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ON SUBMEASURES 11

IVAN DOBRAKOV—JANA FARKOVA

Introduction

In the present paper we investigate connections between uniform exhaustivity,
equi-absolute continuity, common or equi-subadditive continuity and sequential
compactness in the topology of pointwise convergence for families of submeasures.
(For the terminology see section 1 and Definitions 2 and 3).

The concept of subadditive continuity of u is linked with absolute continuity in
the following obvious way: u is subadditively continuous if and only if the set
functions v3, v3:

vi(B)=u(AuB)—u(A)
and
v2(B)=u(A)—u(A —B),

are absolutely — p-continuous.

For such considerations of a family v;, i € I of set functions, the behaviour of the

set function v;, vi(E)=sup v;(E) is dominant. As the example following Corol-
iel

lary 2 of Theorem 7 shows, v; need not be a submeasure even if v;, i =1, 2, ... are

uniformly exhaustive uniform submeasures on a o-algebra. '

It is mainly for this reason that we introduce and investigate a concept of
a semimeasure, see Definition 1, which on a o-ring is more general then the
concept of a submeasure. Namely Theorems 7 and 11 are true only within the
framework of semimeasures but not within that of submeasures.

Investigation of absolute continuity of subadditive set functions was initiated by
W. Orlicz in [15] and [16] and was succesfully continued in [1], [2], [5], [8], [9] and
[11].

Although most of our results are generalizations of the subadditive case, we
prove results which have no meaning in the subadditive case, see Theorems 1, 2, 6,
8, 9.
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In § 1 we introduce basic notations and terminology. In § 2 we consider
subsequently set functions on a ring, on a o-ring and on a generated o-ring.

For a solution of Problem 1 on page 14 of part I (In the following [4] will be cited
as part 1.) and for other results on submeasures see the recent paper of L. Drewn-
owski: On the continuity of certain non-additive set functions, Colloquium Math.
38 (1978), 243—253.

§ 1. Notations and preliminaries

In the following R, = (0, +=) and R, = (0, +®). T will denote a non empty
set, # a ring and & a o-ring of subsets of T. If € =27, then o(%) denotes the
smallest o-ring containing €. I will be a non empty set of indices.

All the considered set functions are supposed to be monotone and equal to zero
on the empty set (we deal as in part I only with set functions with values in R.). If
€2 and vi: $—R,, iel, are given, then v;: € — R, denotes the set function

defined by the equality
vi(E)=supvi(E), E€%.
iel

Let € =2" and let v: € — R,. We say that v is exhaustive, if v(E,)— 0 for any
sequence of pairwise disjoint sets E, € €, n=1, 2, .... We shall need the following
two well-known facts about exhaustive set functions defined on a ring, see [5, 4.1
and 4.6].

Lemma 1. A set function v: ®— R. is exhaustive if and only if every monotone
sequence E,e R, n=1, 2, ... is v-Cauchy, i.e., v(E,AE,)—>0if nnm—x. (avb,
resp. a Ab, means the maximum, resp. the minimum, of the real numbers a and b.)

Lemma 2. Let v: R — R, be exhaustive and let E,e &%, n=1, 2, ... Then for
each € >0 there is an n, such that

v (En - LOJEk><s
k=1

for n > n,.

We say that the family v.:€—R., iel, is uniformly exhaustive if v; is
exhaustive.

Let v: % — R.. We say that v is continuous at @, shortly continuous if v(E,)— 0
for any sequence E, e ®,n =1, 2, ... such that E,\\@. If v;: R— R.,iel, and if v,
is continuous, then we say that the family v;, i € I, is uniformly continuous.

We say that v: % — R, has the Fatou property, briefly the (F.p.)if E,e R,n=1,
2,...and E,/E€R = v(E,)—>vVv(E). If vii®#— R,, i eI have the (F.p.), then
clearly v; has also the (F.p.).
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If v:®— R, is exhaustive and has the (F.p.), then it is clearly continuous. If
v:¥— R, is continuous, then it is exhaustive.

Let v, u: R — R.. We say that v is absolutely u-continuous, briefly v <y if for
each £ >0 there is an § >0 such that A e &, u(A)<d > v(A)<e. If v<yu and
also u<<v, then we say that v and u are equivalent and write v~u. If u,
vi:R—R., i el and if v; <y, then we say that the family v;, i €I, is equi-u-cont-
inuous.

We say that v: R — R. is pseudometric generating if there is a subadditive
A:R— R, such that v~A.

This terminology is clear, since then the function o(E, F) = A(EAF),E,Fe®
is really a pseudometric on R.

The following result is due to L. Drewnowski.

Theorem 1. Let v: R — R.. Then v is pseudometric generating if and only if it
has the following property: for each € >0 there is a 6 >0 such that

A,BeR, v(A)vv(B)<é>v(AUB)<e.

(The property stated in this theorem will be calied the pseudometric generating
property, briefly the (p.g.p.).)

Proof. Necessity is immediate. Sufficiency : Monotonicity of v and the (p.g.p.)
imply that the families V., = {A e R: v(A)<n_1}, n=1,2, ..., form abase at @ for
a unique Frechet—Nikodym topology I'(v) on R, see [5, 1.5]. Since this base is
countable, the topology I'(v) is pseudometrizable by an invariant pseudometric d
on AR, see [3, chap. 9, § 3]. Now it is enough to put

A(E)=sup {d(F,0):Fe®,FcE}.

