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(Communicated by Martin Skoviera) 

ABSTRACT. The distance of a set of vertices is the sum of the distances between 
pairs of vertices in the set. We define the k-diameter of a graph as the maximum 
distance of a set of k vertices; so the 2-diameter is the normal diameter and the 
n-diameter, where n is the order, is the distance of the graph. We complete the 
characterization of graphs with maximum distance given the order and size. We 
also determine the maximum size of a graph with given order and 3-diameter. 

1. Introduction 

An old problem is to characterize graphs of given order and size (number 
of edges) which attain the maximum value of a parameter. In 1962, H a r a r y 
[4] determined the maximum size for a given order and diameter, and showed 
that the so-called path-complete graphs have maximum diameter given their 
order and size (but are in general not the only extremal graphs). More recently, 
S o 11 e s [6] showed that the path-complete graphs are also extremal graphs for 
the parameter distance (or transmission), given the order and size. 

In this paper we refine S o 11 e s ' result and show that almost always the 
path-complete graph is the only extremal graph. In contrast, we introduce the 
k-diameter of a graph, which generalizes both diameter and distance, and show 
that the path-complete graphs are seldom extremal for this parameter. 

2. Distance measures and path-complete graphs 

The distance between two vertices in a graph G is the number of edges in 
a shortest path between them. The diameter of G is the maximum distance 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 05C12, 05C35. 
K e y w o r d s : distance, diameter, path-complete. 
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between two vertices and is denoted diam(G). The distance of the graph (also 
called the transmission or total distance) is the sum over all pairs of vertices of 
their distances and is denoted O"(G). The status of a vertex v is the sum of the 
distances from it to all other vertices and is denoted a(v). For general properties 
of these parameters, consult [1] or [7]. 

A natural generalization which appears not to have been studied is the fol
lowing. The distance of a set of vertices is the sum of the distances between 
pairs of vertices in the set. Then we define the k-diameter of the graph G as the 
maximum distance of a set of k vertices and denote it by dk(G). So the normal 
diameter of G is its 2-diameter and the distance of G is its n -diameter where 
n is the order of G. 

We are interested in graphs with maximum value of these parameters given 
their order and size. 

By the graph operation of duplicating a vertex v, we mean introducing a 
new vertex v' and joining it to v and all neighbours of v. We say that H is an 
expansion of G if it is isomorphic to the graph obtained from G by repeatedly 
duplicating a vertex (not necessarily the same one each time). 

We consider the expansions of paths: for positive integers aQ,all... ,ad we 
denote by P[aQ,ax, . . . , o d ] the graph formed from d + 1 disjoint cliques Ai of 
orders ai and joining all vertices in Ai and Ai+1 for 0 < i < d — 1. The sets 
Ai are called the levels of P[a0,a1,..., ad]. 

O r e [5] characterized the diameter-maximal graphs: those graphs wmere the 
addition of any edge causes the diameter to decrease. He showed that, for diam
eter d, they are precisely the expansions of the path on d + 1 vertices where the 
first and last vertices are not expanded; that is, P [ l , a 1 ? . . . , ad_1? 1]. 

A path-complete graph is any expansion of the form P[a0 , a l 3 1 , . . . , 1]. In 
other words, it is obtained from the disjoint union of a path and a complete 
graph by the addition of edges between one end-vertex of the path and a1 

vertices of the complete graph. It can easily be shown that there is a unique 
path-complete graph for a given order n and size m > n — 1; we denote this by 

H a r a r y observed that the solution to the diameter question was attained 
by the path-complete graph. 

THEOREM 1. ([4]) Let G be a connected graph with n vertices and m edges. 
Then diam(G) < di&m(PKnm). 

We note that for most n and ra, PK n m is not the only graph of order n 
and size m with maximum diameter: for example, for m = n + 1 any one-vertex 
expansion of the path on n vertices has maximum diameter. 
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3. Graphs with maximum distance 

S o 11 e s [6] showed that for every order n and size m G {n — 1 , . . . , (™) } , 
the path-complete graph PKn m has maximum distance. In fact, he proved an 
interesting extremal property of the path-complete graphs. For a graph G and 
integer k > 2, define Wk(G) as the set of (unordered) pairs of nonadjacent 
vertices at distance at most k, and let wk(G) — \Wk(G)\. 

THEOREM 2. ([6]) Let G be a connected graph of order n and diameter d > 3 
and let k G { 2 , . . . , d-1} . Then 

k 

wk{G)>Y,(n-i). 
2 = 2 

Moreover, equality occurs for any path-complete graph. 

We will need the following extension of Theorem 2. 

