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ON SOME PROPERTIES 

OF SUBMEASURES ON MV-ALGEBRAS 

M A R I A J U R E Č K O V Á — F E R D I N A N D C H O V A N E C 

(Communicated by Anatolij Dvurečenskij ) 

ABSTRACT. In this paper we study some properties of a submeasure on MV-al-
gebras. We show that the nonatomicity,the Saks property and the Darboux prop
erty are equivalent properties of a submeasure on MV-algebras. 

1. Introduction 

Let S be a cr-algebra and fi: S —» [0, oo) be a measure on <S, i.e., 
(i) /i(0) = O; 

( OO \ OO 

U K = £ »(An), whenever ( A J - , C S, 
n=l / n= l 

oo 
such that A• n A. = 0, i ^ j , and \J A eS. 

3 n=l 
We say that /i is nonatomic if, for arbitrary A G 5 such that JJL(A) > 0, 

there exists B eS , B C A such that 0 < /x(J5) < /i(A). 
A measure // has the Darboux property if, for any _4 € <S and any t G K. such 

that 0 < £ < n(A) there exists J5 G 5 , B C A, such that /x(2?) = ^. 
It is known that the fact that ji is a nonatomic measure on a cr -algebra S is 

a sufficient condition for \x having the Darboux property ([6]). Generalizations 
of this proposition can be found in many directions. For example, O 1 e j c e k in 
[8] showed that the preceding assertion for a finitely additive measure is false in 2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 28E10. 
Keywords : MV-algebra, submeasure on MV-algebra, nonatomicity, Darboux property. 

The paper has been supported by the Grant 2/3163/23 SAV Bratislava and VEGA 1/9056/02, 
Slovakia. 

161 



MARIA JURECKOVA — FERDINAND CHOVANEC 

general and gave some sufficient conditions for a finitely additive measure having 
the Darboux property. An interesting result can be found in [4]. In this paper 
D o b r a k o v deals with relations between Darboux property and nonatomicity 
in the case that \x is subadditively continuous, i.e., for any A G S and any e > 0 
there exists S > 0 such that B G S and /JL(B) < 5 implies /z(_4 Ui5)< /I(-4) + e 
and fi(A) < fi(A — B)-\-£. K l i m k i n and S V i s t u l a in [7] solved this problem 
on F-algebras such that they replaced the nonatomicity by the Saks property, 
i.e., for any e > 0 and any A G S there exists £-partition of A, i.e., there exist 
A1,A2,...,An G S, such that 

U Ak = A, A- n A • = 0, i ф j , џ(Ak) < є, k = 1,..., n . з 
k=i 

R i e c a n in [9] considered the fuzzy sets, i.e., the functions / : X —> [0,1] 
instead of crisp sets (see [10]) and proved that for any Dobrakov submeasure the 
Darboux, Saks and nonatomic property are equivalent. 

In this paper we give the following generalization. We consider an MV-algebra 
instead of a-algebra and prove that if l/ is a Dobrakov submeasure on MV-al
gebra, then the nonatomic property is a sufficient condition for the Darboux 
property. The main ideas of the proof are taken from [7]. 

2. Notations and preliminaries 

MV-algebras were originally introduced by C h a n g [3] as algebraic systems 
M = (M, ©,©,*, Oj^, 1^), consisting of a nonempty set M, two constant 
elements 0^ , 1M in M, two binary operations ©,© and the unary operation 
* satisfying the following axioms for all #, y G M: 

x@y = y@x, x@(y@z) = (x@y)®z, 

x © 0 ^ = x , a; © 1M = 1M , 

(x ) = x , 0 ^ = 1M , x © x = 1M , 

(x* ffi y)* © y = (x © y*)* © x , 

xQy = (x* Qy*)* . 