Lemma 3. Let u: R— R, have the (p.g.p.). Then there is a sequence 6« € R.,
k+p

k=1,2,...,6\0, such that A, € R, u (Ax) <« imply u < U Ai><6k for each

i=k+1
k,p=1,2,...
Proof. Take arbitrary 8, € R, and put subsequently &, = 1/2[8x-1 A8 (S«-1)] for
k=2, 3, ..., where 8(6«-1) is a & from the (p.g.p.) corresponding to & = &-1.
One of our basic concepts is introduced by the next
Definition 1. We say that v: ®R— R, is a semimeasure if it has the following
properties :
(i) the (p-g.p.),
(ii) the (F.p.),
(iii) NeR, v(N)=0=>v(AuUN)=v(A) for each A e R, and
(iv) v is exhaustive on XR.
Let us remind, see Definition 1 in part I, that u: % — R, is a submeasure if it is 1)
monotone, 2) continuous and 3) subadditively continuous: for every A € ® and
£>0thereisa d >0suchthat BeR, u(B)<d implies: a) u(AuB) < u(A)+e,
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and b) u(A)<u(A —B)+e¢. If the § in condition 3) is uniform with respect to
A € R, then we say that u is a uniform submeasure.

By Theorems 1 and 3 from part I each submeasure on a o-ring is a semimeasure
(on a ring this is not true even for countably additive measures, since they are not
necessarily exhaustive).

The converse is not true as the following simple example demonstrates: Let
T=(0,1). Let & be the Borel o-algebra of T and let A:%— (0, 1) be the
Lebesgue measure. Put v(A)=A1(A) if A(A)<1/2 and v(A)=1 if A(A)>1/2.
Then obviously v: ¥— (0, 1) is a semimeasure which is not a submeasure. As the
Corollary 1 of Theorems 5 will show a semimeasure v:¥— R, is a submeasure if
and only if A, e, n=1, 2, ... and A, \\A imply v(A,)—Vv(A).

It is easy to verify that the analogs of Theorem 4—9, 11, 12, 14, 15 and
Corollaries 1 and 2 of Theorem 15 from part I are valid for semimeasures. See also
Theorem 10 below. On the other hand, as the example above shows, Theorem 10
from part I is in general not valid for semimeasures. Note also that in Theorems 3a)
and 13 in part I the subadditive continuity can be replaced by the (p.g.p.)-

Concerning the notion of the submeasure, let us note that the subadditive
continuity may be replaced by the following one

) :IfA, AveR,n=1,2, ... and u(AAA,)—0, then u(A,)—>u(A).

Proof: 3)=3)*. Suppose that u(A.)+u(A). Then we can assume that for
some £ >0 either u(A,)>u(A)+¢ for each n, or u(A.)<u(A)—e¢ foreach n. In
the first case we get that u(AU(AAA,)) =u(AA(AAA,)) >u(A)+e¢e, which
contradicts 3a). Similarly the second case is inconsistent with 3b).

3)*=>3). Let u(B.)—0. Then u(AuB,) = u(AAMB.—A)) — u(A) and
u(A —=B,) = u(AA(ANB,)) — u(A).

Similarly, the uniform subadditive continuity is equivalent with the following one

3u)*: for each £ >0 there is a 6 >0 such that A, Be® and u(AAB)<dé >
u(A)—u(B)|<e. .

Using these facts, Theorem 1, and Theorem 3b) from part I., we immediately
obtain the following characterization of submeasures defined on a o-ring:

Theorem 2. A set function u:¥— R. is a submeasure if and only if there is an
equivalent subadditive submeasure A: ¥ — R. such that u is a continuous function
on the pseudometric space (¥, A).

§ 2. Uniform exhaustivity and absolute continuity of set functions
1. Onaring

The following theorem is a generalization of Theorem 6.1 (a) from [5S]. On the
other hand it follows immediately from this result if we use Theorem 1. We give,
however, a direct proof and thus the metrization result of Theorem 1 is not needed.
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Theorem 3. Let u, v: R — R, have both the (p.g8.p-), let v be exhaustive and
suppose that Bce R, k=1, 2, ..., B«\\ and u(B«)—0 imply v(B.)—0.

Then v<u.

Proof. Suppose the contrary. According to Lemma 3 take a sequence {«} with
stated properties. Then there is an £6>0 and a sequence Ex e R, k=1, 2, ... such
that u(E.) <6« and v(Ex)>¢g, for each k=1, 2, ...

Since v has the (p.g.p.), there is an £ >0 such that

(1) A,Be®, v(A)v(B)<e=>Vv(AUB)<e,.
Further, by Lemma 3 we choose a sequence &x € R4, k=1, 2, ... such that € >¢,,
k
eaNOand Ay e R, v(Ar) <&, k=1,2,...imply v (UA;><£ foreachk=1,2, ...
i=1

Since v is exhaustive, applying Lemma 2 to the sequence E,,n =1, 2, ... and to
€, we find an n; such that

v (E,.—L_IJE,«><£2 for n>n,.
i=1
Put B, = LJE.— and apply Lemma 2 to the sequence BinE,, n=n;+1,n.+2, ...

i=1

and to £3. Then there is an n,>n,; such that

v(BlmE,.—-Bln sz E.->><£3 for n>n..

i=nj+1

Define B, = Bln< sz E.-) and apply Lemma 2 to the sequence B,nE,,n=n,+1,

i=ny+1

n,+2, ... and to &,. Continuing in this way we obtain a required sequence Bx € &,
k=1, 2, ... In fact, B\, and

uBI<u (U E)<énN0

i=np_1+1

as k— . Clearly

(2) En =(EnﬁBO_B1)U(E,. ﬁBl _Bz)U...U
U(E.NBk-1— B«)UE,NBxk
for each n, k=1, 2, ..., where Bo=T.
Since v(E.NBk-1— Bx) <&+ for each k=1, 2, ... and each n >n., we have
Y
v ( (E,,nB,'_l_B,-))<€1<€

i=1
for each k=1, 2, ... and each n >n.. But then v(Bx)=v(E.NnB)>¢ for each
k=1, 2,... and each n>n,, because otherwise by (1) and (2) the inequality

v(E.)> €0 cannot hold for n >ny. Since £ >0, we have a contradiction.
The next theorem generalizes Theorem 1 in § 2 in [11].
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Theorem 4. Let u, vi:R—>R., iel, let vi<u foreachielandlet eachv:,i€l,
have the following property (the property 3b) of a submeasure):

For each A € R and each £ >0 there is a 8 >0 such that BeR, vi(B)<dé >
vi(A)<vi(A —B)+¢. .