LEMMA 3. Let G be a connected graph of order n and diameter d > 3 and let 
k 

k G { 2 , . . . , d— 1} . Then wk(G) — __(n — i) if and only if G is an expansion 
2 = 2 

P[a0,a1,... ,ad] of the following form: 

(a) k — d— 1 and all but two consecutive a{ are 1, 
or 

(b) k — d — 1 and all but a0 and ad are 1, 
or 

(c) k = d — 2 and all but a0, ax, ad_x and ad are 1, 
and at least one of ax or ad_1 is 1, 

or 
(d) k < d — 3 and all but a0, ax, ad_x and ad are 1. 

P r o o f . We build on S o 11 e s ' proof of the bound; so we start by recapping 
that proof. The bound is proved by induction on the order. The bound is true 
for the path, so we may assume G is not the path. Let P be a diametral path in 
G and let v be a non-cut-vertex which is not on P. Then G — v is connected, 
has order n — 1, and diameter d' > d. 

So G — v satisfies the bound of Theorem 2; that is, 

k 

wk{G-v)>Y_{n-l-i). 
2 = 2 

If a pair of vertices are nonadjacent in G — v, then they are nonadjacent in G; 
if they are at most distance k apart in G — v, then they are too in G. Thus 
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Wk(G) 2 Wk(G — v). The bound will follow when we show that v is in at least 
k — 1 pairs in Wk(G). 

Define a mate for v as a vertex nonadjacent to v but at distance at most k 
from v. Let x and y be the end-vertices of P and consider shortest paths Px 

and P from v to x and y. There are two cases: If either path has length k or 
more, then there are k — 1 mates for v on that path. 

Otherwise all vertices on both paths apart from v and its successors are 
mates for v. Since the two paths combined constitute an x y walk, there are 
at least d — 2 distinct vertices on Px and P apart from v and its neighbours. 
Since we restricted k < d — 1, it follows that v has at least k — 1 mates, and 
the bound is established. 

Now, assume equality and that G is not a path (which is extremal). Then 

(i) the graph G — v is extremal, 
(ii) the vertex v is in exactly k — 1 pairs, 

(iii) every pair in Wk(G) — Wk(G — v) contains the vertex v. 

By (i) and the induction hypothesis, G — v is an expansion of the path. We 
claim that the neighbourhood of v is restricted to three consecutive levels of 
G — v: for otherwise there is a pair of vertices (distinct from v) whose distance 
apart is k in C7, but is more than k in G — U, which contradicts (iii) above. 

Further, the neighbourhood of v must be the union of one, two or three 
consecutive levels. For, otherwise then adding an edge joining v to another 
vertex of a level to which v is already adjacent reduces the number of mates, a 
contradiction of (ii). 

In particular, the shortest paths P^ and Pni overlap in at most one vertex. 
x y 

So if one has length k or more, then the other one must have length 1. Hence, 
since G has diameter rf, it then follows that v is adjacent to all vertices in the 
first two levels of G — v, or all in the first three levels and the remaining levels 
within distance k of v are singletons. This yields the group of expansions of 
paths given in (b) (d) above. 

Otherwise (both Px and P have length less than fc), there are as above 
d — 2 mates, and so by (ii) d — 2 = k — 1. That is, k = d — 1. In particular, any 
level to which v is not adjacent must be singleton. Thus this yields the group 
of expansions of paths given in (a) above. • 

Using S o l t e s ' ideas, from this we obtain the following theorem. (Observe 
that, for any graph G of order n and size m, cr(G) > n(n— 1) — m with equality 
if and only if diam(G) < 2.) 
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THEOREM 4. Let G be a connected graph with n vertices and m edges. Then 
a(G) is maximum if and only if 

or 

(a) G is a path-complete graph P[aQ, a1? 1 , . . . , 1], 

(b) m = (2) — (n — 1) and G is P [ l , a l5 a 2 , 1 ] . 

or 
(c) m > Q ) - ( n - 2 ) . 

P r o o f . Let D and d be the diameters of the graphs PK n m and G respec
tively. If d < 2, then a(G) = n(n-l)-m < a(PKnm). If a(PKnm) = n(n-l) 
— m, then PKn m must have diameter at most 2, and so m > (2) — (n — 2). 
In this range of sizes, the graphs are automatically of diameter 2. 

So assume d > 3. Then a little calculation (given in [6]) shows that 

where wx(G) = 0. 