We note that if M is an MV-algebra, then it is a distributive lattice with 
respect to the partial order < defined by x < y if and only if x 0 y* = 0M, and 
with the least and greatest element 0^, 1M, respectively. Lattice operations V 
and A are defined by a V b = (a 0 6*) © b and a A b = (a © b*) 0 b. 

Recall that M is a a-complete MV-algebra if M is a cr-complete lattice. 
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Let «S be a a -algebra of all subsets of a nonempty set X. Define 

E®F = E\JF, EOF = EdF, E*=X-E; E,FeS. 

Then S is a a -complete MV-algebra. The converse is not true. In the sequel we 
will assume that M is a a -complete MV-algebra. 

DEFINITION 1. A mapping fi: M -» [0,oo) is called a submeasure on M if 
the following conditions hold: 

(i) If x, y G M, x < y, then /i(x) < ^(y); 

(ii) To any y G M and any £ > 0 there exists 5 > 0 such that x G M and 
n(x) < S implies n(y © x) < fi(y) -f £; 

(iii) If (yn)™=1 CM,yn\QM, then ix(yn) \ 0. 

DEFINITION 2. The submeasure ji is nonatomic if, for every y £ M such 
that fi(y) > 0, there exists x e M, x < y, such that 0 < /i(x) < fi(y). 

DEFINITION 3. The submeasure fi has the Darboux property if, for all y G M 
and any £ G E, 0 < £ < fx(y), there exists x e M, x < y, such that //(#) = t. 

DEFINITION 4. The submeasure // has the Saks property if, for any e > 0 
and any 2/ £ A4 there exists e-partition of y, i.e., there exist yv — -,yn € JM 
such that yi < y^ for any i ^ j and 

n 

X ^ = yi©2/2©---®yn =»> w h e r e /*(%)<£, t = l , . . . , n -
& = 1 

LEMMA 5. Le£ fi be a nonatomic submeasure on M and y be an element of 
M such that n(y) > 0. Then to any e > 0 £/iere ern'ste x G M such that x < y 
and 0 < /J,(X) < e. 

P r o o f . Suppose the converse, i.e., there exists e > 0 such that for any 
x G AT, x < y, either fi(x) > e or fi(x) = 0. Since \i is nonatomic, there 
is xl G .M, o^ < y, such that 0 < ii(xx) < fi(y). According to previous 
assumptions fi(x^ > e. 

Since xx < y, it follows from the properties of MV-algebras that y = x1 0 
(yQxl). For more details see [5]. Denote ex = \(n(y) ~l^(xx)). Clearly, ex > 0 
and according to property (ii) of a submeasure /i there exists S > 0 such that 
/IO^ 0 z) < n(xx) + ex, whenever z G M, /x(z) < 5. Put z = y 0 x \ . Evidently 
fi(y 0 xl) > 0. To prove /x(y 0 xj) > 0 assume that /x(y O x\) = 0. Then 

/x(y) = /x(xx © (y © x*)) < ^(xx) + ^ < / i (xj + \ (v(y) - V(xx)) < fi(y), 
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which is a contradiction and so jx(y © x*) > 0. 
Hence, there exists x2 <y<dx\ such that ^(x2) > e and we can continue in 

the previous process. We obtain a sequence (xn)n°zsl C M such that 

oo 

Xx © X 2 0 - - - = YlXn -- V a n d M ^ n ) - ^ 5 ' 71 = 1,2,. . . . 
n = l 

oo 
Denote zn = ^2 x{. Evidently zn \ 0 ^ , which gives n(zn) \ 0. This shows 

i=n 
that there exists a natural number n such that 

V(Xn)<V(Zn)<Si 

which contradicts that //(-£n) > e and this entails 0 < ji(x) < e. D 

3. Nonatomic submeasure and 
the Darboux and Saks property 

PROPOSITION 6. Any nonatomic submeasure [i on M has the Saks property. 

P r o o f . Let y G M, s > 0 and fi be a nonatomic submeasure on M. Put 

ax = SWP{IJL(X) : x G M , x < y, /i(x) < e} . 