Suppose further that both u and v; have the (p.g.p.) and that v; is exhaustive.
Then vi<u.

Proof. Suppose the contrary. Then by Theorem 3 there is an £>0 and
a sequence By e R, k=1, 2, ... such that B\, u(Bx)— 0 and v;(Bi)>¢ for each
k=1,2,.... For each k=1, 2, ... take ix €I so that v, (B;)>¢.

Put k, = 1. Since v,,, has the property 3b) of a submeasure, there is an n >0 such
that B e R, v,,(B)<n > v,,(Bi,— B) = vi,(By,) —€/2=¢/2. But v,, <u, hence
there isa 6 >0suchthat Be R, u(B)<d6 = v,,(B)<n. Since u(B«)— 0, there is
a k;>k;, such that u(Bi,)<d. In this way we have found a k,>k,; such that
vi(Bk, — By,) = Vi,(Br, — Bi,) =¢€/2. Repeating this consideration subsequently for
ka, ks, ..., we obtain a subsequence By,, n =1, 2, ... such that v;(Bx, — Bx,,,) =¢/2
for each n=1, 2, ... But this contradicts the exhaustivity of v;, since B\, and
therefore the sets By, — Bx,,,, n =1, 2, ... are pairwise disjoint.

2. Onao-ring

The next lemma immediately follows from the monotonicity of the considered
set functions.

Lemma 4. Letv,:®#—R.,,n=1,2, ... and let lim v,(A) =v(A) exist for each

A eRThenv,,n=1,2, ... are uniformly continuous if and only if v is continuous.
The following simple theorem is the key to the most of our results which will
follow.

Theorem 5. Let u, vi:¥$—R,, i eI have the (F.p.) and let Ne &, u(N)=0 =>
vi(AUN)=v;(A) foreachi el and each A € ¥. Let further u have the (p.g.p.) and
let vi be exhaustive. Then v; <<u.

Proof. Suppose the contrary. Take a sequence 8«, Kk =1, 2, ... for u according to
Lemma 3. Then there is an € >0 and a sequence Ax e, k=1, 2, ... such that
u(Ax) <6k and vi(Ax)>¢ foreach k=1, 2, .... But then u ( U A.—)sék for each

i=k+1

k=1, 2, ... by Lemma 3 and the (F.p.) of u.
Put N=() U A:.. Then u(N)=0 by the monotonicity of g, hence

k=1 i=k+1
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Vi ( U A.<—N> = v ( U A.»> > vi(Ax+1)>¢€ for each k=1, 2, ... Since v; has

i=k+1 i=k+1

the (F.p.) and is exhaustive, it is continuous. Clearly |J A —N\/@ as k — o,

i=k+1
hence v, < U A —N)——»O by the continuity of v;, a contradiction.
i=k+1

In connection with the next corollary see also Theorem 2 in part 1.

Corollary 1. For a set function u:¥—R., the following conditions are
equivalent :

1) u is a submeasure

2) u has the (p.g.p.), is monotonely continuous, i.e. A,/ (\)A > u(A.)—
u(A), and u(N)=0 > u(AUN)=u(A) for each A e &.

Particularly a semimeasure u:¥— R. is a submeasure if and only if A, \NA =>
u(An)—u(A).

Proof. 1)=2) by Theorem 3b), Theorem 1a) from part I and the subadditive
continuity of u.

2)=1). We have to show that u is subadditively continuous. Let A € & and put
vilBB)=u(AuB)—u(A)and vo(B) = u(A)—u(A —B), Be%. Then it is easy to
see that 2) implies that u, v, and v, satisfy all assumptions of the theorem. Thus
(vivvz)<<u, what we wanted to show.

Using Lemma 4 we immediately have the following version of the Vit-
ali—Hahn—Saks theorem.

Corollary 2. Let u,v,: ¥—>R,,n=1, 2, ... have the (F.p.), let u have the (p.g.p.)
and let Ne¥, u(N)=0 > v,(AuUN)=v,(A) for each n=1, 2, ... and each
A e€¥. Let further vo:¥— R, be continuous and let v,(A)—vo(A) for each
A €. Then the sequence v., n=0, 1, 2, ... is equi-u-continuous.

From this we obtain the necessity of conditions II and III in Theorem 18 and of
condition II in Theorem 23, part I, as we promised there. Namely we have

Corollary 3. Let u: ¥— R, be a submeasure and let A,€e¥, n=1,2,... be
a monotone sequence with the limit Ao. Then for each € >0 there is a § >0 such
that Be ¥, u(B)<dé = u(A.uUB) < u(A,)+¢€and u(A,—B) = u(A,)—« for
eachn=0,1, 2, ...

Proof. For n=0, 1, 2, ... put v.(B)=[u(A.uB)—u(A.)] v
[u(A.) —u(A. —B)], B €. Then by Theorem 1a), Theorem 3b), part I and the
subadditive continuity of u clearly all assumptions of Corollary 2 are satisfied.

Note that the last corollary is generalized by Theorem 6.

For the next theorem we need two lemmas. The first is immediate.

Lemma 5. Let Va.x: R—> Ry, n, k=1, 2, ... and suppose that:
1) foreachn =1,2, ... the sequence V., k =1, 2, ... is uniformly exhaustive,
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2) for each k=1, 2, ... the sequence v, .x, n =1, 2, ... is uniformly exhaustive,
and

3) for each subsequences n;— », k;— x as i — » the sequence Va,x,i=1,2, ...
is uniformly exhaustive. .

