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SOME COMBINATORIAL PROPERTIES OF 
CONICS IN THE HJELMSLEV PLANE 

RASTISLAV JURGA 

(Communicated by Oto Strauch) 

ABSTRACT. We prove some combinatorial properties of conies in desarguesian 
Hjelmslev planes . The results generalize analogous properties of conies in finite 
projective geometries [4]. 

1. Introductory notes and definitions 

By a special local ring we understand a finite commutative local ring R, the 
ideal / of divisors of zero of which is principal. Let g be a generator of I. The 
smallest integer i ! E N such that gv = 0 is called the index of nilpotency of R. 
We assume that R is not a field and that the characteristic of R is odd. The 
image of R under the canonical homomorphism ^ will be denoted by i t . The 
coordinatized Hjelmslev plane over R will be denoted by H(R). 

A conic Q in H(R) is the set of all points whose coordinates x\ satisfy 

3 

y] dijXiXj = o. (i) 
* J = I 

In this paper, we shall assume that the conic Q is regular, i.e., det[a^] ^ I. 
Observe that in a suitable coordinate system the conic given by (1) satisfies 

the equation 
ax2 + by2 + cz2 = 0 . (2) 

It is known that in the projective plane over the skewfield R a conic has 
exactly \R\ + 1 points. On the other hand, it can be shown that a conic in H(R) 
has exactly \R\ + \I\ points. 

A line t intersecting the given conic Q at more than two points is said to be 
a tangent to Q. If t intersects Q at exactly two points, then t is said to be a 
secant. In all other cases, t is said to be a nonsecant. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 05B25, 51D99. 
K e y w o r d s : special local ring, desarguesian Hjelmslev plane, conic, external (internal) 

point. 
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Observe that the intersecting points of a tangent are neighbouring. 
In this paper, we will use the following algebraic result, which we state with

out proof. 

THEOREM 1.1. Let d = d±ga e R. Then 

1. there is a square root of d in R if and only if d± is a square in R and 
a = 26; 

2. if condition 1 is fulfilled, then d has 
a) 2\R\6 square roots if di ^ 0. 
b) IJtl^l square roots if d\ = d = 0. 

2. The line and the conic in H(R) 

In this section, we prove several combinatorial properties of conies in the 
Hjelmslev plane H(R). 

THEOREM 2 . 1 . The number of tangents through each point of a conic is 
exactly \I\. 

P r o o f . It is known that the number of lines passing through each point in 
H(R) is exactly \R\ + \I\. Since a conic in H(R) has exactly \R\ + \I\ points, 
the number of secants passing through each point of the conic is \R\ • | / | = \R\ 
(lines connecting the given point with all nonneighbouring points of the conic). 
Then the number of tangents is \R\ + \I\ - \R\ = \I\. • 

THEOREM 2.2. Let t: A1X1 + A2x2 + A3x3 =0 be a line and let Q: Ylaijxixj 

= 0 be a conic. Then t is a tangent to Q if and only if 

X = det 

Û Ц ^ 1 2 « 1 3 Aг 

« 2 1 « 2 2 « 2 3 A2 

« 3 1 « 3 2 « 3 3 A3 

Aг A2 A3 0 

7 Г , nЄІ. (3) 

P r o o f . 

1. Assume that the conic Q satisfies, with respect to a given coordinate 
system, the equation ax2 + by2 + cz2 = 0. 

a) Let the line t: Ax + By + Cz = 0 be a tangent to the conic Q. We shall 
prove that x — n2 > n G I, holds true. Consider the intersection of the line t 
and the conic Q. Clearly, at least for one of the coefficients of the line t, say B, 
we have B £ I. Then 

_ -Ax - Cz 
J ~ ^ , 

and hence 
x2(aB2 + bA2) + 2ACbxz + z2(bC2 + cB2) = 0 . (4) 
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Since the line t is a tangent to the conic Q, the discriminant of (4) is a singular 
square, i.e., 

A = -4B2(bcA2 + acB2 + abC2) = n ' 2 . 

On the other hand, the determinant x - s equal to —A2bc — B2ac — C2ab. Thus 

bcA2 + acB2 + abC2 = 
/2 

n 
AB2 

and hence % is a singular square. 
b) Let 

-a 0 0 A-

det 
0 6 0 B 
0 0 c C 

.A B C 0 . 

= n 2 , • nЄ I. (5) 

We show that the line t: Ax + By + Cz = 0 is a tangent to the conic Q: ax2 + 
by2 + cz2 = 0. Arranging (5) we get 

-,4 2 bc - B2ac - C2ab = n2 . 