Now, consider the term fk(G) = (2) — m — wk(G). This is always positive 
(since we restrict k < d). And by Theorem 2, fk(G) < fk(PKnm). Hence the 
summation for a(PKnm) is term-by-term at least the summation for a(G), 
and has at least as many terms. It follows that a(G) = a(PKn m) if and only 
if d = D and there is equality for wk(G) in the bound of Theorem 2 for each 
fee { 2 , . . . , d - l } . 

If d = 3, then, by the above lemma, G is (up to symmetry) either F[a0, a1 51,1], 
P [ l , a1,a2,1] or P [ a 0 , 1 , 1 , a 3 ] . If d > 4, then by the above lemma, since we need 
equality for both k = d — 2 and k = d — 1, G is an expansion of the path with 
(up to symmetry) either all but aQ and ax equal to 1 (the path-complete graph), 
or all but aQ and ad equal to 1. 

But consider the graph G[aQ, 1 , . . . , 1, ad] for d > 3: if a0, ad > 2, then this 
graph does not have maximum diameter. For, consider the graph G' formed as 
follows: let vQv1 ... vd be a diametral path of G and remove the edge vQvx and 
add the edge vd_2vd. The diameter of G' is d+ 1, and yet by Theorem 1 at 
most D; hence d < D. 

So for d > 3, the only graphs with both maximum diameter and minimum 
wk(G) are those listed in the statement of the theorem. • 

The path-complete graphs are also the extremal graphs for the problem of 
maximizing the status. E n t r i n g e r et al. [3] proved the bound; it is not hard 
to prove unique extremality. 
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THEOREM 5. A vertex v has maximum status over all vertices in all connected 
graphs G with n vertices and m edges if and only if it is the vertex of minimum 
degree in the path-complete graph PK n m . 

P r o o f . By induction on n. Let G be a graph and let v be a vertex with 
maximum status. Let x be any neighbour of v. 

If x is unique, then consider G — v. Clearly crG{v) — n — 1 + aG_v{x) 
(where the subscript indicates the graph in which the status is measured). By 
the inductive hypothesis, the largest possible status for x in G — v is uniquely 
the vertex of minimum degree in a path-complete graph on n — 1 vertices and 
m — 1 edges. Thus G is a path-complete graph. 

Assume v has two or more neighbours. If there is a vertex y at distance 3 
from U, then replace edge vx by edge xy\ this increases the status of v, a 
contradiction. So every vertex is within distance 2 of v. If there are two vertices 
distinct from v that are nonadjacent, then replace xv by an edge joining them; 
again this increases the status of v, a contradiction. It follows that the graph 
G — v is complete, and thus G is a path-complete graph. • 

4. Graphs with maximum 3-diameter 

We consider first the problem of maximum 3-diameter for a given order. This 
is obviously attained for a tree, but a few moments' thought shows: 

THEOREM 6. The maximum 3 -diameter of a graph G on n vertices is 
2{n — 1). achieved by any tree with at most 3 end-vertices. 

P r o o f . Let T be any triple of vertices. Each edge of the tree G is in at 
most two of the shortest paths joining vertices of T; thus d3{G) < 2{n — 1). 
Equality requires each edge to separate the triple; so equality is attained if and 
only if the tree has at most 3 end-vertices. • 

The following result is similar to O r e ' s characterization of diameter-maximal 
graphs. 

LEMMA 7. Let G be a maximal graph with given order and 3 -diameter. Then 
G is an expansion of one of the following: 

(a) a path, 
(b) a subdivision of the star with three end-vertices, 
(c) the graph obtained by taking a triangle and three paths {possibly trivial) 

and identifying one end-vertex from each path with a different vertex of 
the triangle. 
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P r o o f . Consider the triple T = {x, H, z} of vertices with maximum dis
tance in G. Define a backbone as the subgraph induced by the edges of three 
shortest paths, one for each pair of vertices in T . Let B be the backbone with 
the fewest edges. 

It is clear that B is either the graph given in (a) or (b), or a subdivision 
of the graph given in (c). We show that in the latter case, the cycle in B is a 
triangle. 

Suppose B contains a cycle but this cycle is not a triangle. Let the vertices on 
the cycle in B closest to x, y and z b e x ' , y' and z' (necessarily distinct). These 
vertices divide the cycle into three edge-disjoint segments. Assume segment x' y' 
is the longest and z'-x' the shortest. By assumption segment x'-y' has length 
at least 2. 

Let a be the vertex at distance two from y' on the x'-y' segment (possibly 
a = x') and let b be the neighbour of y' on the y' -z' segment (possibly b = z'). 
See Figure 1. Now, if the edge ab is present, then this contradicts the minimality 
of B (delete the vertex between a and y' on the cycle). On the other hand, 
addition of the edge ab does not decrease any of the distances between vertices 
in the triple T, and so contradicts the maximality of G. Hence we have shown 
that the cycle in I? is a triangle. So, B is one of the graphs listed in (a), (b) or 
(c) above. 