Then the family v..x, n, k=1, 2, ... is uniformly exhaustive.

Lemmaé6.Letu,:¥—>R.,,n=1,2,... be semimeasures or submeasures and put

_s 1l _m@)
M(A)—nzl 2n l+u,,(T)’ AE.?.

Then u is a semimeasure or a submeasure, respectively.
Proof: We prove the lemma for semimeasures. The case of submeasures may

be proved similarly. First we note that for eachn=1, 2, ..., u.(T)=sup u.(A)<
Ae¥
+o (if Aved, k=1, 2,... and u.(Ax) / u.(T), then y,.(T)=£im . (Ax) <

Un ( U Ak) <+ by the monotonicity of u,).
k=1

oo

Now only the (p.g.p.) is not immediate. Let £ >0. Take no so that >, L,.<£/2,

n=no+1
and for n =1, 2, ..., no take 8, by the (p.g.p.) of u, so that u,(A)vu.(B)<éd, >
u.(AuB)<eg/2. Put 8 =51,,; ﬁ, where a = min 8. and b = max un(T). Then

clearly u(A)vu(B)<é = u(AuB)<eg, what we wanted to show.
We shall need also the following

Definition 2. We say that the family of set functions vi:R—R., i€l is
commonly subadditively continuous if for each A e R and each € >0 there is
a 8 >0 such that BeR, v;(B)<d imply vi(AuUB) < vi(A)+¢eand vi(A —B) =
vi(A)—e¢ for each iel.

Note that if vi:R— R, iel are commonly subadditively continuous, then
clearly vi: % — R, is subadditively continuous.

Theorem 6. Let o, u.: ¥—R., n=1, 2, ... be submeasures and let u.(A)—
wo(A) for each A € &. Let further Axe &, k=1, 2, ... and let Ax— A,, I.ec.
limksup Ax = limkinf Ay = Ao. Then for each € >0 there is a 6 >0 such that B € &,

u.(B)<é for eachn =1, 2, ... imply u,(AxuB) < u.(A«)+¢€and u,(Ax —B) =
u.(Ax)—¢ foreach n, k=1, 2, ...
Proof. Put

w1l wm@)
WA= 7 T+’ A€
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Then u:¥— R. is a submeasure by Lemma 6. For n, k=0, 1, 2, ... define v\,
Vaix:F— R, by the equalities: vau(B) = .(AxUB) — u,(Ax) and v, «(B)

= n(Ax) — un(Ax — B), B € &. Since u(B) < supv,(B) for each B € &, to prove

the theorem it suffices to show that the family {vax, Vax, n, k=1, 2,...} is
equi-u-continuous. To show this it is enough to check-that all assumptions of
Theorem 5 are satisfied. Since u is a submeasure by Corollary 1 of Theorem 5, it
has the required properties. Similarly, since each u., n =1, 2, ... is monotonely
continuous, each v, « and vpi, n, k=1, 2, ... is continuous and has the (F.p.). The
property: Ne &, u(N)=0 = vaix(AUN) = v i(A) and v, (AUN) = v, i(A)
for each A € & is immediate. Theorem 1b) in part I implies that v «(B) — va..o(B)
and v, «(B) — v.o(B) for each Be¥ and each n=1, 2, .... Thus according to
Lemma 4 the sequence Va.xVVnx is uniformly exhaustive for each n=1, 2, ....
Similarly, since u.(B)— uo(B) for each B € &, the sequence vaxVvvain=1,2, ...
is uniformly exhaustive for each k =1, 2, .... If now n; A ki — o, then it is easy to see
that

(VrekeV Vak) (B)— (Vo,0v vo,0)(B)

for each B € ¥, hence again by Lemma 4 the sequence v xvVa.x, i =1, 2, ... is
uniformly exhaustive. Thus by Lemma 5 the family {vax, Vai, 1, k=1, 2, ...} is
uniformly exhaustive, what we wanted to show.

Corollary. Let the family of submeasures vi:¥—R., i€l be sequentially
compact in the topology of pointwise convergence on &. Then vi(A ) <+ o for each
A €%, vi:¥— R, is a submeasure and the family v;, i € I is commonly subadditive -
ly continuous.

The idea of the proof of assertion 2) of the next theorem is taken from [10,
Theorem 3.10], see also [1, Theorem 1] and [5, 10.5].

Theorem 7. Let vi: ¥— R, i € I be semimeasures and let vi be exhaustive. Then :
1) vi:¥— (0, +x) is a semimeasure, and
2) there exists a sequence i, €l, n=1, 2, ..., such that v <u, where

- 1 Vi, (A)
A)= —_——n 7
u(A) "§=l 7 T+v (T)’ Ae?.

Proof. 1) Only the (p-g.p.) of v; is not immediate. Suppose v; has not got it.
Then there is an ¢ >0 and for each n=1, 2, ... sets A,, B.e¥ and i,el, n=1,

2, ... such that vi(A,) v vi(Bx)<1/n and v, (A,UB,)>¢. Thus if J = {i,, n =1,
2, ...}, then v, has not the (p-g-p.) either. Hence we reduced the case of general | to
the case when I={1,2, ...}. Let I={1,2, ...} and for A € ¥ put
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Then u:¥— R, is a semimeasure by Lemma 6, hence v; <y by Theorem 5. Let
£>0. Since v; <y, there is a 80> 0 such that u(E)<d8, = vi(E)<e. Since ¢ has
the (p.g-p.), there is a 6 >0 such that u(A)vu(B)<d = u(AuUB)<d,. Since
u(A)svi(A)foreach A €, vi(A)vvi(B)<db = vi(AuUB)<g, what we wanted
to show.