From Ax + By + Cz = 0, since B ^ 7, we have 

-Ax - Cz 

(6) 

У B 

and substituting into the equation of the conic we obtain 

x2(aB2 + bA2) + 2ACbxz + z2(bC2 + cB2) = 0. 

The discriminant of the last equation is 

A = (2ACb)2 - 4(aB2 + bA2) • (bC2 + cB2), 

and hence, in view of (4), 

A = 4 B V 2 . 

2. Given Q: Ylaijxixj = 0, where M = [a^] is the corresponding matrix, 
let p: AiXi + A2X2 + A3X3 = 0 be a line. It is known that there is a coordinate 
system with respect to which the equation of the conic is ax2 + by2 + cz2 = 0. 
Denote by P the transition matrix between the coordinate systems in question. 
Then the matrix of the conic Q is P ' M P = M and the equation of the line p is 
Ax + By + Cz = 0. Put (A,B,C) = A/, (A,B,C) = N. Consider the matrix 

M N' 
N 0 
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Clearly, we have 

P' 
o 

0 
1 

D 
P 0 
0 1 

= P' o 
0 1 

м 
л/ 

N' 
0 

P 

o 
0 
1 

P'MP P'W M Л/' 
Л/P 0 N 0 

(7) 

= D. 

From the first part of the proof it follows that det[D] = n2. From (7), we 
immediately have _ 

det[D] = det[P] 2 • det[D], 

where det[P] ^ I, and 

1 
det[D] 

det[Pp 
det[D] ЄІ. 

D 

In what follows, by a zero tangent we will understand the polar of a point 
which lies on the conic We shall show that a zero tangent is also a tangent in 
the sense of §1. 

THEOREM 2.3. The line Ax + By + Cz = 0 is a zero tangent to the conic 
Q: ax2 + by2 + cz2 = 0 if and only if 

det 

a 0 0 A 
0 ò 0 B 
0 0 c C 
A B C O j 

= 0. 

P r o o f . 

1. Let ax2 + by2 + cz2 =»0 be a conic and let ax\X + by\y + cz\z = 0 be the 
equation of the zero tangent at the point T = [xi, yi, z\]. Let us calculate the 
corresponding determinant. Then 

det 

-a 0 0 Aш 

0 b 0 B 
0 0 c C 

_A B C 0 . 

= det 

a 
0 
0 

_ax\ 

0 0 ax\ 
Ъ 0 ЪУl 

0 c cz\ 
by\ cz\ 0 

a(—c Б V - ЪC2z\) -- ax\ax\ Ъc = —abc^ax^ + òуx 

because the point T lies on the conic Q'. 

2. Let 
^ a 0 0 A 

0 6 0 B 
0 0 c C 

.A B C 0 

det -42òc + B 2ac-f C 2 Л6 = 0. 
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By Theorem 2.1, if A2bc + B2ac + C2ab = 0, then the line Ax + By + Cz = 0 
is a tangent to the conic Q. 

Let G be the set of all triples (A, B,C) of elements of R such that 

det 

a 0 0 A 
0 ò 0 B 
0 0 c C 
A B C 0 

= o, 

and let G(0) be the set of all zero tangents to Q. Evidently, G(0) C G. Thus a 
triple (A, B, C) belongs to G if and only if we have 

Q': A2Ьc + B2ac + C2aЪ = 0. (8) 

Let Q' denote the conic determined by (8) in variables A, B, C. Then the 
number \Q'\ of points of Q' (the cardinality of Q') satisfies 

|G | = |Q ' | = ( |^ | + l ) | / | . 

Since G(0) C G, and for the cardinality of G(0) we have 

G(0) = |Q| = ( | S | + 1 ) | / | , 

it follows that G(0) = G. 

COROLLARY 2.1. The number of all zero tangents to a given conic equals 
\R\ + \I\. 

The next theorem gives the number of all points a conic and its tangent have 
in common. 

THEOREM 2.4. Let t be a tangent to a conic Q. Then: 

1. if t is a zero tangent, then Q and t have in common \R\^^ points; 

2. if t is not a zero tangent, then there is a number 6(t), 0 < 6(t) < 

such that Q and t have in common 2\R\6^ points. 

P r o o f . Consider a conic Q: ax2 + by2 + cz2 = 0 and a line t: Ax + By + 
Cz = 0. According to Theorem 2.1, t is a tangent to Q if and only if 

det 

a 0 0 A 
0 6 0 B 
0 0 c C 
A B C 0 

= n 

i.e., -A2bc - B2ac - C2ab = n 2 . 

