n(x) = f(x) for x G An . Now, we shall prove that the sequence (fn) point-
wise converges to / . If x G An for some n = 1,2,.. . , then fk(x) = f(x) 
for every A* > 2n — 1 and lirn fk(x) = f(x). Suppose that x is not in 

k —> oo 

any A„ , n = 1, 2 , . . . . Fix a positive e. There is a positive integer n such 
that 15/n < £, and a positive integer ra > n such that dist(:r,An) > 1/ra. 
Then for k > ra wTe have dis t(x,An) > 1/k, and if x G Ii,2p-i U Ji,2p-i 
for some i and /O, then i > n . Since for k > ra and i > n we have 
flk-l(Ii:2p-l) —" Ki.2p-1 5 f2k-l(Ji,2p-l) = L.;,2p-1. Ki,2p-l(Li,2p-\) n a s t.llO 
same center as 9k(h;2p-i)(9k(Ji,2P-i)) , d(i^ i j2p-i) = d(Lt:2p-i) = 25/(z - 1) 
< 25/ / / , and d(.^U*,2p-i)) < 1/& < V™. d(gk(Ju2p-i)) < 1/k < 1/n, we 
mav observe that | /2A.-I(-E) - <//L.(-E)I < l«Vn- Consequently, for k > ra we have 
i A > A - i U ) - / W I < l / 2 f c - i ( ^ ) - ^ W I + | ^ ( - c ) - / ( - c ) | < 13/n + 2/fc < 15/77 < ^ . 

and similarly, |/2k(#) ~ /( J ' ) l < e- So, the sequence (/„.) pointwise converges 
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to / . Since m i n { | / 2 n - i ( ^ ) - f(x)\, \f2n(x) - f(x)\\ < \gn(x) - f(x)\ < 2/n 

for every x G R and n -= 1 , 2 , . . . , t he above convergence of t he sequence (/„ 

is quasiuniform. We will show t h a t every function f2n, n = 1,2 is qua-

sicontinuous. Fix a positive integer n. Since f2n is cont inuous at every point 

x G R — An , it suffices to prove t h a t it is quasicont inuous at each point x G A7} . 

Fix x G A n and e > 0 . If x G blj , t hen there is an interval Ii ,2A: C (X - £, x + f > 

such t h a t f2n(x) £ ( —fc,fc). Consequently , there is an open interval I C I1.2A 

such t h a t f2n(I) C (f2n(x) ~ £? f2n(x) + s) • So, in this case, /2„ is qua­

sicontinuous a t x . If x G Aj — A;._i , 1 < z < n , then there is a positive 

number 6 < e such t h a t osc / < l / ( i - 1) on (x — 6,x + 6) C (x - s.x + f ) . 

There is an interval U^k C (x — 6, x + 6 ) . Let z G A.2A- be a point . Then 

f(x) - f(z)\ < \/(i - 1) , and \gn(z) -f(z)\ < 2/n < 2/(* - 1) . Conse­

quently , f(x) G (gn(z) — 3/( i — 1), g n ( z ) + 3/(z — 1)) , and there is a point 

u £ I-i„2k such t h a t f2n(u) — f (x) • Since the function / 2 n is cont inuous at //. 

there is an open interval I C I?;,2A: such t h a t /2??(I) C ( / ( x ) - 5. / ( x ) -+- 5) 

(f2n(x) — e, f2n(x) + z) > So / 2 n is quasicont inuous at x . The proof of the 

quasicontinuity of the function f2n~i is analogous. Now we shall prove that .//>, 

has the Darboux property . Let K C R be a closed interval. If A" c l - .4,, . then 

/ 2 n is cont inuous on K, and f2n(K) is a connected set in E . If Ai P A + b . 

then f2n(K) = R. Assume t h a t the set f2n(K) is not connected . Let c G b, be 

such t h a t 

A = { x G I v ; i 2 n ( x ) < c } / 0 , I3={xGIv; / 2 „ (x) > c} / 0 . 

a r-d fe2n(x) / c for every x e K. F ind a point z G A" Pi cl A P cl I? (cl deno te -

the closure opera t ion) . Evidently , z G An . Since z is not in A± . there is / < 

n , 7 > 1, such t h a t z £ Ai — Ai_\. Assume t h a t f2n(z) = / ( - ) > <". Since 

o s c / ( z ) < l ( i - 1) and \gn(u) - gn(v)\ < \gn(u) - f(u)\ + \f(u) - / ( r ) ; ~ 

\f(v) - gn(v)\ < 2/n + \f(u) - f(v)\ + 2/n = \f(u) - / (O ) | + 4 / / . for all p o i n t . 

H,U G R, we may observe tha t osc gn(z) < l / ( z - l ) + 4 / n < 5 / ( / - 1) . Let U be 

an open set containing 2 such t h a t oscOH < 5 / ( i —1) on A and o s c / < l / ( / -• 1 :• 

on U. Assume t h a t gn(u) < c at a point u G U. Then for every x G A we h a \ -

\gn(x) - c| < |gn(^) - gn(u)\ + \gn(u) - c\ < 5/(i - 1) + (c - #•,,(*/)) < •")/(/ - 1) -

(f(z)~gn(u)) = 5/( t - 1) + |g n ( z ) -gn(u)\ < 5/(b - 1) + 5/( i - 1) = 10/f! - 1). 

There is I,:2k C A P hit A (or J,:2k C A P int A ) . If I,:1i, C U n int A . tin--. 

gn(f..2k) C ( c - 1 0 / ( 7 - l ) , c + l ( ) / ( z - 1 ) ) , and consequently c e A , ^ = ]2+i:2k 

Similarly, if J/,2A- C f!r P int A . then also c G f2nUi;ik)- This contradict i<> i 

proves t h a t gn(x) > c on the set I/. Now we find Ii:n C L P int A (o 

( / P i n t A ) . Since c is not in A;,9A: (or in LV.2A-)^ we obtain that g;,\x 

r _l_ 10/(2 - 1) for x G L/VjA- (or for x G Ji,2k)> But oscc/., -" H/i/ - 1') on L 

.g?>.(̂ ') > c + 5/ ( / - 1) for x f- [ P In par t icular , / ( ; : ) -- c/.b .:) > c — b - / -
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Since z £ cl A, there is a point w G A Pi U. Then f(w) < c, in a contradiction 
with the facts f(z) > 5/(i — 1) + c and o s c / < l/(i — 1) on U. In the case 
where f(z) < c, the proof is analogous. 
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