If ax = 0, the proof is finished, because in this case fi(y) = 0 < e. 
Consider ax > 0. It implies that there exists yx G M, yx < y, \i(y^) < e 

such that 
y < Mtfi) < «i • 

The proof is complete if fi(y O y$) < s. If not, we will construct a sequence 
(yn)£° C M, yn < y © y* 0 • • • O yn.x, /x(yn) < £ such that 

^ < /x(yn) < an 

and 

an = snp{fi(x) : x G M , a; < y ©yj © • • • © y ^ , /i(x) < e} . 

Put now 

oo 

i=n 

It is easy to see that 
0 < ^ < Kyn) < /-(*J 
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and since zn \ 0M, we obtain li(zn) \ 0, which gives that lim an = 0. 
n—>oo 

/ C O x * 

Put x = y © ( J2 yA . T o show fi(x) = 0, suppose the contrary, i.e., 
M= I ' 

jji(x) > 0. Applying Lemma 5, there exists z G M) z < x, such that ji(z) < e 
and 

z<x = yQlj2vi) < y © ( ] £ » < ) = W 0 » J O - " O y f c , fc = l , 2 , . . . . 

This implies /JL(Z) < ak,1 for k = 1,2,... and, because lim a = 0, we obtain 
' n—>oo 

/i(x) < 0, which contradicts our assumption and so fi(x) = 0. 
CO 

Since Yl Vi\ ®M > there exists n0 such that 
i=n 

lM .£-'.) < e 

\ i=n0 / 

Moreover 

i=n0 \ i=no / 

and so we can conclude that 

£ = {yiJi/2»---»»no-i' £ 2/i'X} 
i=no 

is an e -partition of y. • 

PROPOSITION 7. Let \i be a submeasure with the Saks property on an MV-al-
gebra M. Then /i has the Darboux property. 

P r o o f . Consider y G M, t 6 E such that 0 < t < fj,(y) and a sequence 
of real numbers (en)n=i such that en \ 0, en < t. By the assumption, the 
submeasure /i has the Saks property, which gives an ^-partition of y, i.e., there 

n 
exist y x , . . . , yn G JVi such that yt < y*, i ^ j , £ 2/» = J/ a n d My*) < ex < * 

^ i = i 
for allz = 1,2,..., n. Since ji(yx © • • • ©yn) = /x(y) > t, there exists / such that 

Mi/i e • • • e y,) < t, /ifoi © • • • © y, e y /+1) > t. 

Denote x1 = yx © • • • © y- and zx = yx © • • • © yl © y / + 1 . Then 

x1<z1<y, ii(xx) < t, fi(zx) > t, 

fx(z1Gxl) = /x(y/+1) < £ x . 
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Now we will apply the Saks property to the zx ®x\ . There exists an £2-partition 
{v^ ..., vk} of z1 0 x\ such that 

k 
zi&xi~Ylvi an(* V{vz)<£2> i = 1,2, ...,fc. 

2 = 1 

Since ^(a^) < t and fi{x1 ® (zx ©#J)) = /i(.r1 ©L^ © • • • ®vk) > t, it is clear 
that there is a natural number m such that 

fi(x1 ®v1®'"®vm)<t and / x ^ © v1 © • • • © vm © vm + 1) > t. 

Put x2 = x1 © ̂  © • • • © vm and z2 = xx ® vx ® • • • © vm © t>m+1. Then 

%i < x2 < z2 < zx < y, 

fi(x2) < t, fi(z2) > t, Lx(z2 © x*2) = fi(vm+1) < e2 . 