One of the coefficients of t, say B, is regular, i.e., B £ I. 
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Then 
-Ax - Cz 

V = B— • 

Substituting y into Q we get 

x2(aB2 + bA2) + 2ACbxz + z2(bC2 + cB2) = 0, (9) 

and the discriminant of (9) is given by 

A = AB2n2 . (10) 

The assertion now follows directly from Theorem 1.1. D 

R e m a r k 2.1. In case R = 7jpk , the number 6(t) can be calculated directly. 
It would be interesting to determine 6(t) in general. Among nonsecants, there 
are distinguished ones, which we will call imaginary tangents. 

DEFINITION 2 .1 . Let Q: Yaijxixj = 0 be a conic, and let t: Ax + By + Cz 
= 0 be a line. If the determinant (3) is a singular square, then t is said to be 
an imaginary tangent. 

Observe that an imaginary tangent is mapped by the canonical map to a 
tangent in the projective plane II(|i?|). 

The relationship between the classification of lines with respect to a given 
conic and the determinant (3) is described by the next theorem. 

THEOREM 2.5. Lett: Ax+By+Cz = 0 be a line and let Q: ax2+by2+cz2 = 0 
be a conic. Then: 

1. t is a tangent to Q if and only if the determinant (3) is a singular 
square; 

2. t is an imaginary tangent to Q if and only if the determinant (3) is 
a singular nonsquare; 

3. t is a secant to Q if and only if the determinant (3) is a regular square; 
4. t is a nonsecant to Q if and only if the determinant (3) is a nonsquare. 

P r o o f . The intersection of t and Q is given by the following equation: 

x2(B2a + A2b) + 2ACbxz + z2(bC2 + cB2) = 0 . 

The mutual position of t and Q depends on its discriminant 

D = AB2(-abC2 - acB2 - bcA2) = 4B2
X. 

The assertion is now a straightforward consequence. D 

The proof of the next auxiliary statement can be found e.g. in [3]. 
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LEMMA 2.1. Let R be a special local ring, and let v be the index of nilpotency 
of R. Then the number W of singular squares in R is given by 

" r - , + J S r i f f°r "=2k- (11) 

and 
I D l i v - l _ i 

W = 1 + —r= r otherwise. (12) 
2(1*1 + 1) ^ ^ 

Let ne I. The set of all points [x, 2/, z] G H(R) such that 

ax2 + by2 +cz2 =r2n, r G R- I for fixed n (13) 

is said to be a quasiconic Q(n). 
Clearly, Q(0) is a conic, and, moreover, Q(0) = Q. Let the symbol [n] 

designate the set {z G i?; 2 = r 2 n , r £ 1}. 

LEMMA 2.2. For all ne I we have \Q(n)\ = \Q\ • \[n]\. 

P r o o f . Let P = [xx, 2/1, *i] be a point of <2(0). Then ax\ + by\ + cz\=0. 
Assume that, e . g ^ x i £ I. Hence P = [1,2/1,21]. Under the canonical map, P 
is mapped onto P = [l,2/i,^i]- We prove that for each r G P - I there is a 
unique triple (l ,2/i ,z i) such that a + by\ + cz? = r2n. Consequently, [1,2/1,21] 
is a point of the quasiconic Q(n), and 

[ l , y i , f i ] = [ 1 , ^ , 2 1 ] . (14) 

Consider the equation 
a + by\ + cz\ = r2n . (15) 

Since the equation a + by\ + cz2 = 0 has two solutions in P , the equation (15) 
has two solutions as well. One of them is clearly [1,2/1, zi] and it will be mapped 
into (14). Each triple (1,2/1,21) determines a point of Q(n). For different r2n 
the corresponding triples are different, too. Hence to each point of Q(0) there 
correspond exactly [n] points of the quasiconic Q(n). • 

THEOREM 2.6. To each conic in Hjelmslev plane there are exactly 

(\R\ + \I\)W 

tangents, where W is the number of singular squares in R. 

P r o o f . According to Theorem 2.1, a line Ax + By + Cz = 0 is a tangent 
of the conic ax2 + by2 + cz2 •= 0 if and only if 

A2bc + B2ac + C2ab = - n 2 , n e l . (16) 
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Evidently, a triple (A, B, C) satisfies (16) if and only if [A, B, C] is a point of 
the quasiconic 

-A2bc - B2ac - C2ab = R2n2 . (17) 

By Lemma 2.2, for a fixed n E I, the quasiconic (17) has exactly |[n2]|(|I2|-f | / | ) 
points. For each n2'E I, the number of points of (17) is (|i?| + |J|) ^ \[n2}\ • But 
zC IIn2]l — W> a n d the assertion follows. D 
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