2) First we show that for each £ >0 there exists a finite subset J. = I such that
A e, vi,(A)=0 > vi(A)<e. Suppose the contrary. Then there is an £,>0 such
that for any finite subset J < I there is aset A € ¥ and i e I —J such that v,(A) =0

“and vi(A)>go. Take arbitrary i; € I. Then there is an A; €% and i, €I such that
vi,(A1) =0 and v, (A ) >¢&,. Similarly there is an A, e & and is € I such that v, (A>)
v v,,(A2z) =0 and v;,(A.) > ¢&o. Continuing in this way we obtain a sequence A, € &,
n=1, 2,... and a subsequence i,el, n=1, 2, ... such that v, (A,)>¢&, and

vi.(Ax)=0for k=n,n=1,2, ... By the (F.p.) of each v; we have v, (U Ak> =0
k=n

for each n=1, 2, ..., hence v,,,, <A,, - U Ak>>£0 for each n. But this con-

k=n+1

tradicts the exhaustivity of vi, since the sets A, — |J A«,n =1, 2, ... are pairwise

k=n+1
disjoint. In this way we have shown that for each £ >0 there is a finite subset J. < I
such that A € #, v, (A)=0 = vi(A)<e. Puttingsubsequentlye =1/k, k=1,2, ...
we obtain a sequence i, €I, n=1, 2, ... such that A € ¥,

51 vu(A)
u(A)= 27Ty ,R(T)_O'jv’(A):O'

Now clearly all assumption of Theorem 5 are satisfied, hence we have the desired
result vi<u.

From 1) and the Corollary 1 of Theorem 5 we immediately have

Corollary 1. Let vi: ¥— R., i € I be semimeasures and let vi(A) <+ for each
A €%. Then v; is a submeasure if and only if A,€e¥, n=1, 2, ... and A,"\\A
implies vi(A.)—vi(A).

From assertion 2) of the theorem we easily have

Corollary 2. Under the assumptions of the theorem suppose that each
pseudometrizable uniform space (¥, %.,), i € I is separable or that each v, i e [ is
a regular Borel semimeasure on (), or that each v;, i € L has the property (p),
see Definition 4, part I. Then the semimeasure v; also has the corresponding
property.

The next simple example shows that in Theorem 7 v; need not be a submeasure
even if each v;, i eI is a uniform submeasure.

Example. Let T=(0, 1), let 8 be the Borel o-algebra of T and let u: %8 —
{0, 1) be the Lebesgue measure. For n=1, 2, ... and A € B put
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va(A)=u(A)A1/2+[n(u(A)—1/2)A1/2]vO0.

Then each v.: B— {0, 1) is a uniform submeasure. Let Ax = (0, 1/2+1/(k + 1)),
k=1, 2,... Then AN\(O0, 1/2)=A, vi(A)=1 for each k=1, 2,..., but
vi(A)=1/2. Thus v; is not a submeasure by Corollary 1 of Theorem 7.

Theorem 8. Let vi: ¥— R,, i €I be atomless semimeasures, see Definition 2,
part I, let vi be exhaustive and let A, Be% and vi(A)vvi(B)<+o imply
vi(AuB)<+o. Then vi(A)<+x for each A € &¥.

Proof. Suppose vi(A) =+ for some A € ¥. Then there is a countable set J = I
such that v;(A)= +. In this way we may suppose that I ={1, 2, ...}.

Let I={1,2, ...} and put

| 'V,'(A)
A=), w— =, Ae.
WA= 2 T Ty A€
Then u: ¥— R, is a semimeasure by Lemma 6. Now it is easy to check that all
assumptions of Theorem 5 are satisfied, hence v; <u. It remains to apply the Saks
decomposition of u, see Theorem 8, part I, and the assumed property

V)(A)VV](B)<+°°$V1(A UB)<+°°.

Theorem 9. Let v;: ¥— R, i € I be semimeasures and let vi(A) <+« for each
A €. Then vi: ¥— R,, is a uniform submeasure if and only if the set function

v:¥—R., v(B)=sup [i(AuUB) — vi(A)], B € ¥ is exhaustive.
Ae¥

Proof: Let vi: ¥— R. be a uniform submeasure. Since v; is then continuous, it
is exhaustive. Now the exhaustivity of vi: ¥— R, and its subadditive continuity
imply the exhaustivity of v.

Conversely, suppose that v: ¥— R, is exhaustive. Taking A =@ we obtain that
vi: ¥— R, is exhaustive. Since v;: ¥ — R, has also the (F.p.), it is continuous. Thus
it remains to prove its uniform subadditive continuity. In fact we have to show that
v <v;. By Theorem 5 it is enough to check that with u =v; its assumptions are
satisfied. Since each v;, i € I has the (F.p.), v; and v also have the (F.p.). Since v; is
exhaustive, it has the (p.g.p.) by Theorem 7. The implication vi(N)=0 >
vi(AUN)=v(A) for each A €% is immediate. Finally the exhaustivity of v is
assumed.

3. On a generated o-ring and sequential compactness
in the topology of pointwise convergence

For submeasures the next result is contained in the lemmas of the proof of
Theorem 18, part 1.
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(By #,(Rs) as usually we denote the class of limits of increasing (decreasing)
sequences of sets of R.)

Theorem 10. Let v: 6(R)— R, be a semimeasure. Then:

1) for each A €o(R) and each € >0 there are E € R, and F € Rs such that
FcAcE and v(E—-F)<e.

2) for each A € d(R) there are F € Rs, and E € Ros such that F= A c E and
v(E —-F)=0, and

3) v(A)=sup {v(F), Fc A, Fe®Rs} for each A € o(R).