By this way we obtain two sequences (xn)n
<L1, {zn)n

<L1 of elements of M such 
that 

*1 < ^2 < " ' ' < Xn < Zn < ' ' ' < Z2 < Zl < V > 

V{Zn®Xn)<em n = l , 2 . . . . 

oo 
Put x = V xn. It is evident that x £ yVf and x <y. The proof will be complete 

n = l 

by showing that [i(x) = t. Conversely suppose that fi(x) < t. Then we can put 
e = \{t — n(x)) > 0. By the property (ii) of the submeasure there exists 5 > 0 
such that for any w G M with ix(w) < o*, n(x ®w)< fjt(x) + e. Since en\0, 
there exists n0 such that fi>{zno Oxno) < eno < 5. Then 

KZn0) = »{Xn0 © (*n0 ©
 XV) ~ M* © (*»o © XV) 

< fi(x) + e = ii{x) + ^ (* - V>{x)) < t, 

contrary to //(zj > £ for allz = 1,2,... . This entails that fi(x) > t. 
Take now e > 0. By the property (ii) of Definition 1 there exists S > 0 such 

that /i(:rn ®w) < n{xno) + £ , whenever w € M and /x(iv) < 5. Since 

ti(xOxno)<»(znoOxno)<eno<5, 

we have 
/i(x) = fi{xno ®(xQ xno)) < »(xno) + e . 

But fJ>{xno) < t, which implies that fj,(x) < t + e for any e > 0, and so we can 
conclude that fi(x) = t. • 
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PROPOSITION 8. Any nonatomic submeasure on M has the Darboux prop
erty. 

P r o o f . This follows directly from Propositions 6 and 7. • 

It is evident that if /i has the Darboux property, then ji is nonatomic. Com
bining this fact with Proposition 8 we can conclude our assertions with the 
following theorem. 

THEOREM 9. Let \i be a submeasure on an MV-algebra. Then the nonatomic-
ity, the Saks property and the Darboux property are equivalent properties of a 
submeasure fi. 

REFERENCES 

[1] Č E R N E K , P . : Product of submeasures, Acta Math. Univ. Comenian. 40-41 (1982), 
301-308. 

[2] C E R N E K , P . : The least upper bound of the additive measures and integrals, Zb. Rad., 
Prir .-Math. 25 (1971), 21-24. 

[3] CHANG, C C : Algebraic analysis of many-valued logics, Trans. Amer. M a t h . Soc. 8 8 
(1959), 467-490. 

[4] D O B R A K O V , I . : On submeasures I, Dissertationes Math. (Rozprawy Mat . ) 1 1 2 (1974), 
5-35. 

[5] D V U R E Ö E N S K I J , A . — P U L M A N N O V Á , S.: New Trends in Quantum Structures, 
Cluwer Acad. Publ ./Is ter Science, Dordrecht/Bratislava, 2000. 

[6] HALMOS, P. R. : The range of a vector measure, Bull. Amer. M a t h . Soc. 5 4 (1948), 
416-421. 

[7] KLIMKIN, V. M.—SVISTULA, M. G . : The Darboux property of non-additive set func-
tions, Mat . Sb. 192 (2001), 41-50. (Russian) 

[8] O L E J Č E K , V. : Darboux property of finitely additive measure on ő-ring, M a t h . Slovaca 
27 (1997), 195-201. 

[9] RIECAN, B. : On the Dobrakov submeasure on fuzzy sets, Fuzzy Sets and Systems 
(Submitted). 

[10] RIEČAN, B . — N E U B R U N N , T . : Integral, Measure, and Ordering, Kluwer Acad. Publ ./ 
Ister Science, Dordrecht/Bratislava, 1997. 

Received May 6, 2003 Department of Mathematics 
Revised November 13, 2003 Military Academy 

SK-031 19 Liptovský Mikuláš 
SLOVAK REPUBLIC 

Mathematical Institute 
Slovak Academy of Sciences 
Stefánikova Ą9 
SK-814 73 Bratislava 
SLOVAK REPUBLIC 
E-mail: jureckova@valm.sk  

chovanec@valm.sk 

167 


		webmaster@dml.cz
	2012-08-01T17:18:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