A non-minimum backbone. 

Now, consider any other vertex u of G: it is adjacent to at most three vertices 
on any shortest path in G, and if it has three neighbours on the path then they 
are consecutive. Hence, N(u)nB is a subset of the closed neighbourhood in B of 
some vertex v in B. By the maximality of G, the graph induced by V(B) U {u} 
is obtained from B by duplicating the vertex v. 

Repeated application of this argument shows that G is an expansion of B. 
D 
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From this it follows: 

THEOREM 8 . The maximum size of a graph with order n and d3(G) = d with 
de { 3 , . . . , 2 n - 2 } is 

' (""(rf-5)/2) + rf^i ; d>5, d odd, 

(n-(«.-6)/2) + d-12 } d>Qy d eveny 

Q ) - l , d = 4, 

1 ( 2 ) . d = 3 . 

P r o o f . Obviously, G is maximal. By the above lemma, G is an expansion 
of a particular graph B. The maximum number of edges is obtained by alwrays 
duplicating the vertex of maximum degree. So it remains to calculate the size in 
each case. 

If the backbone B has a triangle, then the distance d of the triple T is 
odd, one vertex of the triangle is duplicated n — (d + 3)/2 times, and the size is 
m = (2) if d = 3, and 

fn-(d-5)/2\ d-9 

if d > 5. If the backbone B has no triangle, then the distance d of the triple T 
is even. If there is a vertex of degree 3 in B, then it is duplicated n — (d + 2)/2 
times, d > 6, and the size is 

n- ( d - 6 ) / 2 \ d - 1 2 
2 y + 2 • 

If B is a path, and d > 6, then the size of t7 is smaller than that when B is 
not a path (except for d = 2(n — 1)). But, for d = 4 this is the only possibility 
and when the middle vertex of the path of length 2 is duplicated n — 3 times, 
the result has m = Q) — 1 edges. • 

For d odd, it can be shown that the path-complete graph on this particular 
order and size (obtained by taking a path and expanding the penultimate vertex) 
is extremal. (The extremal triple is any triple containing the two initial end-
vertices.) 

However, for d even, the path-complete graph is not in general extremal. An 
example extremal graph for d even is constructed as follows. For p > 2 and 
a > 1, we define the broom (or comet) B a as the tree obtained by taking a 
path on p vertices and adding for one penultimate vertex (one adjacent to an 
end-vertex) a—1 new end-vertices adjacent to it. To obtain the extremal graph 
we take Bd/2 2 a n d expand the vertex of degree 3. (The triple of maximum 
distance is the three initial end-vertices.) 
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While we have not determined the maximum size for given k-diameter in 
general, it seems that, for k small relative to n, the above pattern may continue. 
In particular, consider a broom B vki2\ a n d expand the vertex of maximum 
degree. For suitable parity of distance, this is better than the path-complete 
graph. 

R E F E R E N C E S 

[1] BUCKLEY, F.-—HARARY, F . : Distance in Graphs, Addison-Wesley, Redwood City, 

California, 1990. 

[2] C H A R T R A N D , G.—LESNIAK, L.: Graphs and Digraphs (2nd ed.), Wadsworth & 

Brooks/Cole, Pacific Grove, Boston, 1986. 

[3] E N T R I N G E R , R . — J A C K S O N , D — SNYDER, D . : Distance in graphs, Czechoslovak 

Math. J . 26 (1976), 283-296. 

[4] HARARY, F . : The maximum connectivity of a graph, Proc. Nat . Acad. Sci. USA 4 8 

(1962), 1142 1146. 

[5] ORE, O . : Diameters in graphs, J . Combin. Theory 5 (1968), 75-81. 

[6] SOLTES, L.: Transmission in graphs: a Ъound and vertex removing, Math. Slovaca 4 1 

(1991), 11 16. 

[7] SWART, C S.: Distance Measures in Graphs and Subgraphs. M.Sc. Thesis, University of 

Natal, Durban, 1996. 

Received November 2, 2002 

Revised April 19, 2004 

' Department of Computer Science 
College of Engineering & Science 
Clemson University 
Box 340974 Clemson SC 29634-0974 
U.S. A 

E-mail: goddard@cs.clemson.edu 

: Department of Mathematical 
and Statistical Sciences 
University of Kwazulu-Natal 
Durban 404I 
SOUTH AFRICA 

139 


		webmaster@dml.cz
	2012-08-01T18:00:42+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