Proof. 1) Denote by & the class of all sets A € () for which 1) is valid. Then
clearly # =« & and & is a ring by the (p.g.p.)of v.Let A, e ¥, n=1, 2, ... and let
A,/ A. According to Lemma 3 and the (F.p.) of v there is a sequence &« \,0 such

that Bx € 0(R), v(By) <6, k=1,2, ... imply v ( Bk><s. Since v is exhaustive,
k=1

by Lemma 2 and the (F.p.) of v there is an no such that v(A — A,,) <9,. Take
F e Rs so that Fc A,, and v(A,,—F)<é,,for each n=no+k, k=1, 2, ... take

E, € R, such that E, > A, and v(Euy+k — Angrk) < 0244, and put E = Eyex-
k=1

Then E€R,, FcA cE and v(E —F)<e.

Thus A € &, hence & =0 (R).

2) follows immediately from 1) by the monotonicity of v.

3) Let A €ead(R). By 2) take FeRs, so that Fc A and v(A —F)=0. Then
v(A)=v(F) and v(F)=sup {v(G), G € Rs, G cF} by the (F.p) of v.

The implication 1)=3) of the next theorem in the case when each v;, i eI is
additive was proved in [17, Theorem 2.1] and for subadditive v, it follows from
Theorem 7.2 in [5], see also Theorem 2.1 in [9].

Theorem 11. Let v;:0(R)—R., i€l be semimeasures. Then the following
conditions are equivalent.

1) vi: R — R, is a semimeasure

2) vi:0(R)— R, is exhaustive

3) vi:0(R)— R, is a semimeasure.

Proof. 2)=3) by Theorem 7.1) and obviously 3)=>1).

1)=2). Suppose the contrary. Then there is an £0>0 and a sequence Ax € o(R),
k=1, 2, ... of pairwise disjoint sets such that v;(A«)>¢ for each k=1, 2, ....
According to Theorem 10.3) there are Fi € Rs, k==1, 2, ... such that F, < Ax and
vi(Fi)>eg, for each k=1,2, ... Foreach k=1, 2, ... take Rfe®R, j=1, 2, ... so
that Rf\\F.. Let ke{1,2,...} be fixed. Since vi:®— R, is exhaustive, by
Lemma 1 there is an jo such that v;(Rf—R})<ego for each j=j,. Bui then
vi(Rj,— F.)<¢€o by the (F.p.) of vi: 6(®)— R, hence vi(R} — Fi)— 0 as j— o for
each k=1, 2, .... By the (p.g.p.) of vi:®— R, take 8,>0 so that A, Be®R,
vi(A)vv(B)<80 = vi(AUB)<g, According to Lemma 3 take a sequence
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&h\0, k=1, 2,... such that AxeR and v;(Ax)<&, k=1, 2,... imply
k

VI (UA,-)<60 for each k=1, 2, .... Further for each k =1, 2, ... choose j« so that
i=1

k-1
vi(R;, — F) <&, put Ry=Rj and R, =R}, — | JR: for k=2,2, .... Then Ry, k =1,

i=1

k—1
2, ... are pairwise disjoint elements of # and R} = R.uU <Rﬁn (U R,)) for each
i=1

k=1,2,...
Since F, k=1, 2, ... are pairwise disjoint, it is easy to see that

k-1 k .
Se=Rin (UR)<U (Ri~F)
i=1 i=1
foreach k =1, 2, .... Hence vi(Sk) <<do for each k =1, 2, .... Since R}, = R« USx and
since vi(R}) =vi(F.)> ¢, for each k =1, 2, ..., we have obtained that v;(R«) > 8o
for each k=1, 2, ..., a contradiction with the exhaustivity of v;: % — R..
The theorem is proved.

Theorem 12. Let u, vi: 0(R)— R, i € I be semimeasures, let vi: 6(R)— R be
exhaustive and let v <<u on R for each i e I. Then vi<u on o(R).

Proof. According to Theorem 5 it is enough to show that Neo(R), u(N)=0
>v;(N)=0 for each i eI. Let us have fixed i eI, Neo(R) with u(N)=0 and
£>0. Since v, <u on R, thereisa d>0suchthat A e R, u(A)<dé > vi(A)<e.
By Theorem 10.1) there is an E € R, such that NcE and u(E)<d. Choose
A, €R,n=1,2,..s0 that A, "E. Then u(A.)<9d, hence v:(A,)<e for each
n=1,2,.... But then v;(E)<e¢ by the (F.p.) of vi. Since £ >0 was arbitrary,
v,(N) =0, what we wanted to show.

Definition 3. We say that v;: R — R., i € I are subadditively equicontinuous if for
each A € R and each € >0 there is a 8 >0 such that iel, Be®R and v;(B)<d

imply:
vil(AuB)<vi(A)+¢ and vi(A—-B)=vi(A)—¢.

If such a 6 >0 exists commonly for all A € R, then we say that vi:R—>R,,iel
are subadditively equicontinuous uniformly on R.

Clearly, if vi: # — R., i € I are subadditively equicontinuous and v;(A) < + o for
each A e &, then vi: ®— R. is subadditively continuous. Further, if v.: Z#—>R,,
n=1, 2, ... are subadditively equicontinuous and if v,(A)—v(A)e R, for each
A € R, then obviously v: % — R, is subadditively continuous.

Subadditive equicontinuity clearly implies common subadditive continuity. The
following simple example shows that the converse is not true even if we have
uniform submeasures on a o-algebra.

Let T={0, 1, 2, ...} and let ¥=2". For n=1, 2, ... define v,: >R, as
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follows: v.(8)=0, v.({n})=1/n, v.(A)=2 if {0}u{n}cA and v.(A)=1 if
{0}u{n}+A and A contains some k<n. Finally we define v.(A)=0 if
inf {(k:keA}>n.

Theorem 13. Let the semimeasures v,:0(R)—R., n=1, 2, ... be commonly
subadditively continuous, Ilet them be uniformly exhaustive on R and let

limv,(A) e R. exist for each A € R. Then limv,(E) € R, exists for each E € 0(R)

and v(E)=linlv,,(E), E € 0(R), is monotone and continuous on o(R).

Proof. Let E € 6(R) and let € >0. By assumption there is an £, >0 such that
B €o(R), v.(B)<e, for each n=1, 2, ... implies v,(EuB) < v,.(B)+¢ and
Vo(E—B) = v.(E)—¢ foreach n=1, 2, ....

Put

_v(A)
)= ; > T+v(T)’ A€o
Then u: o(R)— R. is a semimeasure by Lemma 6, and Neo(®), u(N)=0 >
va(AUN)=v,(A) for each Ae€eog(®R) and each n=1, 2,.... Further, by
Theorem 11 the sequence v., n =1, 2, ... is uniformly continuous on ¢(#). Thus
by Theorem 5 the sequence v,, n =1, 2, ... is equi-u-continuous on o(#). Hence
there is a 8 >0 such that Beo(R), u(B)<dé = v.(B)<eiforeachn=1, 2, ....
Applying Theorem 15 from part I to 4 we find an A € ? such that u(EAA)<S$.
Since E—(AAE)c A cE u (AAE), we have the inequality v.(E) —¢& < v.(A)

< vo(E)+e¢, ie. |Va(E)—v.(A)|<e for each n=1, 2, .... Since 'l‘i_r.ralnv,.(A)eR;,
exists for each A € 2 by the assumption, there is an no such that |V, (E) — vm(E)| <
3¢ for each n, m =n,. Since £ >0 and E e () were arbitrary, !ilguvn(E)eR+
exists for each E € (). Since also the sequence v., n=1, 2, ... is uniformly
continuous on o (), the set function v(E) = 'lll_rg va(E), E € 0(R) is continuous on

o(R). Its monotonicity is obvious and thus the theorem is proved.
From here and from Theorem 6 we immediately have

Corollary 1. Let v, v,: 6(R)—R.,n=1, 2, ... be submeasures and let v,(A)—
v(A) for each A € R. Then the following conditions are equivalent:
1) the sequence v,, n =1, 2, ... is commonly subadditively continuous on o(R),
and '
2) va(A)—v(A) for each A e o(R).
Further, we have

Corollary 2. Let v,:0(R)—R,, n=1, 2, ... be subadditively equicontinuous
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submeasures and let limv.(A)eR. exist for each A € #. Then the following

conditions are equivalent:
1) v., n=1, 2, ... are uniformly exhaustive on R, and

2) limv,(A)e R, exists for each A e 0(R) and v(A) = ]inlv,.(A), Aeo(R)is

a submeasure.

Where from using the Cantor diagonal process and the Corollary of Theorem 6
we immediately have

Corollary 3. Let R be a countable family, see Theorem C, § 5 in [12], and let
vi:o(R)—R,, i eI be subadditively equicontinuous submeasures. Then the fol -
lowing conditions are equivalent:

1) vi:0(R)— R., i € L is a relatively sequentially compact family in the topology
of pointwise convergence on o(R), and

2) vi(A)<+x for each A € R and vi: R — R, is exhaustive.

This Corollary 3 generalizes Theorem 2, § 3 in [2], while the next theorem
generalizes Theorem 1, § 3 in [2].

Theorem 14. Let vi: ¥— R, i € I be subadditively equicontinuous submeasures
and let for each i € I the pseudometrizable uniform space (¥, U.;) be separable.
(For the definition of (¥, %.,) see the paragraph preceding Theorem 14, part I.).
Then the following conditions are equivalent:

1) vi:¥—>R., i el is a relatively sequentially compact family in the topology of
pointwise convergence on &, and

2) i(A)<+o for each A € ¥ and vi:¥— R, is exhaustive.

Proof. 1)=2) by the Corollary of Theorem 6.

2)=>1). By assertion 2) of Theorem 7 there is a sequence i, € I,n=1,2, ... such
that v; <u, where

- 1 v, (A)
u(A)= Z§—1+V,H(T) Ae¥.

Clearly, the pseudometrizable uniform space (¥, %, ) is also separable. Hence
there is a sequence E, € ¥, n =1, 2, ... which is dense in (¥, %.). Let R be the ring
generated by this sequence. Then R is countable, see Th. C, § 5 in [12] and in the
same way as in Lemma 3. 1 in [2] we can show that to each E € & there is a set
A €0(R) such that u(EAA)=0. But then v,(EAA)=0, hence it is enough to
prove 1) on o(2). But this is the implication 2)=>1) of Corollary 3 of Theorem 13.

Lemma 7. Let T be a locally compact Hausdorff topological space and let

Vo:0(BL)—R,, n=1, 2, ... be regular Borel (Baire) semimeasures. Then the
following conditions are equivalent:

79



1) vi: €.— R. is exhaustive, and
2) vi:0(€.)— R. is exhaustive.
(For notations see Definition 3, part 1.)
Proof. 1)=>2) by the regularity of v., n =1, 2, ..., while 2) = 1) is immediate.
Now in the same way as in Theorem 13 we can prove the following

Theorem 15. Let T be a locally compact Hausdorff topological space, let
Va:0(BL)—R., n=1, 2,... be regular Borel (Baire) semimeasures and let
limv,(C)e R, exist for each Ce¥€.. Let further v,:€,—-»R,, n=1, 2,... be
uniformly exhaustive and let their extensions v,:0(#.)— R, be commonly

subadditively continuous. Then limv,(E)e R, exists for each E € 0(%8.) and

v(E)=Ilimv,(E), E € 0(%.), is monotone and continuous on o(% ).

We omit the obvious formulations of the analogs of Corollaries 1, 2, and 3 of
Theorem 13.

We finish this section with the following version of the Vitali—Hahn—Saks
theorem.

Theorem 16. Let the submeasures v, v,: #— R, n=1, 2, be exhaustive and
subadditively equicontinuous uniformly on R. Let further u:o(R)—R. be

a semimeasure, let v, <uon R foreachn=1,2, ..., and let v.(A)—v(A) for each
A €R. Then
1) the extended submeasures v.:0(R)—R., n=1, 2, ..., are subadditively

equicontinuous uniformly on o(R),

2) vi(E)—>vVv(E) for each E e 6(R), and

3) the extended submeasures v,.:0(R)—R.,n =1, 2, ... are equi-u-continuous
on o(R).

Proof. 1) follows immediately from the extension procedure for submeasures
given in the proof of Theorem 18, part L.

2) follows immediately from 1) and Corollary 1 of Theorem 13, and

3) follows immediately from 2), from Lemma 4 and from Theorem 12.

REFERENCES

[1] AJTEKCIOK, B. H.: [IBe Teopembl O CyILIECTBOBAHHH KBa3uGasuca ceMeicTBa KBa3umep. H3s.
Boici. Yye6. 3asen. Martemaruka, 6, 1968, 11-18.

[2] AJIEKCIOK, B. H.: O c1aGoit KOMNaKTHOCTH CeMeHcTBa KBasuMep. O B3aUMOCBS3H METPHKH
u Mepbl. Cubmp. mat. X, 11, 1970, 723-738.

[3] BOURBAKI, N.: Topologie générale. Chap. 9, Paris 1948.

[4] DOBRAKOV, I.: On submeasures I. Dissertat. Math., 112, 1974, 5—35.

80



[5] DREWNOWSKI, L.: Topological rings of sets, continuous set functions, integration, 1., IL., TIL
Bull. Acad. Polon. Sci., 20, 1972, 269-—286, 439—445.
[6] DREWNOWSKI, L.: Equivalence of Brooks-Jewett, Vitali—Hahn—Saks and Nikodym
theorems. Bull. Acad. Polon. Sci., 20, 1972, 725—731.
[71 DREWNOWSKI, L.: Decompositions of set functions. Studia Math., 48, 1973, 21—47.
[8] DREWNOWSKI, L.: On control submeasures and measures. Studia Math., 50, 1974, 203—224.
[9] DREWNOWSK]I, L.: On complete submeasures. Commentat. Math., 18, 1975, 177—186.
[10] GOULD, G. G.: Integration over vector-valued measures. Proc. London Math. Soc., 15, 1965,
193—225.
[11] TYCEJIBHHUKOB, H. C.: O6 ogHoM ananore teopembl Butann—Xana—Caxkca. MateM. 3aMeTKH,
19, 1976, 641-652.
[12] HALMOS, P.: Measure Theory. New York 1950.
[13] KHURANA, S. S.: Extensions of exhaustive submeasures. Bull. Acad. Polon. Sci., 24, 1974,
213—216.
[14] LABUDA, I.: Sur quelques généralisations des théorémes de Nikodym et de Vitali—Hahn—Saks.
Bull. Acad. Polon. Sci., 20, 1972, 447—456.
[15] ORLICZ W.: . bsolute continuity of vector-valued finitely additive set functions I. Studia Math.,
30, 1968, 121—133.
[16] ORLICZ, W.: Absolute continuity of set functions with respect to a finitely subadditive measure.
Commentat. Math., 14, 1970, 111—128.
[17] WALKER, H. D.: Uniformly additive families of measures. Bull. Math. Soc. Sci. Math. Roum.,
18, 1974, 217—224.

Received November 1, 1977

Matematicky ustav SAV
Obrancov mieru 49
886 25 Bratislava

O CYBMEPAX II
Hean [Tlo6pakoB-SHa ®apkosa
Pe3iome

Iycts R KOMBLO MOAMHOXECTB HenycToro MHoxectBa T. ®yukums u: R - (0, +) Ha3biBaeTCA
CyOMepoW, eclii OHa MOHOTOHHA, HempepbisHa (A, @ = u(A,)— 0), ¥ NONYyaJIUNTUBHO HENPEPbLIBHA
(VAeR nVe>035>0; BeR, u(B)<é > u(AuB) = u(A)+e u u(A—-B)=u(A)—¢). B
nepBoii 4acTH, CMOTPH [4), ObLTO MOKa3aHO, YTO NOYTH BCE PE3YJbTaThl 00 OTAENBHBIX MEpax HMEIOT
06061eHUs i cyOMep. B HacTosilue# YacTH MCCIEAYIOTCS OTAEIBHbBIE CBS3H MEXAY PaBHOMEPHBIM
OTCYTCTBHEM YCKOJIL3KIOLICH Harpy3KH, paBHOCTENEHHOMH aBGCONMIOTHOM HENPEPBIBHOCTBIO, COBMECTHOM
WIH PaBHOCTENEHHOH NOJyayIMTUBHON HENPEPbIBHOCTBIO M C1a60H KOMMNAKTHOCTBIO VISl HEKOTOPbIX
ceMeicTB (byHKLMIA MHOXECTB, B 4acTHOCTH Ansg cyOomep. Ilocne BBOAHBIX 3aME€4YaHHH JlaHHbIX B § 1,
B §2 MCCIIEnyIOTCA YIIOMAHYTBIE CBS3M BHAYAIE Ha KOJbLE, MOCIE TOTO Ha O-KOJbLIE, M HAKOHEL Ha
0 -KOJIbLIE MOPOXAEHHOM KOJIbLOM. Pemaroltylo posib B 3TMX HCCIIEROBAHUAX CEMENCTBA V;, I € I, urpaet

nosepieHue QyHKUMN v;, vi(E) = supv;(E), 4 3KBUBANEHTHOCTH MOJIyaIUTUBHOM HENPEPBIBHOCTH U C
Im}

a6CcoNOTHON ( -HenpepbIBHOCTLIO dyHKuMit v W v3, rme vi(B) = u(AuB)—u(A), u v3(A)
= u(A)—u(A-B).
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